首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence for symplastic phloem unloading in sink leaves of barley   总被引:8,自引:0,他引:8  
The pathway of phloem unloading in sink barley (Hordeum vulgare) leaves was studied using a combination of electron microscopy, carboxyfluorescein transport, and systemic movement of barley stripe mosaic virus expressing the green fluorescent protein. Studies of plasmodesmatal frequencies between the phloem and mesophyll indicated a symplastic sieve element- (SE) unloading pathway involving thick-walled and thin-walled SEs. Phloem-translocated carboxyfluorescein was unloaded rapidly from major longitudinal veins and entered the mesophyll cells of sink leaves. Unloading was "patchy" along the length of a vein, indicating that sieve element unloading may be discontinuous along a single vascular bundle. This pattern was mirrored precisely by the unloading of barley stripe mosaic virus expressing the green fluorescent protein. Transverse veins were not utilized in the unloading process. The data collectively indicate a symplastic mechanism of SE unloading in the sink barley leaf.  相似文献   

2.
The uhrastructure and intercellular connection of the sugar unloading zone (i. e. the phloem in the dorsal vascular bundle and the phloem-surrounding the assimilate sink-cells) of grape ( Vitis vinifera x V. labrusca cv. Jingchao) berry was observed via transmission electron microscopy. The results showed that during the early developmental stages of grape berry, numerous plasmodesmata were found in the phloem between sieve element (SE) and companion cell (CC), between SE/CC complexes, between SE/CC complex and phloem parenchyma cell and in between phloem parenchyma cells, which made the phloem a symplastic integration, facilitating sugar unloading from sieve elements into both companion cells and phloem parenchyma cells via a symplastic pathway. On the contrary, there was almost no plasmodesma between phloem and its surrounding flesh photoassimilate sink-cells, neither in between the flesh photoassimilate sink-cells giving rise to a symplastic isolation both between phloem and its surrounding flesh photoassimilate sink-cells, as well as among the flesh photoassimilate sink-cells. This indicated that both the sugar unloading from phloem and pestphloem transport of sugars should be mainly via an apoplastic pathway. Dining the ripening stage, most of the plasmodesmata between SE/CC complex and the surrounding phloem parenchyma cells were shown to be blocked by the electron-opaque globules, and a phenomenon of plasmolysis was found in a number of companion cells, indicating a symplastic isolation between SE/CC complex and its surrounding parenchynm cells during this phase. The symplastic isolation between the whole phloem and its surrounding photoassimilate sink-cells during the early developmental stages shifted to a symplastic isolation within the phloem during the ripening phase, and thus the symplastic pathway of sugar unloading from SE/CC complex during the early development stages should be replaced by a dominant apoplastic unloading pathway from SE/CC complex in concordance.  相似文献   

3.
Macromolecular trafficking within the sieve element-companion cell complex, phloem unloading, and post-phloem transport were studied using the jellyfish green fluorescent protein (GFP). The GFP gene was expressed in Arabidopsis and tobacco under the control of the AtSUC2 promoter. In wild-type Arabidopsis plants, this promoter regulates expression of the companion cell-specific AtSUC2 sucrose-H+ symporter gene. Analyses of the AtSUC2 promoter-GFP plants demonstrated that the 27-kD GFP protein can traffic through plasmodesmata from companion cells into sieve elements and migrate within the phloem. With the stream of assimilates, the GFP is partitioned between different sinks, such as petals, root tips, anthers, funiculi, or young rosette leaves. Eventually, the GFP can be unloaded symplastically from the phloem into sink tissues, such as the seed coat, the anther connective tissue, cells of the root tip, and sink leaf mesophyll cells. In all of these tissues, the GFP can traffic cell to cell by symplastic post-phloem transport. The presented data show that plasmodesmata of the sieve element-companion cell complex, as well as plasmodesmata into and within the analyzed sinks, allow trafficking of the 27-kD nonphloem GFP protein. The data also show that the size exclusion limit of plasmodesmata can change during organ development. The results are also discussed in terms of the phloem mobility of assimilates and of small, low molecular weight companion cell proteins.  相似文献   

