首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal stem cells (MSCs) are promising tools for the treatment of diseases such as infarcted myocardia and strokes because of their ability to promote endogenous angiogenesis and neurogenesis via a variety of secreted factors. MSCs found in the Wharton’s jelly of the human umbilical cord are easily obtained and are capable of transplantation without rejection. We isolated MSCs from Wharton’s jelly and bone marrow (WJ-MSCs and BM-MSCs, respectively) and compared their secretomes. It was found that WJ-MSCs expressed more genes, especially secreted factors, involved in angiogenesis and neurogenesis. Functional validation showed that WJ-MSCs induced better neural differentiation and neural cell migration via a paracrine mechanism. Moreover, WJ-MSCs afforded better neuroprotection efficacy because they preferentially enhanced neuronal growth and reduced cell apoptotic death of primary cortical cells in an oxygen-glucose deprivation (OGD) culture model that mimics the acute ischemic stroke situation in humans. In terms of angiogenesis, WJ-MSCs induced better microvasculature formation and cell migration on co-cultured endothelial cells. Our results suggest that WJ-MSC, because of a unique secretome, is a better MSC source to promote in vivo neurorestoration and endothelium repair. This study provides a basis for the development of cell-based therapy and carrying out of follow-up mechanistic studies related to MSC biology.  相似文献   

2.
Multipotent mesenchymal stromal cells (MSCs) from Wharton''s jelly (WJ) of umbilical cord bear higher proliferation rate and self-renewal capacity than adult tissue-derived MSCs and are a primitive stromal cell population. Stem cell niche or physiological microenvironment plays a crucial role in maintenance of stem cell properties and oxygen concentration is an important component of the stem cell niche. Low oxygen tension or hypoxia is prevalent in the microenvironment of embryonic stem cells and many adult stem cells at early stages of development. Again, in vivo, MSCs are known to home specifically to hypoxic events following tissue injuries. Here we examined the effect of hypoxia on proliferation and in vitro differentiation potential of WJ-MSCs. Under hypoxia, WJ-MSCs exhibited improved proliferative potential while maintaining multi-lineage differentiation potential and surface marker expression. Hypoxic WJ-MSCs expressed higher mRNA levels of hypoxia inducible factors, notch receptors and notch downstream gene HES1. Gene expression profile of WJ-MSCs exposed to hypoxia and normoxia was compared and we identified a differential gene expression pattern where several stem cells markers and early mesodermal/endothelial genes such as DESMIN, CD34, ACTC were upregulated under hypoxia, suggesting that in vitro culturing of WJ-MSCs under hypoxic conditions leads to adoption of a mesodermal/endothelial fate. Thus, we demonstrate for the first time the effect of hypoxia on gene expression and growth kinetics of WJ-MSCs. Finally, although WJ-MSCs do not induce teratomas, under stressful and long-term culture conditions, MSCs can occasionally undergo transformation. Though there were no chromosomal abnormalities, certain transformation markers were upregulated in a few of the samples of WJ-MSCs under hypoxia.  相似文献   

3.
脐静脉和骨髓来源的间充质干细胞的比较研究   总被引:5,自引:0,他引:5  
间充质干细胞(MSCs)的来源有限,成人骨髓是MSCs的主要来源,这极大地限制了其在实验和临床中的应用。为拓宽MSCs来源,从细胞形态、生长特性、免疫表型和多向分化能力等四个方面对人脐静脉来源和成人骨髓来源的间充质干细胞进行了比较研究。结果表明,人脐静脉来源和成人骨髓来源的 MSCs具有相似的生物学特征,成纤维细胞样形态生长,并具有强大的体外扩增和多向分化能力。人脐静脉来源的MSCs可替代成人骨髓MSCs,作为满足实验和临床需要的重要来源。  相似文献   

4.
目的:诱导脐带华通胶间充质干细胞向Flk1阳性细胞分化。方法:胶原酶法分离培养脐带华通胶间充质干细胞,第3代细胞以含2-巯基乙醇的分化培养基培养,应用RT-PCR和流式细胞仪从mRNA和蛋白水平检测Flk1阳性细胞分化水平。结果:脐带华通胶间充质干细胞Flk1mRNA及蛋白表达极低,分化培养基培养后表达上调,48h达高峰(P〈0.05),之后表达降低。结论:2-巯基乙醇可诱导脐带华通胶间充质干细胞向Flk1阳性细胞分化,为从中分选Flk1阳性细胞进行进一步研究提供了依据  相似文献   

