首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 403 毫秒
1.
We report the preliminary results of the synthesis, biochemical evaluation and rationalisation of the inhibitory activity of a number of phenyl alkyl imidazole-based compounds as inhibitors of the two components of 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), that is, 17alpha-hydroxylase (17alpha-OHase) and 17,20-lyase (lyase). The results show that N-3-(4-bromophenyl) propyl imidazole (12) (IC50 = 2.95 microM against 17alpha-OHase and IC50 = 0.33 microM against lyase) is the most potent compound within the current study, in comparison to ketoconazole (KTZ) (IC50 = 3.76 microM against 17alpha-OHase and IC50 = 1.66 microM against lyase). Modelling of these compounds suggests that the length of the alkyl chain enhances the interaction between the inhibitor and the area of the active site corresponding to the C3 area of the steroid backbone, thereby increasing potency.  相似文献   

2.
Flutamide, hydroxyflutamide, RU23908 and cyproterone acetate (CPA) inhibited rat testicular microsomal 17 alpha-hydroxylase and 17,20-lyase activities in vitro. The Km of [3H] progesterone for 17 alpha-hydroxylase was 45 +/- 0.62 nmol/l (+/- SEM, n = 12) and the Km of [3H] 17 alpha-hydroxyprogesterone for 17,20-lyase was 192 +/- 0.42 nmol/l (+/- SEM, n = 12). The Ki values for 17 alpha-hydroxylase, determined from Lineweaver-Burk plots were 102 +/- 3.2 mumol/l (+/- SEM, n = 6), 363 +/- 3.8 mumol/l (+/- SEM, n = 6), 118 +/- 1.4 mumol/l (+/- SEM, n = 6) and 123 +/- 2.1 mumol/l (+/- SEM, n = 6) for flutamide, hydroxyflutamide, RU23908 and CPA respectively. Flutamide and CPA were mixed-type inhibitors, whereas hydroxyflutamide and RU23908 were competitive inhibitors of 17 alpha-hydroxylase activity. Ki values for 17,20-lyase were 33 +/- 3.1 mumol/l (+/- SEM, n = 6), 112 +/- 3.1 mumol/l (+/- SEM, n = 6), 69 +/- 4.4 mumol/l (+/- SEM, n = 6) and 71 +/- 3.2 mumol/l (+/- SEM, n = 6) for flutamide, hydroxyflutamide, RU23908 and CPA, respectively. Inhibition was found to be competitive in each case. Although the characteristic action of anti-androgens is at the receptor level, these results demonstrate that anti-androgens may also have inhibitory effects on androgen biosynthesis which could prove to be of clinical significance.  相似文献   

3.
In the course of screening for 17alpha-hydroxylase/C17,20-lyase inhibitors from food ingredients, the methanol soluble fraction of green tea and black tea, which were expected to be rich in catechin and theaflavin content, showed potent inhibitory activity. (-)-Epigallocathechin gallate and theaflavin 3-O-gallate with a pirogallol moiety significantly inhibited C17,20-lyase activity on IC50 values of 24.5 microM and 11.5 microM respectively. They had potent cytotoxicity against human prostate cancer LNCaP cells (IC50=28.1 microM and 37.4 microM).  相似文献   

4.
The cytochrome P-450 enzyme, 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), is a potential target in hormone-dependent cancers. Here, we report the synthesis and biochemical evaluation of a range of benzyl imidazole-based compounds which have been targeted against the two components of this enzyme, that is, 17alpha-hydroxylase (17alpha-OHase) and 17,20-lyase (lyase). The results from the biochemical testing suggest that the compounds synthesised are good inhibitors, with N-4-iodobenzyl imidazole (5) (IC50=10.06 microM against 17alpha-OHase and IC50=1.58 microM against lyase) showing equipotent activity against lyase compared to the standard compound, ketoconazole (KTZ) (IC50=3.76+/-0.01 microM against 17alpha-OHase and IC50=1.66+/-0.15 microM against lyase). Furthermore, the compounds tested are less potent towards the 17alpha-OHase component, a desirable property in the development of novel inhibitors of P450(17alpha).  相似文献   