4.
R. Turgeon 《Planta》1987,171(1):73-81
Phloem unloading in transition sink leaves of tobacco (Nicotiana tabacum L.) was analyzed by quantitative autoradiography. Detectable levels of labeled photoassimilates entered sink leaves approx. 1 h after source leaves were provided with 14CO2. Samples of tissue were removed from sink leaves when label was first detected and further samples were taken at the end of an experimental phloem-unloading period. The amount of label in veins and in surrounding cells was determined by microdensitometry of autoradiographs using a microspectrophotometer. Photoassimilate unloaded from first-, second-and third-order veins but not from smaller veins. Import termination in individual veins was gradual. Import by the sink leaf was completely inhibited by exposing the sink leaf to anaerobic conditions, by placing the entire plant in the cold, or by steam-girdling the sink-leaf petiole. Phloem unloading was completely inhibited by cold; however, phloem unloading continued when the sink-leaf petiole was steam girdled or when the sink leaf was exposed to a N2 atmosphere. Compartmental efflux-analysis indicated that only a small percentage of labeled nutrients was present in the free space after unloading from sink-leaf veins in a N2 atmosphere. The results are consistent with passive symplastic transfer of photoassimilates from phloem to surrounding cells.Symbol VI radio of 14C in veins and interveinal tissue  相似文献   

5.
K. J. Oparka 《Protoplasma》1986,131(3):201-210
Summary Potential pathways for sucrose unloading in the potato tuber were examined by light and electron microscopy. Abundant plasmodesmata connected sieve elements with surrounding parenchyma elements and also sieve elements with companion cells. Plasmodesmata were rarer, however, between companion cells and parenchyma elements. These observations suggest that sucrose may leave the sieve elements and enter the storage parenchyma cells directly via the symplast and that transport through the companion cell may not be a prerequisite for unloading. Plasmodesmata, grouped together in primary pit fields, were also abundant between storage cells, and isolated storage cells, separated enzymically, showed considerable variation in plasmodesmatal distribution between cells and also on different faces of a single cell. Deposition of starch was found to occur in the tuber cortex while an endodermis with Casparian strip was present external to the phloem, suggesting that assimilates initially enter the cortical storage cells by an entirely symplastic pathway. The possible involvement of ATPase in the unloading process was examined cytochemically, using a lead-salt precipitation method. By contrast with previous findings for phloem no evidence was found for ATPase activity that was unique to the sieve element-companion cell complex. The present observations favour the view that phloem unloading in the potato tuber is a symplastic and passive process.  相似文献   

6.
Sieve element unloading: cellular pathway, mechanism and control   总被引:14,自引:0,他引:14  
The transport and distribution of phloem – mobile solutes is predominantly determined by transport processes located at the sink end of the source – transport – sink system. Transport across the sieve element boundary, sieve element unloading, is the first of a series of sink transport processes. Unloading of solutes from the sieve elements may follow an apo- or symplastic route. It is speculated that the unloading pathway is integrated with sink function and that apoplastic unloading is restricted to situations in which movement through the symplast is not compatible with sink function. These situations include axial transport and storage of osmotically active solutes against concentration and turgor gradients between the sieve elements and sink cells. Coupled with alteration in sink function, the cellular pathway of unloading can switch in stems and possibly other sinks. Experimental systems and approaches used to elucidate the mechanism of sieve element unloading are reviewed. Unloading fluxes to the apoplast can largely be accounted for by membrane diffusion in axial sinks. However, the higher fluxes in storage sinks suggests dependence on some form of facilitated transport. Proton sucrose symport is assessed to be a possible mechanism for facilitated efflux of solutes across the sieve element plasma membrane to the sink apoplast. Unloading through the symplast may occur by diffusion or mass flow. The latter mechanism serves to dissipate phloem water and hence prevent the potential elevation of sieve element turgor that would otherwise slow phloem import into the sink. The possibility of energised plasmodesmatal transport is raised. Sieve element unloading must be integrated with subsequent compartmentation and metabolism of the unloaded solute. Solute levels are an obvious basis for control of sieve element unloading, but are found to offer limited scope for a mass action mechanism. Apoplastic, cellular pathway, sieve element, solute transport, symplastic. Translated into a turgor signal, solute levels could regulate the rate of unloading, metabolism and compartmentation forming part of a turgor homeostat irrespective of the pathway of unloading.  相似文献   

