首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Histochemical localization of ATPase was carried out on phloemtissues from vegetative and reproductive sinks of Ricinus communis,using lead precipitation procedures. Reaction products werelocalized mainly at the plasma membrane of the sieve elements,companion cells and phloem parenchyma cells. Activity was alsopresent in plasmodesmata, the tonoplast of companion cells anddispersed P-protein within the sieve element lumen. The resultsare discussed in relation to the possible involvement of a plasmamembrane ATPase in apoplastic and symplastic unloading fromthe phloem conducting tissues. ATPase, sink tissues, unloading, Ricinus communis  相似文献   

2.
为了探讨灵武长枣果实光合同化物韧皮部卸载和运输的途径,该研究采用透射电镜技术,对不同发育时期灵武长枣果实维管束韧皮部及其周围薄壁细胞的超微结构特征进行了分析。结果表明:筛管/伴胞复合体及其周围韧皮薄壁细胞间在果实膨大前期富含胞间连丝,而韧皮薄壁细胞与周围库细胞以及相邻库细胞间几乎不存在胞间连丝,形成共质体隔离;筛管/伴胞复合体及其与周围薄壁细胞间在果实快速膨大期也存在胞间连丝,但与果实膨大前期相比明显减少;果实着色期,SE/CC复合体及其与周围薄壁细胞间胞间连丝较少,并且出现阻塞现象;果实完熟期,筛管和伴胞之间几乎没有胞间连丝,有的筛管之间有少量胞间连丝,但却出现了阻塞现象,果肉库薄壁细胞与韧皮薄壁细胞间因胞间连丝阻塞现象而形成共质体隔离。综上结果认为,在果实发育的膨大前期阶段,光合同化物以共质体途径经筛分子卸出,卸出后可能以质外体途径进入液泡贮藏与利用;果实快速膨大期,光合同化物的卸出与运输采用共质体和质外体共存的途径;果实着色期和完熟期,光合同化物从筛分子卸出到贮藏薄壁细胞的运输均以质外体途径为主。  相似文献   

3.
The uhrastructure and intercellular connection of the sugar unloading zone (i. e. the phloem in the dorsal vascular bundle and the phloem-surrounding the assimilate sink-cells) of grape ( Vitis vinifera x V. labrusca cv. Jingchao) berry was observed via transmission electron microscopy. The results showed that during the early developmental stages of grape berry, numerous plasmodesmata were found in the phloem between sieve element (SE) and companion cell (CC), between SE/CC complexes, between SE/CC complex and phloem parenchyma cell and in between phloem parenchyma cells, which made the phloem a symplastic integration, facilitating sugar unloading from sieve elements into both companion cells and phloem parenchyma cells via a symplastic pathway. On the contrary, there was almost no plasmodesma between phloem and its surrounding flesh photoassimilate sink-cells, neither in between the flesh photoassimilate sink-cells giving rise to a symplastic isolation both between phloem and its surrounding flesh photoassimilate sink-cells, as well as among the flesh photoassimilate sink-cells. This indicated that both the sugar unloading from phloem and pestphloem transport of sugars should be mainly via an apoplastic pathway. Dining the ripening stage, most of the plasmodesmata between SE/CC complex and the surrounding phloem parenchyma cells were shown to be blocked by the electron-opaque globules, and a phenomenon of plasmolysis was found in a number of companion cells, indicating a symplastic isolation between SE/CC complex and its surrounding parenchynm cells during this phase. The symplastic isolation between the whole phloem and its surrounding photoassimilate sink-cells during the early developmental stages shifted to a symplastic isolation within the phloem during the ripening phase, and thus the symplastic pathway of sugar unloading from SE/CC complex during the early development stages should be replaced by a dominant apoplastic unloading pathway from SE/CC complex in concordance.  相似文献   