5.
Ketoconazole, an orally active antifungal drug, is known to inhibit testicular androgen production both in vitro and in vivo. The aim of the present study was to examine the effect of ketoconazole and 13 other imidazole drugs on rat testicular microsomal 17 alpha-hydroxylase, 17,20-lyase, 3 beta-hydroxysteroid dehydrogenase-isomerase (3 beta-HSD-I) and 17 beta-hydroxysteroid oxidoreductase (17 beta-HSOR). The order of decreasing inhibitory effect (determined from Ki values) on 17 alpha-hydroxylase (substrate [3H]progesterone; Km = 89 +/- 0.65 nmol/l; SEM, n = 8) was bifonazole (Ki = 86 +/- 3.3 nmol/l; SEM, n = 4) greater than ketoconazole (160 +/- 4.92) greater than clotrimazole (170 +/- 5.81) greater than miconazole (599 +/- 7.22) greater than econazole (688 +/- 6.98) greater than tioconazole (901 +/- 1.71) greater than isoconazole (1090 +/- 6.96) and on 17,20-lyase (substrate, [3H]17 alpha-hydroxyprogesterone; Km = 250 +/- 0.75 nmol/l; SEM, n = 8) was bifonazole (56.5 +/- 3.4) greater than clotrimazole (81.5 +/- 3.1) greater than ketoconazole (84 +/- 3.5) greater than miconazole (243 +/- 6.3) greater than econazole (325 +/- 5.1) greater than tioconazole (505 +/- 5.2) greater than isoconazole (610 +/- 6.34). However, these imidazole drugs did not inhibit the 3 beta-HSD-I or 17 beta-HSOR activities. A common structural feature of the imidazole drugs having an inhibitory effect was the presence of one or more aromatic rings on the imidazole side chain. In contrast, the imidazole drugs having the imidazole ring fused to a benezene ring, i.e. benzimidazoles (astemizole, mebendazole, thiabendazole) and those having an aliphatic side chain on the N-1 of the imidazole ring (carbimazole, metronidazole, nimorazole, tinidazole) did not inhibit 17 alpha-hydroxylase, 3 beta-HSD-I or 17 beta-HSOR enzyme activities. However some did inhibit 17,20-lyase activity but only at high concentrations. The results of the present study suggest that some imidazole drugs may be useful in clinical situations requiring the suppression of androgen production, for example in the treatment of hormone-dependent prostatic cancer.  相似文献   

6.
BACKGROUND: 17alpha-Hydroxylase/17,20-lyase deficiency is caused by a defect of P450c17 which catalyzes both 17alpha-hydroxylase and 17,20-lyase reactions in adrenal glands and gonads. RESULTS: In the present study, we analyzed the CYP17 gene in a Japanese patient with 17alpha-hydroxylase/17,20-lyase deficiency. The patient was a phenotypic girl and referred to us for right-sided inguinal hernia at the age of 4 years. Biopsy of the herniated gonad showed testicular tissue. The karyotype was 46,XY. At 6 years of age, hypertension was clearly recognized and the patient was diagnosed as having 17alpha-hydroxylase/17,20-lyase deficiency based on the clinical and laboratory findings. Analysis of the CYP17 gene revealed a compound heterozygous mutation. One mutation was an undescribed single nucleotide deletion at codon 247 in exon 4 (CTT to CT: 247delT) and the other was a missense mutation resulting in a substitution of His to Leu at codon 373 in exon 6 (CAC to CTC: H373L), which has been previously shown to abolish both 17alpha-hydroxylase and 17,20-lyase activities. The functional expression study of the 247delT mutant showed that this 247delT mutation completely eliminates both 17alpha-hydroxylase and 17,20-lyase activities. CONCLUSIONS: Together, these results indicate that the patient is a compound heterozygote for the mutation of the CYP17 gene (247delT and H373L) and that these mutations inactivate both 17alpha-hydroxylase and 17,20-lyase activities and give rise to clinically manifest 17alpha-hydroxylase/17,20-lyase deficiency.  相似文献   