5.
Mesenchymal stem cells (MSCs) are considered as emergent "universal" cells and various tissue repair programs using MSCs are in development. In vitro expansion of MSCs is conventionally achieved in medium containing fetal calf serum (FCS) and is increased by addition of growth factors. However, for widespread clinical applications, contact of MSCs with FCS must be minimized since it is a putative source of prion or virus transmission. Therefore, because platelets are a natural source of growth factors, we sought to investigate in vitro MSC expansion in response to platelet lysates (PL) obtained from platelet-rich plasma. Human MSCs were expanded in FCS (+/-bFGF)- or PL-supplemented medium through a process of subculture. We demonstrated that PL-containing medium is enriched by growth factors (platelet-derived growth factors (PDGFs), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), insulin-like growth factor-1 (IGF-1) ...) and showed that PL is able to promote MSC expansion, to decrease the time required to reach confluence, and to increase CFU-F size, as compared to the FCS medium. Furthermore, we demonstrated that MSCs cultured in the presence of PL maintain their osteogenic, chondrogenic, and adipogenic differentiation properties and retain their immunosuppressive activity. Therefore, we propose that PL may be a powerful and safe substitute for FCS in development of tissue- and cellular-engineered products in clinical settings using MSCs.  相似文献   

6.
目的:诱导脐带华通胶间充质干细胞向Flk1阳性细胞分化。方法:胶原酶法分离培养脐带华通胶间充质干细胞,第3代细胞以含2-巯基乙醇的分化培养基培养,应用RT-PCR和流式细胞仪从mRNA和蛋白水平检测Flk1阳性细胞分化水平。结果:脐带华通胶间充质干细胞Flk1mRNA及蛋白表达极低,分化培养基培养后表达上调,48h达高峰(P<0.05),之后表达降低。结论:2-巯基乙醇可诱导脐带华通胶间充质干细胞向Flk1阳性细胞分化,为从中分选Flk1阳性细胞进行进一步研究提供了依据。  相似文献   

7.
Human umbilical cord blood harbors mesenchymal stem cells (MSCs), which can give rise to several mesenchymal lineages. In order to explore their usages in medical applications, the ex vivo expansion of MSCs to sufficient cell numbers is necessary. Additionally, the development of a serum-free medium becomes indispensable for elimination of possible contaminants from the serum-containing medium during expansion. Using fractional factorial designs combined with the steepest ascent approach, we have developed a serum-free medium that could ex vivo expand MSCs over nine passages, resulting in at least 1000-fold increases in cell number within 1-month. Based on Iscove's modified Dulbecco's medium, this medium formulation includes bFGF (17.91 ng/mL), human albumin (2.80 mg/mL), hydrocortisone (27.65 μM) and SITE (1.18%, v/v). The expanded MSCs in the designed medium preserved differentiation potentials into three mesenchymal lineages in vitro, including chondrocytes, adipocytes and osteoblasts. In conclusion, we optimized a serum-free and defined culture medium for cord blood-derived MSCs, which could be applied to cell-based therapy and biomedical research.  相似文献   

8.
Human mesenchymal stem cells (MSCs) are a promising candidate for cell-based transplantation and regenerative medicine therapies. Thus in the present study Wharton’s Jelly Mesenchymal Stem Cells (WJ-MSCs) have been derived from extra embryonic umbilical cord matrix following removal of both arteries and vein. Also, to overcome the clinical limitations posed by fetal bovine serum (FBS) supplementation because of xenogeneic origin of FBS, usual FBS cell culture supplement has been replaced with human platelet lysate (HPL). Apart from general characteristic features of bone marrow-derived MSCs, wharton jelly-derived MSCs have the ability to maintain phenotypic attributes, cell growth kinetics, cell cycle pattern, in vitro multilineage differentiation plasticity, apoptotic pattern, normal karyotype-like intrinsic mesenchymal stem cell properties in long-term in vitro cultures. Moreover, the WJ-MSCs exhibited the in vitro multilineage differentiation capacity by giving rise to differentiated cells of not only mesodermal lineage but also to the cells of ectodermal and endodermal lineage. Also, WJ-MSC did not present any aberrant cell state upon in vivo transplantation in SCID mice and in vitro soft agar assays. The immunomodulatory potential assessed by gene expression levels of immunomodulatory factors upon exposure to inflammatory cytokines in the fetal WJ-MSCs was relatively higher compared to adult bone marrow-derived MSCs. WJ-MSCs seeded on decellularized amniotic membrane scaffold transplantation on the skin injury of SCID mice model demonstrates that combination of WJ-MSCs and decellularized amniotic membrane scaffold exhibited significantly better wound-healing capabilities, having reduced scar formation with hair growth and improved biomechanical properties of regenerated skin compared to WJ-MSCs alone. Further, our experimental data indicate that indocyanin green (ICG) at optimal concentration can be resourcefully used for labeling of stem cells and in vivo tracking by near infrared fluorescence non-invasive live cell imaging of labelled transplanted cells, thus proving its utility for therapeutic applications.  相似文献   

