首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Modahl LE  Lai MM 《Journal of virology》2000,74(16):7375-7380
Hepatitis delta virus (HDV) contains two types of hepatitis delta antigens (HDAg) in the virion. The small form (S-HDAg) is required for HDV RNA replication, whereas the large form (L-HDAg) potently inhibits it by a dominant-negative inhibitory mechanism. The sequential appearance of these two forms in the infected cells regulates HDV RNA synthesis during the viral life cycle. However, the presence of almost equal amounts of S-HDAg and L-HDAg in the virion raised a puzzling question concerning how HDV can escape the inhibitory effects of L-HDAg and initiate RNA replication after infection. In this study, we examined the inhibitory effects of L-HDAg on the synthesis of various HDV RNA species. Using an HDV RNA-based transfection approach devoid of any artificial DNA intermediates, we showed that a small amount of L-HDAg is sufficient to inhibit HDV genomic RNA synthesis from the antigenomic RNA template. However, the synthesis of antigenomic RNA, including both the 1.7-kb HDV RNA and the 0.8-kb HDAg mRNA, from the genomic-sense RNA was surprisingly resistant to inhibition by L-HDAg. The synthesis of these RNAs was inhibited only when L-HDAg was in vast excess over S-HDAg. These results explain why HDV genomic RNA can initiate replication after infection even though the incoming viral genome is complexed with equal amounts of L-HDAg and S-HDAg. These results also suggest that the mechanisms of synthesis of genomic versus antigenomic RNA are different. This study thus resolves a puzzling question about the early events of the HDV life cycle.  相似文献   

6.
Hepatitis delta virus (HDV) is a small RNA virus that contains one 1.7-kb single-stranded circular RNA of negative polarity. The HDV particle also contains two isoforms of hepatitis delta antigen (HDAg), small (SHDAg) and large HDAg. SHDAg is required for the replication of HDV, which is presumably carried out by host RNA-dependent RNA polymerases. The localization and the HDAg and host RNA polymerase responsible for HDV replication remain important issues to be addressed. In this study, using recombinant SHDAg fused with a heterologous nucleolar localization sequence (NoLS) to confine its subcellular localization in nucleoli, we aimed to study the effect of SHDAg subcellular localization on HDV RNA replication. The initiation of genomic RNA synthesis from antigenomic template was hardly detectable when SHDAg was fused with the NoLS motif and localized mainly in nucleoli. In contrast, the initiation of antigenomic RNA synthesis was not affected. Drug treatment to release a SHDAg-NoLS mutant from nucleoli could partially restore the replication of HDV genomic RNA from antigenomic RNA. This also recovered the cointeraction between SHDAg and RNA polymerase II. These data strongly suggest that nuclear polymerase (RNA polymerase II) is involved in the synthesis of genomic RNA and that the synthesis of antigenomic RNA can occur in nucleoli. Our results support the idea that the replication of HDV genomic RNA or antigenomic RNA is likely to be carried out by different machineries in different subcellular localizations.  相似文献   

7.
During the hepatitis delta virus (HDV) RNA replication, synthesis of either the mRNA for the delta antigen (HDAg) or the full-length antigenomic RNA is determined by selective usage of the potent poly(A) signal on the antigenome. To elucidate the regulatory mechanism, HDV cDNA cotransfection system was used to examine the potential effect of the secondary structure of the nascent RNA and that of the HDAg on HDV polyadenylation in transfected cells. We found that when the nascent RNA species could fold itself to form the rodlike structure, the HDV polyadenylation was suppressed 3 to 5 fold by the HDAg. In addition, we observed that the small and the large HDAg exerted a similar suppressive effect on the HDV polyadenylation, though they played different roles in HDV replication. We concluded that the HDV polyadenylation could be regulated by the structure of the nascent antigenomic RNA and by either the small or large HDAg.  相似文献   