4.
章英才  景红霞 《西北植物学报》2014,34(12):2446-2452
采用ATPase超微细胞化学定位技术,研究灵武长枣果实不同发育阶段韧皮部和果肉库薄壁细胞ATPase分布特征,以明确灵武长枣果实ATPase超微细胞化学定位特征和功能。结果显示:(1)第一次快速生长期SE/CC复合体与周围的薄壁细胞有丰富的胞间连丝,形成共质体连续,韧皮部薄壁细胞之间有丰富的胞间连丝,ATPase反应物在韧皮部各细胞分布较少。(2)缓慢生长期ATPase反应物在韧皮部各细胞分布逐渐增加。(3)第二次快速生长期SE/CC复合体与周围的薄壁细胞缺乏胞间连丝,形成共质体隔离,韧皮薄壁细胞及果肉库薄壁细胞的胞间连丝较少,囊泡和膜泡在筛管、韧皮薄壁细胞和库薄壁细胞中很丰富,质膜、液泡膜、囊泡膜、细胞壁和胞间隙的ATPase活性较高。研究表明,果实在第一次快速生长期同化物从筛分子的卸出主要采取共质体途径,缓慢生长期同化物卸出时可能为共质体和质外体途径共存,第二次快速生长期则主要以质外体途径为主,证明果实不同发育阶段韧皮部同化物卸出路径存在差异。  相似文献   

5.
What Is Phloem Unloading?   总被引:19,自引:2,他引:17       下载免费PDF全文
Oparka KJ 《Plant physiology》1990,94(2):393-396
Several studies of phloem unloading have failed to distinguish between transport events occurring at the sieve element/companion cell boundary and subsequent short-distance transport through parenchyma cells. Indirect evidence has been obtained for symplastic unloading in storage and utilization sinks. In other sinks transfer to the apoplast may occur, but not necessarily at the sieve element/companion cell complex, and the evidence for apoplastic phloem unloading is equivocal, as is the role of apoplastic acid invertase in this process. The ability of several types of sink cells to accumulate sugars from the apoplast is discussed in the conflicting light of functional symplastic continuity between sink cells. Attention is drawn to the complexity of the postunloading pathway in many sinks and the difficulty of determining the exact sites of symplast/apoplast solute exchange. Potential future areas for study in the field are highlighted.  相似文献   

6.
When special precautions were taken to permit killing and fixation of sieve elements before they were cut, sieve pores were found to be open. Companion cells were shown to be highly resistant to freezing injury and less plasmolyzable than phloem parenchyma. Plasmodesmata connected parenchyma to parenchyma, parenchyma to companion cells, and companion cells to sieve elements. Their general absence between parenchyma cells and sieve elements points to a specific role of companion cells in sieve tube functioning. EM studies of these cells revealed an ER system which connects the central core of the plasmodesma to the sieve tube. This system may be responsible for active sucrose transport. Callose was always present on sieve plates of mature functioning sieve elements even with the most rapid killing and fixing possible. Extra callose promoted by heating (45 C) an intact stem segment was found to constrict the sieve pores almost completely. Constriction of plasmodesmata in lateral sieve areas also was evident. Fine structure analysis of the blocking mechanism is in accord with evidence obtained by tracer studies.  相似文献   

7.
Large, intermediate, and small bundles and contiguous tissues of the leaf blade of Hordeum tvulgare L. ‘Morex’ were examined with the transmission electron microscope to determine their cellular composition and the distribution and frequency of the plasmodesmata between the various cell combinations. Plasmodesmata are abundant at the mesophyll/parenchymatous bundle sheath, parenchymatous bundle sheath/mestome sheath, and mestome sheath/vascular parenchyma cell interfaces. Within the bundles, plasmodesmata are also abundant between vascular parenchyma cells, which occupy most of the interface between the sieve tube-companion cell complexes and the mestome sheath. Other vascular parenchyma cells commonly separate the thick-walled sieve tubes from the sieve tube-companion cell complexes. Plasmodesmatal frequencies between all remaining cell combinations of the vascular tissues are very low, even between the thin-walled sieve tubes and their associated companion cells. Both the sieve tube-companion cell complexes and the thick-walled sieve tubes, which lack companion cells, are virtually isolated symplastically from the rest of the leaf. Data on plamodesmatal frequency between protophloem sieve tubes and other cell types in intermediate and large bundles indicate that they (and their associated companion cells, when present) are also isolated symplastically from the rest of the leaf. Collectively, these data indicate that both phloem loading and unloading in the barley leaf involve apoplastic mechanisms.  相似文献   

