首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
M V Ugriumov  B Halász 《Ontogenez》1986,17(6):599-605
The ultrastructure and permeability of the CSF-brain barrier in the median eminence were studied during the perinatal period in rats with electron microscopy, electron-microscopic radioautography and electron-dense markers. It was shown that the ependymal cells forming the ventral portion of the 3rd ventricle (infundibular recess) are joined by the specialized junctions. The specialized junctions are similar in ultrastructure in different parts of infundibular recess all through the perinatal period. They consist of the tight junctions which are sometimes in series with the gap junctions and adhesion zones. An electron-dense marker, La3+, injected into the cerebral ventricles, penetrates through the foetal ependymal linins both via the ependymal cells and intercellularly in all parts of the infundibular recess. In neonatal rats La3+ penetrates in the same way in the rostral part of infundibular recess only, while in the caudal part its permeability is markedly limited, apparently by the tight junctions formed de novo around the cells. 3H-dopamine, introduced into the ventricles, crosses over the ependymal linins apparently in the same way as La3+. Then the labeled dopamine is transported into the pericapillary space of the primary portal plexus and, finally, into the capillary lumen. Thus, the results obtained point to the permeability of the CSF-brain barrier in the foetal median eminence for the markers including neurohormones. In the postnatal period the permeability of the ependyma becomes limited due to the formation of the tight junctions surrounding the ependymal cells.  相似文献   

2.
Pituitary gonadotropes were identified throughout the year in the seasonally breeding, hibernating bat Myotis lucifugus lucifugus by means of light microscopic immunohistochemistry. In both male and female bats, these cells were immunoreactive with an antiserum directed to the beta subunit of luteinizing hormone. Some gonadotropes were aggregated near a portion of the infundibular stalk which crosses the anterior lobe, while most were scattered singly in a uniform manner throughout the rest of the pars distalis. This cell population exhibited seasonal variations in both sexes. In males, the proportional volume of the pars distalis occupied by immunoreactive gonadotropes (volume fraction) was significantly reduced in late July, when plasma testosterone levels were approaching their seasonal peak. In females, the volume fraction declined in April, following ovulation, and remained low during pregnancy and lactation. The size and shape of gonadotropes appeared relatively constant throughout the annual reproductive cycle in male bats; the immunoreactive cells were irregular in shape, with cytoplasmic extensions insinuating between and often "cupping" other secretory cell types. In females, the gonadotropes resembled those of males throughout most of the year, except during pregnancy, when these cells became enlarged and ovoid. No evidence of involution was observed in these anterior pituitary cells in either males or females during hibernation.  相似文献   

3.
Summary Scanning electron microscopy of the third ventricle of sheep demonstrates areas of ciliated ependymal cells at the dorsal and middle third. The cilia of the dorsal portion of the ventricle have biconcave discs that are attached to each cilium by a slender stalk. The lower third and floor of the ventricular wall, as well as the pineal recess, are largely covered by ependymal cells that possess numerous microvilli with only a few isolated cilia scattered along cell surfaces. The infundibular recess is papillated with apical blebs of the ependymal cells that project into the lumen of the recess. Measurements of these surface elements indicate an average diameter of 0.28 for cilia, 0.10 for microvilli and 0.50 for the apical blebs of the infundibular recess. The functional significance of the regional differences in surface structures is discussed in relation to cerebrospinal fluid movement, ependymoabsorption and ependymosecretion.Supported by U.S.P.H.S. Grant NS 08171.Career Development Awardee KO4 GM 70001.  相似文献   

4.
The third cerebral ventricle ependymal lining including eminentia medians was studied by means of SEM in 20 sheep, 13 goats and one goat hermaphrodite. Supraependymal cells in addition to the usual supraependymal structures were observed. In sheep, they occurred in the infundibular low part only in females during oestrus. In goats, they were present in almost every case with the exception of male animals during the "rest" period (April). The number, topography and-to some extent--the appearance of the goat supraependymal cells were in relation to the animal's sex, and the females to the ovarian cycle phase. The supraependymal cells were found on the eminentia mediana surface only in the goats. In small ruminants, the processes of most supraependymal cells formed the ruffled membranes and only the eminentia mediana supraependymal cells--and in hermaphrodite also in the infundibular rostral part--resembled more neurons.  相似文献   