8.
9.
10.
11.
12.
13.
Chang J  Taylor JM 《Journal of virology》2003,77(17):9728-9731
In animal cells, small interfering RNAs (siRNA), when exogenously provided, have been reported to be capable of inhibiting replication of several different viruses. In preliminary studies, siRNA species were designed and tested for their ability to act on the protein expressed in Huh7 cells transfected with DNA-directed mRNA constructs containing hepatitis delta virus (HDV) target sequences. The aim was to achieve siRNA specific for each of the three RNAs of HDV replication: (i) the 1,679-nucleotide circular RNA genome, (ii) its exact complement, the antigenome, and (iii) the less abundant polyadenylated mRNA for the small delta protein. Many of the 16 siRNA tested gave >80% inhibition in this assay. Next, these three classes of siRNA were tested for their ability to act during HDV genome replication. It was found that only siRNA targeted against HDV mRNA sequences could interfere with HDV genome replication. In contrast, siRNA targeted against genomic and antigenomic RNA sequences had no detectable effect on the accumulation of these RNAs. Reconstruction experiments with nonreplicating HDV RNA sequences support the interpretation that neither the potential for intramolecular rod-like RNA folding nor the presence of the delta protein conferred resistance to siRNA. In terms of replicating HDV RNAs, it is considered more likely that the genomic and antigenomic RNAs are resistant because their location within the nucleus makes them inaccessible to siRNA-mediated degradation.  相似文献   

14.
15.
16.
17.
The hepatitis delta virus (HDV) genome is a circular, single-stranded, rod-shaped, 1.7-kb RNA that replicates via a rolling-circle mechanism. Viral ribozymes function to cleave replication intermediates which are then ligated to generate the circular product. HDV expresses two forms of a single protein, the small and large delta antigens (delta Ag-S and delta Ag-L), which associate with viral RNA in a ribonucleoprotein (RNP) structure. While delta Ag-S is required for RNA replication, delta Ag-L inhibits this process but promotes the assembly of the RNP into mature virions. In this study, we have expressed full-length and deleted HDV RNA inside cells to determine the minimal RNA sequences required for self-cleavage, ligation, RNP packaging, and virion assembly and to assess the role of either delta antigen in each of these processes. We report the following findings. (i) The cleavage and ligation reactions did not require either delta antigen and were not inhibited in their presence. (ii) delta Ag-L, in the absence of delta Ag-S, formed an RNP with HDV RNA which could be assembled into secreted virus-like particles. (iii) Full-length HDV RNAs were stabilized in the presence of either delta antigen and accumulated to much higher levels than in their absence. (iv) As few as 348 nucleotides of HDV RNA were competent for circle formation, RNP assembly, and incorporation into virus-like particles. (v) An HDV RNA incapable of folding into the rod-like structure was not packaged by delta Ag-L.  相似文献   

18.
19.
20.
Hepatitis delta virus (HDV) contains a viroid-like circular RNA that replicates via a double rolling circle replication mechanism. It is generally assumed that HDV RNA is synthesized and remains exclusively in the nucleus until being exported to the cytoplasm for virion assembly. Using a [32P]orthophosphate metabolic labeling procedure to study HDV RNA replication (T. B. Macnaughton, S. T. Shi, L. E. Modahl, and M. M. C. Lai. J. Virol. 76:3920-3927, 2002), we unexpectedly found that a significant amount of newly synthesized HDV RNA was detected in the cytoplasm. Surprisingly, Northern blot analysis revealed that the genomic-sense HDV RNA is present almost equally in both the nucleus and cytoplasm, whereas antigenomic HDV RNA was mostly retained in the nucleus, suggesting the specific and highly selective export of genomic HDV RNA. Kinetic studies showed that genomic HDV RNA was exported soon after synthesis. However, only the monomer and, to a lesser extent, the dimer HDV RNAs were exported to the cytoplasm; very little higher-molecular-weight HDV RNA species were detected in the cytoplasm. These results suggest that the cleavage and processing of HDV RNA may facilitate RNA export. The export of genomic HDV RNA was resistant to leptomycin B, indicating that a cell region maintenance 1 (Crm1)-independent pathway was involved. The large form of hepatitis delta antigen (L-HDAg), which is responsible for virus packaging, was not required for RNA export, as a mutant HDV RNA genome unable to synthesize L-HDAg was still exported. The proportions of genomic HDV RNA in the nucleus and cytoplasm remained relatively constant throughout replication, indicating that export of genomic HDV RNA occurred continuously. In contrast, while antigenomic HDV RNA was predominantly in the nucleus, there was a proportionally large fraction of antigenomic HDV RNA in the cytoplasm at early time points of RNA replication. These findings uncover a previously unrecognized presence of HDV RNA in the cytoplasm, which may have implications for viral RNA synthesis and packaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号