8.
Seminal root tissue of Hordeum vulgare L. var. Barsoy was fixed in glutaraldehyde and osmium tetroxide and studied with the light and electron microscopes. The roots consist of an epidermis, 6–7 layers of cortical cells, a uniseriate endodermis and a central vascular cylinder. Cytologically, the cortical and endodermal cells are similar except for the presence of tubular-like invaginations of the plasmalemma, especially near the plasmodesmata, in the former. The vascular cylinder consists of a uniseriate pericycle surrounding 6–9 phloem strands occurring on alternating radii with an equal number of xylem bundles. The center of the root contains a single, late maturing metaxylem vessel element. Each phloem strand consists of one protophloem sieve element, two companion cells and 1–3 metaphloem sieve elements. The protophloem element and companion cells are contiguous with the pericycle. Metaphloem sieve elements are contiguous with companion cells and are separated from tracheary elements by xylem parenchyma cells. The protoplasts of contiguous cells of the root are joined by various numbers of cytoplasmic connections. With the exception of the pore-plasmodesmata connections between sieve-tube members and parenchymatic elements, the plasmodesmata between various cell types are similar in structure. The distribution of plasmodesmata supports a symplastic pathway for organic solute unloading and transport from the phloem to the cortex. Based on the arrangement of cell types and plasmodesmatal frequencies between various cell types of the root, the major symplastic pathway from sieve elements to cortex appears to be via the companion and xylem parenchyma cells.  相似文献   

9.
To gain greater insight into the mechanism of dormancy release in the potato tuber, an investigation into physiological and biochemical changes in tuber and bud tissues during the transition from bud dormancy (immediately after harvest) to active bud growth was undertaken. Within the tuber, a rapid shift from storage metabolism (starch synthesis) to reserve mobilization within days of detachment from the mother plant suggested transition from sink to source. Over the same period, a shift in the pattern of [U-(14)C]sucrose uptake by tuber discs from diffuse to punctate accumulation was consistent with a transition from phloem unloading to phloem loading within the tuber parenchyma. There were no gross differences in metabolic capacity between resting and actively growing tuber buds as determined by [U-(14)C]glucose labelling. However, marked differences in metabolite pools were observed with large increases in starch and sucrose, and the accumulation of several organic acids in growing buds. Carboxyfluorescein labelling of tubers clearly demonstrated strong symplastic connection in actively growing buds and symplastic isolation in resting buds. It is proposed that potato tubers rapidly undergo metabolic transitions consistent with bud outgrowth; however, growth is initially prevented by substrate limitation mediated via symplastic isolation.  相似文献   

10.
The ultrastructural ontogeny of Commelina benghalensis minor-vein elements was followed. The mature minor vein has a restricted number of elements: a sheath of six to eight mestome cells encloses one xylem vessel, three to five vascular parenchyma cells, a companion cell, a thin-walled protophloem sieve-tube member and a thick-walled metaphloem sieve-tube member. The protophloem sieve-tube member (diameter 4–5 m; wall thickness 0.12 m) and the companion cell originated from a common mother cell. The metaphloem sieve-tube member (diameter 3 m; wall thickness 0.2 m) developed from the same precursor cell as the phloem parenchyma cells. Counting the plasmodesmatal frequencies demonstrated a symplastic continuum from mesophyll to the minor-vein phloem. The metaphloem sievetube member and the phloem parenchyma cells are the termini of this symplast. The protophloem sieve-tube member and companion cell constitute an insulated symplastic domain. The symplastic route, mesophyll to metaphloem sieve tube, appears to offer a path for symplastic loading; the protophloem sieve tube may be capable of accumulation from the apoplast. A similar two-way system of loading may exist in a number of plant families. Plasmodesmograms (a novel way to depict cell elements, plasmodesmatal frequencies and vein architecture) of some other species also displayed the anatomical requirements for two routes from mesophyll to sieve tube and indicate the potential coexistence of symplastic and apoplastic loading.  相似文献   

11.
A morphometric analysis of developing leaves of Nicotiana tabacum L. was conducted to determine whether imported photoassimilates could be unloaded by symplastic transport and whether interruption of symplastic transport could account for termination of import. Five classes of veins were recognized, based on numbers of cells in transverse section. Photoassimilate is unloaded primarily from Class III veins in tissue nearing the end of the sink phase of development. Smaller veins (Class IV and V) do not transport or unload photoassimilate in sink tissue because the sieve elements of these veins are immature until after the tissue stops importing. In Class III veins the sieve element-companion cell (SE-CC) complexes are surrounded by phloem parenchyma which abuts the bundle sheath. Along the most obvious unloading route, from SE-CC complex to phloem parenchyma to bundle sheath to mesophyll cells, the frequency of plasmodesmata at each interface increases. To determine whether this pattern of plasmodesmatal contact is consistent with symplastic unloading we first demonstrated, by derivation from Fick's law that the rate of diffusion from a compartment is proportional to a number N which is equal to the ratio of surface area to volume of the compartment multiplied by the frequency of pores (plasmodesmata) which connect it to the next compartment. N was calculated for each compartment within the vein which has the SE-CC complex as its center, and was shown to be statistically the same in all cases except one. These observations are consistent with a symplastic unloading route. As the leaf tissue matures and stops importing, plasmodesmatal frequency along the unloading route decreases and contact area between cells also decreases as intercellular spaces enlarge. As a result, the number of plasmodesmata between the SE-CC complex and the first layer of mesophyll cells declines in nonimporting tissue to 34% of the number found in importing tissue, indicating that loss of symplastic continuity between the phloem and surrounding cells plays a role in termination of photoassimilate unloading.Abbreviation SE-CC sieve element-companion cell  相似文献   