5.
Cerebrospinal fluid (CSF)-contacting neurons are sensory-type cells sending ciliated dendritic process into the CSF. Some of the prosencephalic CSF-contacting neurons of higher vertebrates were postulated to be chemoreceptors detecting the chemical composition of the CSF, other cells may percieve light as "deep encephalic photoreceptors". In our earlier works, CSF-contacting neurons of the mechanoreceptor-type were described around the central canal of the hagfish spinal cord. It was supposed that perceiving the flow of the CSF they are involved in vasoregulatory mechanisms of the nervous tissue. In the present work, we examined the brain ventricular system of the Atlantic hagfish with special reference to the presence and fine structure of CSF-contacting neurons. Myxinoids have an ontogenetically reduced brain ventricular system. In the adult hagfish (Myxine glutinosa) the lumen of the lateral ventricle is closed, the third ventricle has a preoptic-, infundibular and subhabenular part that are not connected to each other. The choroid plexus is absent. The infundibular part of the third ventricle has a medial hypophyseal recess and, more caudally, a paired lateral recess. We found CSF-contacting neurons in the lower part of the third ventricle, in the preoptic and infundibular recess as well as in the lateral infundibular recesses. No CSF-contacting neurons were found in the cerebral aqueduct connecting the subhabenular recess to the fourth ventricle. There is a pineal recess and a well-developed subcommissural organ at the rostral end of the aqueduct. Extending from the caudal part of the fourth ventricle in the medulla to the caudal end of the spinal cord, the central canal has a dorsal and ventral part. Dendrites of CSF-contacting neurons are protruding into the ventral lumen. Corroborating the supposed choroid plexus-like function of the wall of the dorsal central canal, segmental vessels reach a thin area on both sides of the ependymal lining. The perikarya of the CSF-contacting neurons found in the brain ventricles are mainly bipolar and contain granular vesicles of various size. The bulb-like terminal of their ventricular dendrites bears several stereocilia and contains basal bodies as well as mitochondria. Basal bodies emit cilia of the 9+0-type. Cilia may arise from the basal body and accessory basal body as well. The axons run ependymofugally and enter--partially cross--the periventricular synaptic zones. No neurohemal terminals similar to those formed by spinal CSF-contacting neurons of higher vertebrates have been found in the hagfish. We suppose that CSF-contacting neurons transform CSF-mediated non-synaptic information taken up by their ventricular dendrites to synaptic one. A light-sensitive role for some (preoptic?) groups of CSF-contacting neurons cannot be excluded.  相似文献   

6.
Summary The ultrastructural organization of the perinatal hypothalamus and the dynamics of neuronal and ependymal growth and plasticity were examined in this investigation. The brains of fetal rats 16, 17 and 18 days in utero and those of postnatal rats 1–16 days post partum were fixed with aldehyde fixatives and prepared for combined SEM/TEM analysis. By day 17 in utero the ventricular (ependymal) surfaces of the fetal thalamic wall, cerebral vesicle and rhomboid fossa were relatively well differentiated with cilia and microvilli. Type II histiocytes were the first supraependymal cell to appear upon the ventricular lumen and were evident by day 17 in utero. In contrast, the apical surfaces of tanycytes of the infundibular recess as well as those of most other circumventricular organs were poorly differentiated and unremarkable. Tanycytes of the infundibular recess exhibited a simple hexagonal mosaic pattern of apposed plasmalemmata and even by day 1 post partum few cilia or microvilli were evident.By day 5–6 post partum Type I supraependymal neurons and axonal processes began to make their appearance with some emerging from the underlying parenchyma of the median eminence. By day 16 post partum the ventricular surface of the infundibular recess was comparable with that of the adult.The Type I supraependymal neurons are remarkably similar in their ultrastructural organization with parvicellular neurosecretory neurons elsewhere in the endocrine hypothalamus. Their emergence at day 5–6 post partum suggests a possible correlation with the critical period of sexual differentiation and a potential receptor role for this cell line. On the contrary this phenomenon may simply be a developmental anomaly. Nonetheless, the mergence of such elements upon the lumen of the third cerebral ventricle underscores a remarkable degree of neuronal plasticity in the perinatal hypothalamus.Supported by USPHS Program Project Grant NS 11642-04 and USPHS-BRSG Grant RR-05403.The authors wish to thank N. Kutryeff for her excellent technical assistance  相似文献   