7.
Current perspectives on plasmodesmata: structure and function   总被引:2,自引:0,他引:2  
Recent studies on plasmodesmata have shown that these important intercellular passages for communication and transport are much more sophisticated in both structure and regulatory abilities than previously imagined. A complex, but not well understood, substructure has been revealed by a variety of increasingly reliable ultrastructural techniques. Proteinaceous particles are seen within the cytoplasmic sleeve surrounding the desmotubule. Dye-coupling studies have provided experimental evidence for the physical pathway of solute movement, supporting conclusions about substructural dimensions within plasmodesmata drawn from the ultrastructural studies. Calcium has been identified as a major factor in the regulation of intercellular communication via plasmodesmata. Evidence from studies on virus movement through plasmodesmata suggests a direct interaction between virallycoded movement proteins and plasmodesmata in the systemic spread of many viruses. There is increasing evidence, albeit indirect, that in some plant species phloem loading may involve transport of photoassimilate entirely within the symplast from mesophyll cells to the sieve element-companion cell complexes of minor veins.  相似文献   

8.
Haritatos E  Medville R  Turgeon R 《Planta》2000,211(1):105-111
Leaf and minor vein structure were studied in Arabidopsis thaliana (L.) Heynh. to gain insight into the mechanism(s) of phloem loading. Vein density (length of veins per unit leaf area) is extremely low. Almost all veins are intimately associated with the mesophyll and are probably involved in loading. In transverse sections of veins there are, on average, two companion cells for each sieve element. Phloem parenchyma cells appear to be specialized for delivery of photoassimilate from the bundle sheath to sieve element-companion cell complexes: they make numerous contacts with the bundle sheath and with companion cells and they have transfer cell wall ingrowths where they are in contact with sieve elements. Plasmodesmatal frequencies are high at interfaces involving phloem parenchyma cells. The plasmodesmata between phloem parenchyma cells and companion cells are structurally distinct in that there are several branches on the phloem parenchyma cell side of the wall and only one branch on the companion cell side. Most of the translocated sugar in A. thaliana is sucrose, but raffinose is also transported. Based on structural evidence, the most likely route of sucrose transport is from bundle sheath to phloem parenchyma cells through plasmodesmata, followed by efflux into the apoplasm across wall ingrowths and carrier-mediated uptake into the sieve element-companion cell complex. Received: 5 October 1999 / Accepted: 20 November 1999  相似文献   

9.
We investigated the phloem loading pathway in barley, by determining plasmodesmatal frequencies at the electron microscope level for both intermediate and small blade bundles of mature barley leaves. Lucifer yellow was injected intercellularly into bundle sheath, vascular parenchyma, and thin-walled sieve tubes. Passage of this symplastically transported dye was monitored with an epifluorescence microscope under blue light. Low plasmodesmatal frequencies endarch to the bundle sheath cells are relatively low for most interfaces terminating at the thin- and thick-walled sieve tubes within this C3 species. Lack of connections between vascular parenchyma and sieve tubes, and low frequencies (0.5% plasmodesmata per μm cell wall interface) of connections between vascular parenchyma and companion cells, as well as the very low frequency of pore-plasmodesmatal connections between companion cells and sieve tubes in small bundles (0.2% plasmodesmata per μm cell wall interface), suggest that the companion cell-sieve tube complex is symplastically isolated from other vascular parenchyma cells in small bundles. The degree of cellular connectivity and the potential isolation of the companion cell-sieve tube complex was determined electrophysiologically, using an electrometer coupled to microcapillary electrodes. The less negative cell potential (average –52 mV) from mesophyll to the vascular parenchyma cells contrasted sharply with the more negative potential (–122.5 mV) recorded for the companion cell-thin-walled sieve tube complex. Although intercellular injection of lucifer yellow clearly demonstrated rapid (0.75 μm s-1) longitudinal and radial transport in the bundle sheath-vascular parenchyma complex, as well as from the bundle sheath through transverse veins to adjacent longitudinal veins, we were neither able to detect nor present unequivocal evidence in support of the symplastic connectivity of the sieve tubes to the vascular parenchyma. Injection of the companion cell-sieve tube complex, did not demonstrate backward connectivity to the bundle sheath. We conclude that the low plasmodesmatal frequencies, coupled with a two-domain electropotential zonation configuration, and the negative transport experiments using lucifer yellow, precludes symplastic phloem loading in barley leaves.  相似文献   