7.
Cytochrome p450c17 (CYP17) converts the C21 steroids pregnenolone and progesterone to the C19 androgen precursors dehydroepiandrosterone (DHEA) and androstenedione, respectively, via sequential 17alpha-hydroxylase and 17,20-lyase reactions. Disabling mutations in CYP17 cause combined 17alpha-hydroxylase/17,20-lyase deficiency, but rare missense mutations cause isolated loss of 17,20-lyase activity by disrupting interactions of redox partner proteins with CYP17. We studied an adolescent male with clinical and biochemical features of isolated 17,20-lyase deficiency, including micropenis, hypospadias, and gynecomastia, who is homozygous for CYP17 mutation E305G, which lies in the active site. When expressed in HEK-293 cells or Saccharomyces cerevisiae, mutation E305G retains 17alpha-hydroxylase activities, converting pregnenolone and progesterone to 17alpha-hydroxysteroids. However, mutation E305G lacks 17,20-lyase activity for the conversion of 17alpha-hydroxypregnenolone to DHEA, which is the dominant pathway to C19 steroids catalyzed by human CYP17 (the delta5-steroid pathway). In contrast, mutation E305G exhibits 11-fold greater catalytic efficiency (kcat/Km) for the cleavage of 17alpha-hydroxyprogesterone to androstenedione compared with wild-type CYP17. We conclude that mutation E305G selectively impairs 17,20-lyase activity for DHEA synthesis despite an increased capacity to form androstenedione. Mutation E305G provides genetic evidence that androstenedione formation from 17alpha-hydroxyprogesterone via the minor delta4-steroid pathway alone is not sufficient for complete formation of the male phenotype in humans.  相似文献   

8.
Steroid 5alpha-reductase (5-AR) catalyses the reduction of testosterone (T) to dihydrotestosterone (DHT). The 5alpha-reductase found in human benign prostatic hyperplasia (BPH) has been compared with that found in human breast skin tissue in respect of sensitivity to inhibition by Finasteride and Epristeride. Kinetic studies showed the presence of two isoforms of 5alpha-reductase in benign prostatic hyperplasia indicated by low and high Km isoforms for testosterone, while female breast skin tissue contained only one isoform. The isoforms differ in their affinity for the inhibitors Finasteride and Epristeride, both compounds being more effective for the low Km 5alpha-reductase isoform than the high Km 5alpha-reductase of prostatic tissue, with Finasteride displaying competitive inhibition and Epristeride uncompetitive. Finasteride and Epristeride are also inhibitors of skin 5alpha-reductase, which possesses a comparable Ki for Finasteride to that of the low Km prostatic enzyme, but Epristeride was a less potent inhibitor of the skin enzyme relative to the prostate isoform. These results suggest that the inhibitors have therapeutic potential, other than for treatment of benign prostatic hyperplasia, for treating skin disorders influenced by the action of dihydrotestosterone and warrant further investigation.  相似文献   