7.
Summary Structure, three-dimensional arrangement and ontogeny of large intracellular cisternae located in the median eminence region of the rat hypothalamus were studied using toluidin-blue stained semithin sections and electron microscopy. The cisternae occur along the projections of ependymal cells lining the ventral portion of the third ventricle (infundibular recess). Small cisternae can be seen close to the ventricle, whereas larger ones, divided into smaller compartments by thin septa, cluster near the surface of the hypothalamus. The cisternae are encompassed by a thin layer of cytoplasm to which axon terminals containing synaptic and dense core vesicles are closely related. Cisternae are arranged around the median eminence in a characteristic pattern. They occupy the midline in the retrochiasmatic area, flank both margins of the median eminence and extend caudally behind the origin of the pituitary stalk. The cisternae appear first between the 15th and 17th postnatal days. At about the 30th day their size and distribution resemble the situation observed in adult animals. The ependymal cisternae are suggested to be closely related to the luteinizing-hormone releasing-hormone (LH-RH)-containing fibers.  相似文献   

8.
In 70 sexually mature male and femal Rana temporaria frogs captured in natural habitat, mean nuclear volumes for the cells of the pars ependymalis and pars parenchymalis of the organon vasculosum laminae terminalis (OVLT) were determined in seven characteristic stages in life. The mean nuclear volume for the cells of the pars ependymalis and pars parenchymalis of the OVLT showed distinct annual fluctuation. Maximum nuclear volume of the cells in both investigated parts of the OVLT were observed during the breeding period (Ist decade of April), and minimum volume of the nuclei of the pars ependymalis at the beginning of hibernation (IIIrd decade of October), and in the pars parenchymalis near the end of active life (Ist decade of September).  相似文献   

9.
The distribution and morphology of phagocytic (Type II) supraependymal cells residing within the third ventricle of the guinea pig were investigated by scanning electron microscopy. Type II supraependymal cells were restricted to nonciliated regions of the ventricle. They were most numerous on the choroid plexus, abundant within the infundibular recess and were present on the ventricular floor in the region of the median eminence. Morphologically, they were characterized by a soma from which pseudopodia-like processes extended to the subjacent ependyma. Type II cells varied in configuration according to their location. Those residing on the choroid plexus typically had irregular somas and possessed processes that generally terminated in finger-like extensions. In contrast, cells on the ventricular floor and within the infundibular recess were stellate and possessed processes that terminated in fan-like cytoplasmic expansion. There were no differences noted in the frequency, distribution or morphology of Type II supraependymal cells in male and female animals. Furthermore, cell frequency did not appear to vary in relation to the estrous cycle. The data suggest that the pleomorphism exhibited by Type II supraependymal cells may reflect adaptations to diverse environmental conditions present within different regions of the third ventricle.  相似文献   

10.
Summary The hypothalamus of adult lampreys (Lampetra fluviatilis L.) was studied by means of light and fluorescence microscopy (Falck's technique). Some single liquorcontacting nerve cells (LCNC) showing a weak green fluorescence were demonstrated in the ventral part of the third ventricle, above the preoptic recess. Caudally numerous fluorescent LCNC occur in the ventral part of the third ventricle, in the infundibular and in the posterior recess. The LCNC are to be observed between or below the ependymal cells lining the ventricular wall. These cells appear to be of the bipolar type. One process with a club-like protrusion is directed into the ventricular lumen, the other one into the opposite direction. Two types of fluorescent LCNC were distinguished: yellowish green cells, containing catecholamines, and yellowish orange cells, containing 5-hydroxytryptamine. Some similarity between the hypothalamic monoaminergic LCNC in lampreys and LCNC of the paraventricular organ of the other vertebrates was found. The localization, structure and monoaminergic nature of the hypothalamic LCNC in lampreys suggest the possibility, that their monoamines are released into the cerebrospinal fluid.I am very obliged to Prof. A.L. Polenov for his continuous help and advice. The skilful technical assistance of Mrs. G.N. Yakshina is gratefully acknowledged.  相似文献   

11.
By the use of Mac Conaill's lead hematoxylin, periodic acid and Schiff's reagent (PAS, PbH-positive and PAS-positive cells were distinguished in the pars intermedia of the hypophysis in mice. Nuclear volume in PbH-positive and PAS-positive cells in the pars intermedia of the hypophysis in male and female mice under conditions of 12 h light and 12 h darkness shows distinct diurnal rhythmicity. Maximum nuclear volume in PbH-positive cells of the pars intermedia in both sexes was observed at 1800 h, and minimum at 2400 h. In the Pas-positive cells in females maximum nuclear volume was observed at 600 h, and minimum at 2400 h. In males maximal nuclear volume in these cells appears at 2400 h, and minimum at 1800 h. Maximum number of vacuoles in the nuclei of PbH-positive cells in the pars intermedia in both sexes appeared at 1800 h, and minimum at 2400 h. Maximum numbers of vacuoles in the nuclei of PAS-positive cells in females was noted at 1200 h, and minimum at 2400 h. In males the maximum number of vacuoles appeared at 600 h, and minimum at 1200 h. Differences in the number of vacuoles in the nuclei of PAS-positive cells between males and females were also noted.  相似文献   