10.
章英才  景红霞 《西北植物学报》2014,34(12):2446-2452
采用ATPase超微细胞化学定位技术,研究灵武长枣果实不同发育阶段韧皮部和果肉库薄壁细胞ATPase分布特征,以明确灵武长枣果实ATPase超微细胞化学定位特征和功能。结果显示:(1)第一次快速生长期SE/CC复合体与周围的薄壁细胞有丰富的胞间连丝,形成共质体连续,韧皮部薄壁细胞之间有丰富的胞间连丝,ATPase反应物在韧皮部各细胞分布较少。(2)缓慢生长期ATPase反应物在韧皮部各细胞分布逐渐增加。(3)第二次快速生长期SE/CC复合体与周围的薄壁细胞缺乏胞间连丝,形成共质体隔离,韧皮薄壁细胞及果肉库薄壁细胞的胞间连丝较少,囊泡和膜泡在筛管、韧皮薄壁细胞和库薄壁细胞中很丰富,质膜、液泡膜、囊泡膜、细胞壁和胞间隙的ATPase活性较高。研究表明,果实在第一次快速生长期同化物从筛分子的卸出主要采取共质体途径,缓慢生长期同化物卸出时可能为共质体和质外体途径共存,第二次快速生长期则主要以质外体途径为主,证明果实不同发育阶段韧皮部同化物卸出路径存在差异。  相似文献   

11.
The fact that macromolecules such as proteins and mRNAs overcome the symplastic barriers between various tissue domains was first evidenced by the movement of plant viruses. We have recently demonstrated that viral infection disengages the symplastic restriction present between the sieve element-companion cell complex and neighboring cells in tobacco plants. As a result, green fluorescent protein, which was produced in mesophyll and bundle sheath cells, could traffic into the sieve tube and travel long distances within the vascular system. In this addendum we discuss the likely existence of a novel plant communication network in which macromolecules also act as long-distance trafficking signals. Plasmodesmata interconnecting sieve elements and companion cells as well as plasmodesmata connecting the sieve tube with neighboring cells may play a central role in establishing this communication network.Key words: companion cells, cucumber mosaic virus, Cucumis melo, plasmodesmata, movement protein, sieve-elementsTranslocation of photoassimilates from the source (site of synthesis) to various sink organs is governed, in part, by short-distance intercellular transfer of assimilates to the loading region of the phloem and long-distance transport within the plant vascular system. Sucrose, which is synthesized in the leaf mesophyll, moves cell-to-cell symplastically through plasmodesmata until it reaches the boundary of the sieve element (SE)-companion cell (CC) complex. In many plant species, the connection between phloem parenchyma (PP)/bundle sheath (BS) cells and CCs is characterized by a sparseness of plasmodesmata (e.g., Solanaceae), and sucrose is exported out of the cells to the apoplast. This type of plants (apoplastic loaders) uses sucrose proton symporters to load the sucrose into the vasculature.1 Cucurbits are considered one of the model plants for symplastic phloem loading.2 This type of plant is characterized by abundant plasmodesmata interconnecting the intermediary cells, which are specialized CCs, with the neighboring BS cells. It is generally accepted that in these plants, phloem loading includes intercellular movement of sucrose through the plasmodesmata, along the entire pathway from the mesophyll cell to the SE-CC complex.Interestingly, the existence of plasmodesmata interconnecting the SE-CC complex and neighboring cells is evident in all plant species that are characterized by an apoplastic phloem-loading mechanism. Moreover, microinjection experiments have indicated that plasmodesmata interconnecting the PP-CC are functional, in that they allow the exchange of small membrane-impermeable fluorescent probes.3 Virus movement through plasmodesmata from the mesophyll into the SEs further supports the notion that the symplastic communication between the CC-SE complex and the neighboring cells is functional.4One can assume that in apoplastic-loading plants, it would be an advantage to maintain the SE-CC complex as an isolated domain, with no functional plasmodesmata interconnecting it to the neighboring tissue. Symplastic continuity between the two domains could result in leakage of sucrose out of the vasculature and a significant reduction in the efficacy of sucrose loading. The fact that the two domains are interconnected suggests that any back-leakage of sucrose that might occur is insignificant relative to the likely efficacy of this communication route.What might the advantage be for symplastic communication between the SE-CC complex and the neighboring tissue? Accumulated evidence suggests that at the tissue/organ level, cell-to-cell trafficking of information molecules allows for noncell-autonomous control over a range of processes, whereas at the organismal level, the phloem serves as an information superhighway, delivering a wide range of macromolecules to enable the plant to function as a whole organism.58 We advanced the hypothesis that plasmodesmata interconnecting the CCs and PP/BS cells play a pivotal role in controlling the long-distance trafficking of putative signaling molecules.  相似文献   