9.
The site of action of synthetic progestins or danazol in the treatment of endometriosis is considered to be mainly the hypothalamo-pituitary level, but the direct action to the uterine endometrium and the ovary is also suggested. We investigated the effect of these synthetic steroids to rat ovarian steroidogenic enzymes. The effect of norethisterone, levonorgestrel, danazol, gestrinone, desogestrel and 3-keto-desogestrel was studied in vitro. The sources of the enzymes were prepared from ovaries of immature rats treated either with pregnant mare serum gonadotropin (PMS) and human chorionic gonadotropin (hCG) for 3 beta-hydroxy steroid dehydrogenase (3 beta-HSD), or with PMS for 17 alpha-hydroxylase and 17,20 lyase. The substrates used were pregnenolone (P5) for 3 beta-HSD, progesterone (P4) for 17 alpha-hydroxylase, and 17 alpha-hydroxy-progesterone (17 alpha-OH-P4) for 17,20 lyase. The substrates were incubated with the enzyme sources and coenzymes, and the products formed were measured. All the steroids inhibited 3 beta-HSD, and the inhibition by gestrinone (Ki = 3.0 microM) and 3-keto-desogestrel (17.5 microM) was particularly marked. Only desogestrel (Ki = 30.3 microM) and danazol (168 microM) inhibited 17 alpha-hydroxylase. All the steroids inhibited 17,20 lyase, and the inhibition by desogestrel (Ki = 0.70 microM), danazol (0.80 microM), and gestrinone (30 microM) was particularly marked.  相似文献   

10.
The ability of the 5 alpha-dihydroprogesterone analog, 4-aza-4-methyl-5 alpha-pregnane-3,20-dione (AMPD), to inhibit the progesterone 5 alpha-reductase and the two 5 alpha-dihydroprogesterone 3 alpha-hydroxysteroid oxidoreductase activities (NADH- and NADPH-linked) from female rat hypothalamus has been studied. Dose response experiments indicate that AMPD is a potent antagonist of hypothalamic progesterone 5 alpha-reduction but is an ineffective inhibitor of the NADPH- and NADH-linked 3 alpha-hydroxysteroid oxidoreductase activities, even at concentrations up to 10 microM. Kinetic analyses of the interaction of AMPD with the progesterone 5 alpha-reductase show that it is a competitive inhibitor versus progesterone (Ki(slope) = 6.2 +/- 0.5 nM; apparent Km (progesterone) = 130 +/- 12 nM) and an uncompetitive inhibitor versus NADPH (Ki(intercept) = 11.8 +/- 0.8 nM). These inhibition patterns are consistent with the concept that NADPH binding precedes that of either AMPD or progesterone. The inhibition of the progesterone 5 alpha-reductase by AMPD does not appear irreversible since preincubation of the enzymatic activity (at 37 degrees C) with inhibitor and NADPH, for periods of time up to 60 min, does not lead to a time-dependent loss of activity. Furthermore, this inhibition can be easily removed via dilution, even following a 60-min preincubation with AMPD and NADPH. It is postulated that the specific and powerful inhibition of the progesterone 5 alpha-reductase by AMPD may be due to this compound functioning as a transition state analog. This inhibitor should prove valuable in studying the characteristics of the progesterone 5 alpha-reductase and the function of hypothalamic progestin metabolism.  相似文献   

11.
We report the synthesis, biochemical evaluation and rationalisation of the inhibitory activity of a number of azole-based compounds as inhibitors of the two components of the cytochrome P-450 enzyme 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), i.e. 17alpha-hydroxylase (17alpha-OHase) and 17,20-lyase (lyase). The results suggest that the compounds synthesised are potent inhibitors, with 7-phenyl heptyl imidazole (11) (IC(50)=320 nM against 17alpha-OHase and IC(50)=100 nM against lyase); 1-[7-(4-fluorophenyl) heptyl] imidazole (14) (IC(50)=170 nM against 17alpha-OHase and IC(50)=57 nM against lyase); 1-[5-(4-bromophenyl) pentyl] imidazole (19) (IC(50)=500 nM against 17alpha-OHase and IC(50)=58 nM against lyase) being the most potent inhibitors within the current study, in comparison to ketoconazole (KTZ) (IC(50)=3.76 microM against 17alpha-OHase and IC(50)=1.66 microM against lyase). Furthermore, consideration of the inhibitory activity against the two components shows that all of the compounds tested are less potent towards the 17alpha-OHase in comparison to the lyase component, a desirable property in the development of novel inhibitors of P450(17alpha). From the modelling of these compounds onto the novel substrate heme complex (SHC) for the overall enzyme complex, the length of the compound, along with its ability to undergo interaction with the active site corresponding to the C(3) area of the steroidal backbone, are suggested to play a key role in determining the overall inhibitory activity.  相似文献   