12.
Summary Golgi methods were employed to study neurons and ependymal tanycytes in the posterior hypothalamus of the newt. The tanycytes send a few coarse, spiny or barbed processes towards the pia mater. In the periventricular grey, the neurohistological methods show common neurons, ranging from a multipolar to a plumed organization, and abundant liquor-contacting cells. These cells, possibly neurons, give rise to a process that reaches the cerebro-spinal fluid, and terminates in a spindle-shaped swelling, with a thin thread at its tip. In other cells, the intraventricular endings are bulbous or finger-like. The occurrence of: (1) branches of the liquor-contacting process, running parallel to the infundibular surface; (2) infundibular processes which end at the base or between the ependymal cell bodies; and (3) axons coursing in the same position, all indicates that the subependymal layer is a site for complex intercellular relationships. The significance of liquor-contacting cells and tanycytes is discussed, in view of the possibility that they may represent part of a system for hypothalamic regulation in response to changes in the CSF.  相似文献   

13.
Summary We examined the immunocytochemical distribution of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis, in the di-and mesencephalon of developing bullfrog tadpoles. Special attention was given to catecholaminergic innervation of the median eminence and pituitary. In premetamorphic tadpoles, tyrosine hydroxylase-immunoreactive neurons were visualized in the suprachiasmatic and infundibular hypothalamus, the ventral thalamus, and midbrain tegmentum by Taylor-Kollros stage V. The number of labeled neurons in all these areas increased as metamorphosis progressed. By mid-prometamorphosis, labeled neurons appeared in the preoptic recess organ as well as in the posterior thalamic nucleus. The majority of cells in the preoptic recess organ, as well as occasional neurons in the suprachiasmatic nucleus, exhibited labeled processes which projected through the ependymal lining of the preoptic recess to contact cerebrospinal fluid. The modified CSF-contacting neurons of the nucleus of the periventricular organ were devoid of specific staining. By late prometamorphosis, labeled fibers from the suprachiasmatic nucleus were observed projecting caudally to enter the hypothalamo-hypophysial-tract en route to innervating the median eminence and pituitary. Labeled fibers arising from the dorsal infundibular nucleus projected ventrolaterally to contribute to catecholaminergic innervation of the median eminence and pituitary. Immunoperoxidase staining of tyrosine hydroxylase-immunoreactive fibers and terminal arborizations in the median eminence were restricted to non-ependymal layers, while labeled fibers in the pituitary were observed in the pars intermedia and pars nervosa. Staining of tyrosine hydroxylase-immunoreactive fibers in the median eminence and pituitary was sparse or absent in premetamorphic tadpoles, but became increasingly more intense as metamorphosis progressed.  相似文献   

14.
Summary Immunoreactive prolactin (IMP) has been localized in the male rat brain using the soluble peroxidase-anti-peroxidase (PAP) technique. In normal untreated animals, reaction product was seen in choroid plexus (CP) and in ependymal cells of the ventricular lining with heaviest concentrations of positively staining cells in the 3rd ventricle near the subcommisural organ (SCO), in the lateral ventricles near the subfornical organ (SFO), and in the 4th ventricle near the area postrema (AP). IMP was also present in numerous ependymal cells resembling tanycytes in the cerebral aqueduct, central canal of the spinal cord at the level of the AP, the organum vasculosum of the lamina terminalis (OVLT) and the floor of the infundibular recess. Immunoreactive cells resembling neurons were localized within the substance of the AP, SCO, and OVLT. IMP was also present in fibers of the zona externa of the median eminence and infundibular stalk; a few cells of the pars tuberalis contained reaction product. Hypophysectomized rats and bromocriptine-treated rats exhibited a similar staining pattern except that bromocriptine treatment eliminated IMP from most CP cells. Hypophysectomy, bromocriptine or estrogen treatment enhanced staining for IMP in cells of the pars tuberalis; estrogen treatment or hypophysectomy produced an increase in the number and distribution of immunoreactive cells as well as increased density of reaction product in cells of the medial habenular nucleus. The functional relevance of prolactin in these locations in the brain, the possible routes of transport of prolactin from the pituitary gland to the central nervous system, and the strong suggestion of extra-pituitary sites of synthesis of a prolactin-like hormone are discussed.  相似文献   