9.
Mesenchymal stem cells (MSCs) are accepted as a promising tool for therapeutic purposes. However, low proliferation and early senescence are still main obstacles of MSCs expansion for using as cell-based therapy. Thus, clinical scale of cell expansion is needed to obtain a large number of cells serving for further applications. In this study, we investigated the value of embryonic stem cells conditioned medium (ESCM) for in vitro expansion of Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) as compared to typical culture medium for MSCs, Dulbecco’s modified Eagle’s medium with 1.0 g/l glucose (DMEM-LG) supplemented with 10 % FBS, under hypoxic condition. The expanded cells from ESCM (ESCM-MSCs) and DMEM-LG (DMEM-MSCs) were characterized for both phenotype and biological activities including proliferation rate, population doubling time, cell cycle distribution and MSCs characteristics. ESCM and DMEM-LG could enhance WJ-MSCs proliferation as 204.66 ± 10.39 and 113.77 ± 7.89 fold increase at day 12, respectively. ESCM-MSCs could express pluripotency genes including Oct-4, Oct-3/4, Nanog, Klf-4, C-Myc and Sox-2 both in early and late passages whereas the downregulations of Oct-4 and Nanog were detected in late passage cells of DMEM-MSCs. The 2 cell populations also showed common MSCs characteristics including normal cell cycle, fibroblastic morphology, cell surface markers expressions (CD29+, CD44+, CD90+, CD34, CD45) and differentiation capacities into adipogenic, chondrogenic and osteogenic lineages. Moreover, our results revealed that ESCM exhibited as a rich source of several factors which are required for supportive WJ-MSCs proliferation. In conclusion, ESCM under hypoxic condition could accelerate WJ-MSCs expansion while maintaining their pluripotency properties. Our knowledge provide short term and cost-saving in WJ-MSCs expansion which has benefit to overcome insufficient cell numbers for clinical applications by reusing the discarded cell culture supernates from human ES culture system. Moreover, these findings can also apply for stem cell banking, regenerative medicine and pharmacological applications.  相似文献   

10.
Administration of mesenchymal stem cells (MSCs) has the potential to ameliorate degenerative disorders and to repair damaged tissues. The homing of transplanted MSCs to injured sites is a critical property of engraftment. Our aim was to identify microRNAs involved in controlling MSC proliferation and migration. MSCs can be isolated from bone marrow and umbilical cord Wharton’s jelly (BM-MSCs and WJ-MSCs, respectively), and WJ-MSCs show poorer motility yet have a better amplification rate compared with BM-MSCs. Small RNA sequencing revealed that miR-146a-5p is significantly overexpressed and has high abundance in WJ-MSCs. Knockdown of miR-146a-5p in WJ-MSCs inhibited their proliferation yet enhanced their migration, whereas overexpression of miR-146a-5p in BM-MSCs did not influence their osteogenic and adipogenic potentials. Chemokine (C-X-C motif) ligand 12 (CXCL12), together with SIKE1, which is an I-kappa-B kinase epsilon (IKKε) suppressor, is a direct target of miR-146a-5p in MSCs. Knockdown of miR-146a-5p resulted in the down-regulation of nuclear factor kappa-B (NF-κB) activity, which is highly activated in WJ-MSCs and is known to activate miR-146a-5p promoter. miR-146a-5p is also downstream of CXCL12, and a negative feedback loop is therefore formed in MSCs. These findings suggest that miR-146a-5p is critical to the uncoupling of motility and proliferation of MSCs. Our miRNome data also provide a roadmap for further understanding MSC biology.  相似文献   