12.
Cytochrome P450 17alpha-hydroxylase/17,20-lyase (CYP17) is a microsomal enzyme catalyzing two distinct activities, 17alpha-hydroxylase and 17,20-lyase, essential for the biosynthesis of adrenal and gonadal steroids. CYP17 is a potent oxidant, it is present in liver and nonsteroidogenic tissues, and it has been suggested to have catalytic properties distinct to its function in steroid metabolism. To identify CYP17 functions distinct of its 17alpha-hydroxylase/17,20-lyase activity, we used MA-10 mouse tumor Leydig cells known to be defective in 17alpha-hydroxylase/17,20-lyase activity. A CYP17 knocked down MA-10 clone (MA-10(CYP17KD)) was generated by homologous recombination and its steroidogenic capacity was compared with wild-type cells (MA-10(wt)). Although no differences in cell morphology and proliferation rates were observed between these cells, the human chorionic gonadotropin-induced progesterone formation and de novo synthesis of steroids were dramatically reduced in MA-10(CYP17KD) cells; their steroidogenic ability could be rescued in part by transfecting CYP17 DNA into the cells. Knocking down CYP17 mRNA by RNA interference yielded similar results. However, no significant difference was observed in the steroidogenic ability of cells treated with 22R-hydroxycholesterol, which suggested a defect in cholesterol biosynthesis. Incubation of MA-10(CYP17KD) cells with (14)C-labeled squalene resulted in the formation of reduced amounts of radiolabeled cholesterol compared with MA-10(wt) cells. In addition, treatment of MA-10(CYP17KD) cells with various cholesterol substrates indicated that unlike squalene, addition of squalene epoxide, lanosterol, zymosterol, and desmosterol could rescue the hormone-induced progesterone formation. Further in vitro studies demonstrated that expression of mouse CYP17 in bacteria resulted in the expression of squalene monooxygenase activity. In conclusion, these studies suggest that CYP17, in addition to its 17alpha-hydroxylase/17,20-lyase activity, critical in androgen formation, also expresses a secondary activity, squalene monooxygenase (epoxidase), of a well-established enzyme involved in cholesterol biosynthesis, which may become critical under certain conditions.  相似文献   

13.
This present study identifies a number of azolyl-substituted indoles as potent inhibitors of aromatase. In the sub-series of 3-(azolylmethyl)-1H-indoles, four imidazole derivatives and their triazole analogues were tested. Imidazole derivatives 11 and 14 in which the benzyl moiety was substituted by 2-chloro and 4-cyano groups, respectively, were the most active, with IC50 values ranging between 0.054 and 0.050 microM. In the other sub-series, eight 3-(alpha-azolylbenzyl)-1H-indoles were prepared and tested. Compound 30, the N-ethyl imidazole derivative, proved to be an aromatase inhibitor, showing an IC50 value of 0.052 microM. All target compounds were further evaluated against 17alpha-hydroxylase/C17,20-lyase to determine their selectivity profile.  相似文献   

14.
Bovine adrenocortical cells in primary culture were used to examine the trophic effect of ACTH on the induction of the 17 alpha-hydroxylase and C-17,20-lyase activities. The addition of exogenous pregnenolone to bovine adrenal microsomes showed the appearance of 17 alpha-hydroxy-pregnenolone before the formation of dehydroepiandrosterone. The same sequence of activities was evident in postmitochondrial supernate from bovine adrenocortical cells cultured 36 h in the presence of 1 microM ACTH but not in postmitochondrial supernate from control cells. In another study, bovine adrenocortical cells were cultured for 36 h after which 30 microM 17 alpha-hydroxypregnenolone was added to the medium and the incubation continued 1 h; there was a 4-fold increase in androgen content in the media from ACTH-treated cells over controls. Measurement of the 17 alpha-hydroxylase and C-17,20-lyase reactions in postmitochondrial supernate from cells cultured 0-72 h in the presence of ACTH or 1 mM dibutyryl cAMP showed concomitant increases in the two activities and both activities were inhibited by the same compounds known to inhibit 17 alpha-hydroxylase activity. These observations support the concept of the co-induction of 17 alpha-hydroxylase and C-17,20-lyase activities in response to ACTH; results in keeping with previous studies indicating that the two activities are catalyzed by a single gene product, the polypeptide chain P-45017a.  相似文献   