15.
[3H]Testosterone (T) was injected into male and female canaries (Serinus canarius), a species in which females are able to sing but do so more rarely and more simply than males. Autoradiographic analysis revealed that males and females have equal proportions of cells labeled by T or its metabolites in four song control nuclei: the high vocal center (HVC), the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN), the robust nucleus of the archistriatum (RA), and the hypoglossal motor nucleus (nXII). Labeled cells were also observed in both sexes in the medial portion of MAN, and in hypothalamic nuclei. In both sexes, labeled cells in HVC, IMAN, RA, and nXII were larger than unlabeled cells. There were no sex differences in the size of either labeled or unlabeled cells in these song nuclei. The density of labeled cells per unit volume of tissue did not differ between the sexes in any song nucleus analyzed. However, because males have larger HVC and RA than females, males have a greater total number of hormone-sensitive cells in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches and tropical duetting wrens suggests that the complexity of song that a bird can produce is correlated with the total number of hormone-sensitive cells in song nuclei.  相似文献   

16.
Summary The pars nervosa of Klauberina riversiana belongs to a primitive tetrapod type which is characterized by the deep penetration of the infundibular recess, a thin-walled structure, and the virtual absence of pituicytes. The differential response of this gland to aldehyde fuchsin and periodic acid Schiff suggests the presence of two types of neurosecretory nerve endings. Ultrastructurally four kinds of nerve endings are distinguishable. Type I, probably a cholinergic nerve ending, contains only small clear vesicles ca. 400 Å in diameter. The relative abundance of cholinergic nerve endings in this pars nervosa may be related to the necessity of transporting hormone through the ependymal cell. Type II, containing granulated vesicles about 1,000 Å in diameter and probably aminergic, is very rare. The two remaining types apparently secrete neurohypophysial hormones. They are Type III, containing dense granules ca. 1,500 Å in diameter and Type IV containing pale granules ca. 1,500 Å in diameter. Evidence is reviewed which suggests that Type III nerve endings may secrete arginine vasotocin while Type IV endings may secrete (an)other hormone(s).All these axons end only on the ependymal cells, the vascular processes of which form a continuous cuff over the basement membranes of the blood vessels. Hence the ependymal cells link the cerebrospinal fluid, the nerve endings and the blood vessels. Particles resolvable with the electron microscope are traced through a possible transport pathway from the granules, through the ependymal cells to the basement membrane. It is suggested that pituicytes replace ependymal cells and assume their transport functions in animals with massive neural lobes containing large numbers of nerve endings and blood vessels.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina.This investigation was supported in part by a Public Health Service fellowship 1 FZ HD 32,949-01 REP from the national Institute of Child Health and Human Development.The authors wish to thank Professor H. Heller for his constant interest and constructive criticism.  相似文献   

17.
A firm knowledge of the normal structure is crucial for evaluating pathological processes and morphofunctional correlations. Stereological liver structure characterization had its debut for mammals in the 1960s, but only in the 1980s did it start to be used in fishes. Using stereology, our aim was to verify the hypothesis that in parallel with the well-known annual seasonal changes in the liver–body ratio of brown trout, hepatocytes would vary their number and/or size, and that gender differences likely exist. Three-year-old specimens were used. Five animals per gender were examined in May (endogenous vitellogenesis), September (exogenous vitellogenesis), and February (spawning season end). The liver was fixed by perfusion, and its total volume estimated. Systematically sampled material was embedded in epoxy or in metachrylate resins. Stereology was executed on light and electron microscopy images. Unbiased design-based techniques were applied, using physical disectors and differential point counting. Target parameters were the relative (per unit volume) and total number of hepatocytes, the mean cell and nuclear volumes, and the total volumes of hepatocytes and their nuclei. Data support that in both genders the number of hepatocytes and the volume of its nucleus change along the breeding cycle. The cell number increased from endogenous to exogenous vitellogenesis (accompanying relative liver size gains), later followed by a decline in the cell number, still detectable after the spawning season. The total liver volumes of the cell and nucleus also increased from May to September in females, despite that the mean hepatocyte nuclear volume showed a minimum in September. No statistical changes in the mean cell volume were detected, regardless of the tendency for lower mean values in September. Changes were more marked in females and showed a higher correlation with the gonad weight. It was firstly suggested that numerical (rather than cell size) changes govern the shifts of the relative liver weight seen during the brown trout annual breeding cycle, and eventually of other fishes. We hypothesized that there are seasonal cycles of hepatocyte mitosis (from after spawning to exogenous vitellogenesis) and of apoptosis (at spawning). These cycles would be regulated by sex steroids, being more striking in females.  相似文献   