12.
The nonchlorophyllous (albino) tissue of mature C. blumei leaves is a sink for photoassimilate. Transport from the green to the albino region of the same leaf was inhibited by cold and anoxia. When the green tissue of mature leaves was removed, the remaining albino portion imported labeled translocate from other mature leaves in the phloem. Photoassimilate unloading in the albino region of mature leaves was studied by quantitative autoradiography. The unloading was inhibited by cold but not by anoxia. No labeled photoassimilate could be detected in the free space of mature albino tissue by compartmental efflux analysis as phloem unloading proceeded in a N2 atmosphere, indicating that unloading, may occur by a symplastic pathway as it apparently does in sink leaves of other species. The minor veins of mature albino leaf tissue did not accumulate exogenous [14C]sucrose. Minor veins of green tissue in the same leaves accumulated [14C]sucrose but, in contrast to other species studied to date, this accumulation was insensitive to the inhibitor p-chloromercuribenzensulfonic acid (PCMBS).In its capacity to import and unload photoassimilate, and in the inability, of the minor veins to accumulate exogenous sucrose, the albino region of the mature C. blumei lamina differs from mature albino tobacco leaves and darkened mature leaves of other species. This, together with evidence indicating that phloem loading in C. blumei and other species may occur by different routes and with different sensitivity to PCMBS, indicates that the mechanism of transfer of photoassimilates between veins and surrounding tissues, and the mechanism of the sink-source transition, may not be the same in the leaves of all species. It is speculated that the unusual properties of the C. blumei leaf may be a consequence of the presence, in the minor veins, of intermediary cells, large companion cells connected to the bundle sheath by abundant plasmodesmata.Abbreviation PCMBS p-chloromercuribenzenesulfonic acid  相似文献   

13.
Werner D  Gerlitz N  Stadler R 《Protoplasma》2011,248(1):225-235
Developing flowers are important sinks in Arabidopsis thaliana. Their energy demand is covered by assimilates which are synthesized in source leaves and transported via the vasculature. Assimilates are unloaded either symplastically through plasmodesmata or apoplastically by specific transport proteins. Here we studied the pathway of phloem unloading and post-phloem transport in developing gynoecia. Using phloem-mobile fluorescent tracers, we show that phloem unloading into cells of ovule primordia followed a symplastic pathway. Subsequently, the same tracers could not move out of phloem cells into mature ovules anymore. A further change in the mode of phloem unloading occurred after anthesis. In open flowers as well as in outgrowing siliques, the phloem was again unloaded via the symplast. This observed onset of symplastic phloem unloading was accompanied by a change in frequency of MP17-GFP-labeled plasmodesmata. We could also show that the change in cell–cell connectivity was independent of fertilization and increasing sink demand. The presented results indicate that symplastic connectivity is highly regulated and varies not only between different sink tissues but also between different developmental stages.  相似文献   

14.
MURPHY  RICARDO 《Annals of botany》1989,63(5):541-549
A mathematical model of water and sucrose transport across thesieve tube boundary is presented, based on conservation of matterand the phenomenological equations for plasmodesmatal transportbetween the sieve elements and their associated cells. Plasmodesmataltransport coefficients are discussed. In parts II–IV,the equations developed here are used to assess: (i) the estimationof phloem turgor gradients from osmotic pressure gradients;(ii) plasmodesmatal transport of water and sucrose between thesieve elements and adjacent cells; and (iii) the plausibilityof symplastic and apoplastic phloem loading and unloading insome primary sources and sinks. A list of symbols is given inAppendix 1 of this paper Phloem, turgor, osmotic pressure, loading, unloading, plasmodesmata, Munch hypothesis  相似文献   