15.
An assay system that measures the enzymatic activities (17 alpha-hydroxylase, 17,20-desmolase, and 17 beta-hydroxysteroid dehydrogenase) in the delta 4 pathway of testosterone biosynthesis using rat and human testicular homogenate was examined. This system involves the simultaneous separation of the steroid intermediates by a three-step TLC procedure. The observed Rf values were 0.78 for progesterone (P), 0.59 for 17 alpha-hydroxyprogesterone (17 alpha-HP), 0.70 for androstenedione (A), 0.5 for testosterone, 0.64 for dihydrotestosterone, and 0.45 for 3 alpha, 17 beta-androstanediol. The identification of these steroid intermediates was further accomplished by acetylation and rechromatography of the representative samples along with the authentic standards and by recrystallization to constant specific activity until three consecutive crystallizations were within +/- 5% of the mean value. Incubation time up to 30 min and increasing protein concentrations showed a linear relationship with respect to these three enzymatic activities. The optimum temperature for these enzymatic activities varied from 32 to 34 degrees C, with a sharp decline between 37 and 40 degrees C. The Michaelis constants (Km) for the rat testis homogenate samples were 0.17 microM for P, 0.22 microM for 17 alpha-HP, and 2.5 microM for A, while for the human testis the Km values were 1.2, 2.2, and 2.3 microM, respectively, for these substrates. The concentrations of the endogenous steroid substrates present in these homogenate samples did not alter the Km or Vmax values. The effect of human chorionic gonadotropin (hCG) in vitro on these steroidogenic enzyme activities was also studied. In the rat testis, 10 IU of hCG produced a significant rise in all the three enzyme activities whereas in the human testis 10 and 30 IU of hCG showed no significant change in any of these enzymatic activities. However, 100 IU of hCG resulted in a significant increase in 17 alpha-hydroxylase and 17,20-desmolase activities in the human testis. These studies suggest that this assay system for the measurement of these enzymatic activities using a testicular homogenate sample provides consistent and reproducible results. Based on the sensitivities of the measurements and our experience with testicular biopsy technique, we conclude that a routine testicular biopsy in the human should provide sufficient tissue to run these enzymatic assays.  相似文献   

16.
B Houston  G D Chisholm  F K Habib 《Steroids》1987,49(4-5):355-369
A kinetic analysis of the 5 alpha-reductases from human liver and prostate is presented. Human prostatic 5 alpha-reductase follows an ordered sequential mechanism in which NADPH binds first followed by testosterone. The order of release of products is DHT followed by NADP+. The apparent Km of prostatic 5 alpha-reductase for testosterone is 0.0339 +/- 0.006 microM, while the apparent Km for NADPH is 2.52 +/- 0.65 microM. Human liver 5 alpha-reductase also follows a sequential mechanism. The apparent Km of the liver enzyme is 0.110 +/- 0.08 microM; the apparent Km for NADPH is 6.2 +/- 0.6 microM. The fact that both the liver and prostatic 5 alpha-reductases have a sequential kinetic mechanism rules out the possibility that the reduction of testosterone to dihydrotestosterone involves an electron transport system as previously proposed.  相似文献   