18.
Summary Previous studies have shown that a circumscribed region of the anterior hypothalamus of the rhesus monkey is lined by tanycyte ependyma and it has been suggested that this ependyma which links the third ventricle with the pars tuberalis may have a functional role in the hypothalamic regulation of anterior pituitary function (Anand Kumar and Knowles, 1967a). In view of the known sexual differences in the hypothalamic regulation of pituitary gonadotropin secretion the present investigation was made to determine whether any structural differences were evident in the tanycyte ependyma in male and female rhesus monkeys.The results of this investigation are based on light and electron microscopic studies of the hypothalamus in 24 rhesus monkeys comprising 12 adult females, 11 sexually mature males and a two month old sexually immature male.The tanycyte ependyma in the rhesus monkey is double layered. There are bulbous projections on the ventricular surface of the cells in the ependymal layer nearest to the ventricle (the first layer of ependyma). These bulbous projections vary in size in relation to the menstrual cycle. They are well developed during mid-cycle and regressed during menstruation. In the males, where the secretion of pituitary gonadotropins does not occur cyclically as in the females, there was no marked variation in the bulbous projections between different individuals as in the female monkeys.In the sexually mature males, but not in the females, the two layers of ependyma are separated by a distinct space. The absence of such a space in the sexually immature male suggests that this difference may be related to sexual maturity.In the adult males the cells in the ependymal layer below the first layer of ependyma have microvilli which extend into the space between the ependymal layers. In the females where such a space is not present, microvilli were not evident.The precise functional significance of the tanycyte ependyma is not known. It is hoped that the results of the present investigation would draw attention to the need for a more detailed examination of the physiological role of the tanycyte ependyma in relation to reproduction.The expenses for this investigation were met from a grant made by the Ford Foundation to Professor Sir Solly Zuckerman and the electron microscope was provided by the Medical Research Council. I am indebted to Sir Solly for his interest in this work.  相似文献   

19.
Supraependymal cells, fibers and what are presumed to be neuronal bulb-like projections were found in the third ventricle of the domestic chicken with a scanning electron microscope. At least two types of supraependymal cells were found: neuron-like cells and phagocyte-like cells. The former were predominantly seen in the area of the paraventricular organ and infundibular recess. The latter were abundant on the ventricular surface of the median eminence and subfornical organ. Bulb or club-like projections thought to be the dendritic terminals of CSF-contacting neurons were observed in the area of the paraventricular organ and infundibular recess. Similar structures were observed at the preoptic recess as well. The supraependymal neuronal components found in the domestic chicken differed from those of mammals in several respects: 1. the wall of the third ventricle was devoid of supraependymal fibrous plexus except for that of the paraventricular organ; 2. bulb-like projections were abundant in the area of the paraventricular organ; 3. supraependymal neuron-like cells were unipolar or bipolar in appearance. These data underline the dissimilarity of the CSF-contacting neuronal system of birds and mammals.  相似文献   

20.
Stereological methods were employed in two studies with stallions 1) to determine if seasonal variation in the total volume of Leydig cells is a function of cell number or cell size and 2) to characterize the annual cycle of the Leydig cell population. In the first study, numbers of Leydig cells were calculated for 28 adult (4-20 yr) stallions in the breeding or nonbreeding seasons from nuclear volume density (percentage of the decapsulated testicular volume), parenchymal volume (decapsulated testicular volume), and the volume of individual Leydig cell nuclei. The average volume of the individual Leydig cells was calculated as the total Leydig cell volume/testis (volume density of Leydig cells in the parenchymal volume times parenchymal volume) divided by the number of Leydig cells. The average volume of an individual Leydig cell varied within each season, but means were almost identical for the nonbreeding (6.94 +/- 0.61 picoliter) and breeding (6.91 +/- 0.45 picoliter) seasons. However, Leydig cell numbers per testis were 57% higher in the breeding season, which also had a 58% higher total volume of Leydig cells per testis. In the second study, the numbers of Leydig cells were determined for 43-48 adult horses in each 3-mo period for 12 mo. The number of Leydig cells per testis in May-July was higher (p less than 0.05) than in August-October or February-April, and higher (p less than 0.01) than in November-January. Thus, seasonal fluctuations in the total volume of Leydig cells in adult stallions is a function of the number of Leydig cells that cycle annually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号