15.
Phloem loading and unloading of sugars and amino acids   总被引:24,自引:2,他引:22  
In terrestrial higher plants, phloem transport delivers most nutrients required for growth and storage processes. Some 90% of plant biomass, transported as sugars and amino nitrogen (N) compounds in a bulk flow of solution, is propelled though the phloem by osmotically generated hydrostatic pressure differences between source (net nutrient export) and sink (net nutrient import) ends of phloem paths. Source loading and sink unloading of sugars, amino N compounds and potassium largely account for phloem sap osmotic concentrations and hence pressure differences. A symplasmic component is characteristic of most loading and unloading pathways which, in some circumstances, may be interrupted by an apoplasmic step. Raffinose series sugars appear to be loaded symplasmically. However, sucrose, and probably certain amino acids, are loaded into minor veins from source leaf apoplasms by proton symporters localized to plasma membranes of their sieve element/companion cell (se/cc) complexes. Sucrose transporters, with complementary kinetic properties, are conceived to function as membrane transporter complexes that respond to alterations in source/sink balance. In contrast, symplasmic unloading is common for many sink types. Intervention of an apoplasmic step, distal from importing phloem, is reserved for special situations. Effluxers that release sucrose and amino acids to the surrounding apoplasm in phloem loading and unloading are yet to be cloned. The physiological behaviour of effluxers is consistent with facilitated membrane transport that can be energy coupled. Roles of sucrose and amino acid transporters in phloem unloading remain to be discovered along with mechanisms regulating symplasmic transport. The latter is hypothesized to exert significant control over phloem unloading and, in some circumstances, phloem loading.  相似文献   

16.
为了探讨灵武长枣果实光合同化物韧皮部卸载和运输的途径,该研究采用透射电镜技术,对不同发育时期灵武长枣果实维管束韧皮部及其周围薄壁细胞的超微结构特征进行了分析。结果表明:筛管/伴胞复合体及其周围韧皮薄壁细胞间在果实膨大前期富含胞间连丝,而韧皮薄壁细胞与周围库细胞以及相邻库细胞间几乎不存在胞间连丝,形成共质体隔离;筛管/伴胞复合体及其与周围薄壁细胞间在果实快速膨大期也存在胞间连丝,但与果实膨大前期相比明显减少;果实着色期,SE/CC复合体及其与周围薄壁细胞间胞间连丝较少,并且出现阻塞现象;果实完熟期,筛管和伴胞之间几乎没有胞间连丝,有的筛管之间有少量胞间连丝,但却出现了阻塞现象,果肉库薄壁细胞与韧皮薄壁细胞间因胞间连丝阻塞现象而形成共质体隔离。综上结果认为,在果实发育的膨大前期阶段,光合同化物以共质体途径经筛分子卸出,卸出后可能以质外体途径进入液泡贮藏与利用;果实快速膨大期,光合同化物的卸出与运输采用共质体和质外体共存的途径;果实着色期和完熟期,光合同化物从筛分子卸出到贮藏薄壁细胞的运输均以质外体途径为主。  相似文献   

17.
Robert Turgeon 《Planta》1984,161(2):120-128
Mature leaves import limited amounts of nutrient when darkened for prolonged periods. We tested the hypothesis that import is restricted by the apoplast-phloem loading mechanism, ie., as sucrose exits the phloem of minor veins it is retrieved by the same tissue, thus depriving the mesophyll of nutrient. When single, attached, mature leaves of tobacco (Nicotiana tabacum L.) plants were darkened, starch disappeared from the mesophyll cells, indicating that the supply of solute to the mesophyll was limited. Starch was synthesized in mesophyll cells of darkened tissue when sucrose was applied to the apoplast at 0.1–0.3 mM concentration. Efflux from minor veins was studied by incubating leaf discs on [14C]sucrose to load the minor veins and then measuring subsequent 14C release. Efflux was rapid for the first hour and continued at a gradually decreasing rate for over 13 h. Net efflux increased when loading was inhibited by p-chloromercuribenzene-sulfonic acid, anoxia, isotope-trapping, or reduction of the pH gradient. Neither light nor potassium had a significant effect on the rate of labeled sucrose release. The site of labeled sucrose release was investigated by measuring efflux from discs in which sucrose had previously been loaded preferentially by either the minor veins or mesophyll cells. Efflux occurred primarily from minor veins.Abbreviations Mes 2(N-morpholino)ethanesulfonic acid - Mops 3(N-morpholino)propanesulfonic acid - PCMBS p-chloromercuribenzenesulfonic acid - SE-CC sieve element-companion cell complex  相似文献   