12.
The sucrose (Suc) H(+)-cotransporter StSUT1 from potato (Solanum tuberosum), which is essential for long-distance transport of Suc and assumed to play a role in phloem loading in mature leaves, was found to be expressed in sink tubers. To answer the question of whether SUT1 serves a function in phloem unloading in tubers, the promoter was fused to gusA and expression was analyzed in transgenic potato. SUT1 expression was unexpectedly detected not in tuber parenchyma but in the phloem of sink tubers. Immunolocalization demonstrated that StSUT1 protein was present only in sieve elements of sink tubers, cells normally involved in export of Suc from the phloem to supply developing tubers, raising the question of the role of SUT1 in tubers. SUT1 expression was inhibited by antisense in transgenic potato plants using a class I patatin promoter B33, which is primarily expressed in the phloem of developing tubers. Reduced SUT1 expression in tubers did not affect aboveground organs but led to reduced fresh weight accumulation during early stages of tuber development, indicating that in this phase SUT1 plays an important role for sugar transport. Changes in Suc- and starch-modifying enzyme activities and metabolite profiles are consistent with the developmental switch in unloading mechanisms. Altogether, the findings may suggest a role of SUT1 in retrieval of Suc from the apoplasm, thereby regulating the osmotic potential in the extracellular space, or a direct role in phloem unloading acting as a phloem exporter transferring Suc from the sieve elements into the apoplasm.  相似文献   

13.
Phloem unloading was studied in potato plants in real time during the early stages of tuberization using carboxyfluorescein (CF) as a phloem-mobile tracer, and the unloading pattern was compared with autoradiography of tubers that had transported (14)C assimilates. In stolons undergoing extension growth, apoplastic phloem unloading predominated. However, during the first visible signs of tuberization, a transition occurred from apoplastic to symplastic transport, and both CF and (14)C assimilates subsequently followed identical patterns of phloem unloading. It is suggested that the switch to symplastic sucrose unloading may be responsible for the upregulation of several genes involved in sucrose metabolism. A detailed analysis of sugar levels and (14)C sugar partitioning in tuberizing stolons revealed a distinct difference between the apical region of the tuber and the subapical region. Analysis of invertase activity in nontuberizing and tuberizing stolons revealed a marked decline in soluble invertase in the subapical region of swelling stolons, consistent with the switch from apoplastic to symplastic unloading. However, cell wall-bound invertase activity remained high in the apical 1 to 2 mm of tuberizing stolons. Histochemical analysis of potato lines transformed with the promoter of an apoplastic invertase gene (invGE) linked to a reporter gene also revealed discrete gene expression in the apical bud region. Evidence is presented that the apical and lateral tuber buds function as isolated domains with respect to sucrose unloading and metabolism.  相似文献   

14.
应用透射电镜技术研究了宁夏枸杞果实韧皮部细胞的超微结构变化。结果表明:(1)随着枸杞果实的发育成熟,果实维管组织中的韧皮部筛分子筛域逐渐变宽,筛孔大而多,通过筛孔的物质运输十分活跃;筛分子和伴胞间有胞间连丝联系,伴胞属传递细胞类型,与其相邻韧皮薄壁细胞和果肉薄壁细胞连接处的细胞界面发生质膜内突,整个筛分子/伴胞复合体与韧皮薄壁细胞之间形成共质体隔离,韧皮部糖分的卸载方式主要以质外体途径进行。(2)韧皮薄壁细胞间的胞间连丝较多,而韧皮薄壁细胞与果肉薄壁细胞的胞间连丝相对较少,但果肉薄壁细胞间几乎无胞间连丝;果肉薄壁细胞之间胞间隙较大,细胞壁和质膜内突间形成较大的质外体空间,为质外体的糖分运输创造了条件。(3)筛管、伴胞、韧皮薄壁细胞和果肉薄壁细胞中丰富的囊泡以及活跃的囊泡运输现象,暗示囊泡也参与了果实糖分的运输过程。研究推测,枸杞果实韧皮部同化物的卸载方式以及卸载后的同化物运输主要以质外体途径为主。  相似文献   