17.
A novel series of naphthylmethylimidazole derivatives and related compounds have been investigated as selective 17,20-lyase inhibitors. Optimization of the substituent at the 6-position on the naphthalene ring was performed to yield a methylcarbamoyl derivative, which exhibited potent inhibitory activity against human 17,20-lyase and promising selectivity (>200-fold) for 17,20-lyase over CYP3A4. Further modifications of the methylcarbamoyl derivative led to the discovery of the corresponding tricyclic compound, which showed highly potent activity against human 17,20-lyase (IC(50) 19 nM) and good selectivity (>1000-fold) for inhibition of 17,20-lyase over CYP3A4. Additional biological evaluation revealed that the tricyclic compound had potent in vivo efficacy in monkeys and favorable pharmacokinetic profiles when administered in rats. Asymmetric synthesis of the selective tricyclic inhibitor was also achieved using a chiral α-hydroxy ketone.  相似文献   

18.
Kinetic studies of inhibition of estradiol 2- and 16 alpha-hydroxylase activities in male rat liver microsomes with 2-bromoestrogens, 4-bromo-estrone (4-BrE1), 16 alpha- and 16 beta-bromoestrones and 16 beta-acetylthioestrone (16-AcSE1) were carried out. 2-Bromoestrogens and 4-BrE1 nonspecifically blocked the two enzyme activities in a competitive manner, and 2-bromo-estradiol (2-BrE2) was the most potent inhibitor for the two hydroxylases among the 2- and 4-bromo steroids. Kinetic data, the apparent Ki's for the inhibitors and the apparent Km's for the substrate E2 in the assay, demonstrate that the A-ring bromo steroids are potent inhibitors for the two enzymes (Ki/Km ranging from 0.28 to 0.48 for the 2-hydroxylation and ranging from 0.26 to 0.49 for the 16 alpha-hydroxylation). In contrast, 16-bromoestrones and 16-AcSE1 non-competitively inhibited the 2-hydroxylation (Ki = ca. 70 microM) while the other was competitively blocked by them (Ki/Km ranging from 0.24 to 0.30). These 16-substituted steroids were very potent inhibitors for the 16 alpha-hydroxylase rather than the 2-hydroxylase and preferentially blocked the former.  相似文献   

19.
The effects of 6 alpha-methyl-17 alpha-acetoxy-4-pregnene 3,20-dione (MPA) on the activity of different steroid metabolizing enzymes in vitro were investigated in several organs in the rat. MPA seems to be a potent inhibitor of 3 alpha-reduction of 17 beta-hydroxy-5 alpha-androstan-3-one (Dht) in homogenates of the testis, ovary, epididymis, prostate, kidney and the adrenal glands. In testicular homogenates MPA acts like a competitive inhibitor of the 3 alpha-reduction of Dht, with Ki of 0.42 [microM]. MPA seems to be a selective inhibitor of 3 alpha-hydroxysteroid oxidoreductase in numerous organs. Steroid metabolizing enzymes like 5 alpha-reductase, 7 alpha-hydroxylase, 3 beta-hydroxysteroid oxidoreductase and 17 beta-hydroxysteroid oxidoreductase were not inhibited by MPA under the conditions of incubation employed in these studies.  相似文献   

20.
A series of 1- and 4-(2-naphthylmethyl)-1H-imidazoles (3 and 4) has been synthesized and evaluated as C(17,20)-lyase inhibitors. Several 6-methoxynaphthyl derivatives showed potent C(17,20)-lyase inhibition, suppression of testosterone biosynthesis in rats and reduction in the weight of prostate and seminal vesicles in rats, whereas most of these compounds increased the liver weight after consecutive administrations. The effect on the liver weight was removed by incorporation of a hydroxy group and an isopropyl group at the methylene bridge, as seen in (S)-28d and (S)-42. Selectivity for C(17,20)-lyase over 11beta-hydroxylase is also discussed, and (S)-42 was found to be a more than 260-fold selective inhibitor. Furthermore, (S)-42 showed a potent suppression of testosterone biosynthesis after a single oral administration in monkeys. These data suggest that (S)-42 may be a promising agent for the treatment of androgen-dependent prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号