18.
通过缩小叶面积和去茎尖改变源库比率,以调节韧皮部卸出的途径,证明了韧皮部卸出的共质体与质外体途径的季节变化,和由对氯高汞苯磺酸所诱发的从质外体向共质体途径的转变,是与光合产物的输入有关。缩小叶面积而降低源库比率,能增加夏季生长植株茎韧皮部的质外体卸出,但对冬季生长植株无影响。去尖而增加源库比率,则促进共质体卸出。赤霉酸和激动素能促进共质体的横向转运,但对质外体转运无作用。当质外体为主要运输途径时,赤霉酸和激动素开启共质体途径。赤霉酸和激动素刺激光合产物,通过共质体从筛管一伴胞复合体向韧皮部薄壁纽胞输送,并可能在韧皮部薄壁细胞被动扩散到自由空间。由此可进一步说明蔗糖在激素处理部位自由空间的增加。  相似文献   

19.
The phloem-loading-related effects of temperature on leaf ultrastructure were studied in seven species having numerous plasmodesmatal connections between the mesophyll and phloem (symplasmic minor-vein configuration). The response to temperature (between 5 and 30 °C) was characterized by drastic changes in the endoplasmic-reticulum labyrinth (ER labyrinth) of intermediary cells, in the position of the vacuole in bundle-sheath cells, and in the starch content in the chloroplasts of bundle-sheath cells and mesophyll cells. At temperatures above 20 °C, the ER system in the intermediary cells reached its maximal volume, while the vacuole in bundlesheath cells was positioned centripetally (proximal to the intermediary cell). With decreasing temperature, the ER labyrinth in intermediary cells gradually contracted till the ER was fully collapsed at 10 °C and the vacuole in bundle-sheath cells moved to a more centrifugal position. The apparent elimination of photosynthate transport via the ER and plasmodesmata at temperatures lower than 10 °C led to starch accumulation in the chloroplasts of bundle-sheath cells and mesophyll cells. All of these changes were fully temperature-reversible and probably reflect changes in the balance between photosynthate transport and storage. The ultrastructural shifts appear to be correlated with the passage of photosynthate through the intermediary cells and, as a consequence, with the rate of phloem loading at various temperatures. A contraction of the ER/plasmodesmata system imposed by cytoskeletal reorganisation is discussed as the reason for the blockage of phloem loading at low temperatures in association with the general chilling sensitivity of these species.Abbreviations BSC bundle-sheath cell - IC intermediary cell - MC mesophyll cell - PD plasmodesmata - PFD photon flux density - SE/CC-complex sieve element/companion cell complex The authors gratefully acknowledge the financial support by NWO (Dutch Organization for Scientific Research).  相似文献   

20.
The sink effect of cytokinin is manifested as a decrease in source capacity and the induction of sink activity in the phytohormone-treated region of a mature excised leaf. In order to find out whether this effect was due to the direct action of cytokinin on the phloem structure, two types of phloem terminals were examined. In pumpkin (Cucurbita pepo L.) leaves, the phloem terminals are open; i.e., they are linked to mesophyll by numerous symplastic connections, which are located in narrow areas called plasmodesmal pit fields. In broad bean (Vicia faba L.) leaves, the phloem terminals belong to the closed type and have no symplastic links with mesophyll. The electron microscopic study of terminal phloem did not reveal any structural changes in the companion cells, which could account for the suppression of assimilate export. The treatment of leaves with cytokinin neither disturbed the structure of plasmodesmal pit fields in pumpkin leaves nor eliminated the wall protuberances (the ingrowths promoting phloem loading) in bean leaves. No evidence was obtained that the cytokinin-induced import of assimilates in mature leaves is caused by the recovery of meristematic activity, i.e., by either formation of new phloem terminals having immature sieve elements capable of unloading or by the development of new sieve elements within the existing veins. Cytokinin did not induce de novo formation of phloem elements. Structural characteristics of the leaf phloem, such as the number of branching orders in the venation pattern, the number of vein endings per areole, the number of areoles per leaf, the area of one areole, and the number of sieve elements per bundle remained unaltered. It is concluded that the sink effect of cytokinin in excised leaves cannot be determined by alteration of the phloem structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号