15.
Haritatos E  Medville R  Turgeon R 《Planta》2000,211(1):105-111
Leaf and minor vein structure were studied in Arabidopsis thaliana (L.) Heynh. to gain insight into the mechanism(s) of phloem loading. Vein density (length of veins per unit leaf area) is extremely low. Almost all veins are intimately associated with the mesophyll and are probably involved in loading. In transverse sections of veins there are, on average, two companion cells for each sieve element. Phloem parenchyma cells appear to be specialized for delivery of photoassimilate from the bundle sheath to sieve element-companion cell complexes: they make numerous contacts with the bundle sheath and with companion cells and they have transfer cell wall ingrowths where they are in contact with sieve elements. Plasmodesmatal frequencies are high at interfaces involving phloem parenchyma cells. The plasmodesmata between phloem parenchyma cells and companion cells are structurally distinct in that there are several branches on the phloem parenchyma cell side of the wall and only one branch on the companion cell side. Most of the translocated sugar in A. thaliana is sucrose, but raffinose is also transported. Based on structural evidence, the most likely route of sucrose transport is from bundle sheath to phloem parenchyma cells through plasmodesmata, followed by efflux into the apoplasm across wall ingrowths and carrier-mediated uptake into the sieve element-companion cell complex. Received: 5 October 1999 / Accepted: 20 November 1999  相似文献   

16.
Summary The distribution of adenosine triphosphatase (ATPase) activity in the phloem of petioles and minor veins of Cucurbita maxima has been studied using a lead phosphate precipitation procedure. ATPase activity was localized in sieve elements, companion cells and parenchyma cells. Activity was found at the cell surfaces, associated with the dispersed P-protein of mature sieve elements, in mitochondria, sieve-element reticulum, and at specific regions of the cell walls. It is suggested that the ATPase at the phloem cell surfaces may function in intercellular transport of assimilates or ions, and that the ATPase activity associated with the P-protein may function in the translocation process or in callose deposition.  相似文献   

17.
W. Eschrich  J. Fromm  R. F. Evert 《Protoplasma》1992,167(3-4):145-151
Summary For the histochemical localization of nucleoside triphosphatases at the electron microscopic level, prefixed tissues were incubated with lead nitrate in addition to substrate (GOMORI reaction). While ATP and UTP as substrates gave electron-dense reaction products at the plasmalemma of sieve tubes, companion cells and phloem parenchyma cells, and at plasmodesmata in primary pitfields, AMP gave reaction products only at the tonoplast of parenchyma cells. Since electron-dense deposits also occur in cell walls and vacuoles, energy dispersive X-ray microanalysis was used to distinguish between lead deposits and lead-phosphate deposits. The latter were restricted to the symplast. Among the three plant species used, the leaf bundle phloem ofHordeum distichon showed ATPase activity largely restricted to the phloem cells, except for the thickwalled sieve tubes. Some activity also bordered the chloroplasts of the bundle sheath cells. In the C4 plantGomphrena globosa, ATPase and UTPase activities appeared to be the greater in phloem parenchyma cells than in sieve tubes. In the phloem of youngMonstera deliciosa roots, ATPase occurred not only at the plasmalemma of sieve tubes, but also around sieve-tube plastids. When compared with AMP as substrate, it appears that nucleoside triphosphates are the natural substrates of the enzyme(s) in the plasmalemma of sieve tubes and phloem parenchyma cells.  相似文献   

18.
Sieve element unloading: cellular pathway, mechanism and control   总被引:14,自引:0,他引:14  
The transport and distribution of phloem – mobile solutes is predominantly determined by transport processes located at the sink end of the source – transport – sink system. Transport across the sieve element boundary, sieve element unloading, is the first of a series of sink transport processes. Unloading of solutes from the sieve elements may follow an apo- or symplastic route. It is speculated that the unloading pathway is integrated with sink function and that apoplastic unloading is restricted to situations in which movement through the symplast is not compatible with sink function. These situations include axial transport and storage of osmotically active solutes against concentration and turgor gradients between the sieve elements and sink cells. Coupled with alteration in sink function, the cellular pathway of unloading can switch in stems and possibly other sinks. Experimental systems and approaches used to elucidate the mechanism of sieve element unloading are reviewed. Unloading fluxes to the apoplast can largely be accounted for by membrane diffusion in axial sinks. However, the higher fluxes in storage sinks suggests dependence on some form of facilitated transport. Proton sucrose symport is assessed to be a possible mechanism for facilitated efflux of solutes across the sieve element plasma membrane to the sink apoplast. Unloading through the symplast may occur by diffusion or mass flow. The latter mechanism serves to dissipate phloem water and hence prevent the potential elevation of sieve element turgor that would otherwise slow phloem import into the sink. The possibility of energised plasmodesmatal transport is raised. Sieve element unloading must be integrated with subsequent compartmentation and metabolism of the unloaded solute. Solute levels are an obvious basis for control of sieve element unloading, but are found to offer limited scope for a mass action mechanism. Apoplastic, cellular pathway, sieve element, solute transport, symplastic. Translated into a turgor signal, solute levels could regulate the rate of unloading, metabolism and compartmentation forming part of a turgor homeostat irrespective of the pathway of unloading.  相似文献   

19.
Macromolecular trafficking within the sieve element-companion cell complex, phloem unloading, and post-phloem transport were studied using the jellyfish green fluorescent protein (GFP). The GFP gene was expressed in Arabidopsis and tobacco under the control of the AtSUC2 promoter. In wild-type Arabidopsis plants, this promoter regulates expression of the companion cell-specific AtSUC2 sucrose-H+ symporter gene. Analyses of the AtSUC2 promoter-GFP plants demonstrated that the 27-kD GFP protein can traffic through plasmodesmata from companion cells into sieve elements and migrate within the phloem. With the stream of assimilates, the GFP is partitioned between different sinks, such as petals, root tips, anthers, funiculi, or young rosette leaves. Eventually, the GFP can be unloaded symplastically from the phloem into sink tissues, such as the seed coat, the anther connective tissue, cells of the root tip, and sink leaf mesophyll cells. In all of these tissues, the GFP can traffic cell to cell by symplastic post-phloem transport. The presented data show that plasmodesmata of the sieve element-companion cell complex, as well as plasmodesmata into and within the analyzed sinks, allow trafficking of the 27-kD nonphloem GFP protein. The data also show that the size exclusion limit of plasmodesmata can change during organ development. The results are also discussed in terms of the phloem mobility of assimilates and of small, low molecular weight companion cell proteins.  相似文献   

20.
In the developing wheat grain, photosynthate is transferred longitudinally along the crease phloem and then laterally into the endosperm cavity through the crease vascular parenchyma, pigment strand and nucellar projection. In order to clarify this cellular pathway of photosynthate unloading, and hence the controlling mechanism of grain filling, the potential for symplastic and apoplastic transfer was examined through structural and histochemical studies on these tissue types. It was found that cells in the crease region from the phloem to the nucellar projection are interconnected by numerous plasmodesmata and have dense cytoplasm with abundant mitochondria. Histochemical studies confirmed that, at the stage of grain development studied, an apoplastic barrier exists in the cell walls of the pigment strand. This barrier is composed of lignin, phenolics and suberin. The potential capacity for symplastic transfer, determined by measuring plasmodesmatal frequencies and computing potential sucrose fluxes through these plasmodesmata, indicated that there is sufficient plasmodesmatal cross-sectional area to support symplastic unloading of photosynthate at the rate required for normal grain growth. The potential capacity for membrane transport of sucrose to the apoplast was assessed by measuring plasma membrane surface areas of the various cell types and computing potential plasma membrane fluxes of sucrose. These fluxes indicated that the combined plasma membrane surface areas of the sieve element–companion cell (se–cc) complexes, vascular parenchyma and pigment strand are not sufficient to allow sucrose transfer to the apoplast at the observed rates. In contrast, the wall ingrowths of the transfer cells in the nucellar projection amplify the membrane surface area up to 22-fold, supporting the observed rates of sucrose transfer into the endosperm cavity. We conclude that photosynthate moves via the symplast from the se–cc complexes to the nucellar projection transfer cells, from where it is transferred across the plasma membrane into the endosperm cavity. The apoplastic barrier in the pigment strand is considered to restrict solute movement to the symplast and block apoplastic solute exchange between maternal and embryonic tissues. The implications of this cellular pathway in relation to the control of photosynthate transfer in the developing grain are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号