11.
《Cytotherapy》2014,16(5):640-652
Background aimsMesenchymal stromal cells (MSCs) have remarkable clinical potential for cell-based therapy. Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs) from umbilical cord share unique properties with both embryonic and adult stem cells. MSCs are found at low frequency in vivo, and their successful therapeutic application depends on rapid and efficient large-scale expansion in vitro. Non-muscle myosin II (NMII) has pivotal roles in different cellular activities, such as cell division, migration and differentiation. We performed this study to understand the role of NMII in proliferation and cell cycle progression in WJ-MSCs.MethodsWJ-MSCs were cultured in the presence of blebbistatin, and cell cycle analysis was performed using flow cytometry, proliferation kinetics, senescence assay and gene expression profile using polymerase chain reaction array.ResultsWhen cultured in the presence of blebbistatin, an inhibitor of NMII adenosine triphosphatase activity, WJ-MSCs exhibited dose-dependent reduction in proliferative potential along with increase in cell size and induction of early senescence. Inhibition of NMII activity also affected cell cycle progression in WJ-MSCs and led to an increase in the percentage of cells in G0/G1 phase with a corresponding reduction in the percentage of cells in G2/M phase. Blebbistatin-induced G0/G1 arrest of WJ-MSCs was further associated with up-regulation of cell cycle inhibitory genes CDKN1A, CDKN2A and CDKN2B and down-regulation of numerous genes related to progression through S and M phases of the cell cycle.ConclusionsOur study demonstrates that inhibition of NMII activity in WJ-MSCs leads to G0/G1 arrest and alteration in the expression levels of certain key cell cycle-related genes.  相似文献   

12.
Mesenchymal stem cells (MSCs), which evoke only minimal immune reactivity, may have anti-inflammatory and immunomodulatory effects. In this study, we conducted a comparative analysis of the immunomodulatory properties of MSCs derived from adult human tissues including bone marrow (BM), adipose tissues (AT), umbilical cord blood (CB), and cord Wharton’s jelly (WJ). Using a multiple cytokine detection assay, we showed that there were no significant differences in levels of secreted factors from non-stimulated MSCs. We compared the immunosuppressive effect of BM-MSCs, AT-MSCs, CB-MSCs, and WJ-MSCs on phytohemagglutinin-induced T-cell proliferation. AT-MSCs, CB-MSCs, and WJ-MSCs effectively suppressed mitogen-induced T-cell proliferation as effectively as did BM-MSCs. Levels of interferon (IFN)-γ and tumor necrosis factor (TNF)-α secreted from activated T-cells increased over time, but these levels were significantly reduced when cocultured with each type of MSCs. In addition, the expression of hepatocyte growth factor, IL-10, transforming growth factor-β1, cyclooxygenase (COX)-1, and COX-2 were unchanged in MSCs treated with IFN-γ and/or TNF-α, while indoleamine 2,3-dioxygenase (IDO) expression increased. IFN-γ and/or TNF-α produced by activated T-cells were correlated with induction of IDO expression by MSCs, which, in turn, suppressed T-cell proliferation. These findings suggest that MSCs derived from AT, CB, or WJ could be substituted for BM-MSCs for treatment of allogeneic conflicts.  相似文献   

13.
Adult stem cells are of particular importance for applications in regenerative medicine. Umbilical cord was established recently as an alternative source of mesenchymal stem cell (MSC) instead of bone marrow (BM) and is superior to BM and other adult tissues according to several MSC properties. Additionally, for the purpose of cell therapy in clinical scale, steps of cell isolation, expansion and culture required to be precisely adjusted in order to obtain the most cost-effective, least time-consuming, and least labor-intensive method. Therefore, in this study, we are going to compare two simple and cost-effective explant culture methods for isolation of MSCs from human umbilical cord. One of the methods isolates cells from entire cord and the other from Wharton’s jelly matrix. Isolated cells then cultured in simple medium without addition of any growth factor. MSCs obtained via both methods display proper and similar characteristics according to morphology, population doubling time, post-thaw survival, surface antigenicity and differentiation into adipocytes, osteocytes, and chondrocytes. MSCs can easily be obtained from the entire cord and Wharton’s jelly, and it seems that both tissues are appropriate sources of stem cells for potential use in regenerative medicine. However, from technical largescale preview, MSC isolation from entire cord piece is less labor-intensive and time-consuming than from Wharton’s jelly part of the cord.  相似文献   

14.
Mesenchymal stem cells (MSCs) derived from human bone marrow have capability to differentiate into cells of mesenchymal lineage. The cells have already been applied in various clinical situations because of their expansion and differentiation capabilities. The cells lose their capabilities after several passages, however. With the aim of conferring higher capability on human bone marrow MSCs, we introduced the Sox2 or Nanog gene into the cells. Sox2 and Nanog are not only essential for pluripotency and self-renewal of embryonic stem cells, but also expressed in somatic stem cells that have superior expansion and differentiation potentials. We found that Sox2-expressing MSCs showed consistent proliferation and osteogenic capability in culture media containing basic fibroblast growth factor (bFGF) compared to control cells. Significantly, in the presence of bFGF in culture media, most of the Sox2-expressing cells were small, whereas the control cells were elongated in shape. We also found that Nanog-expressing cells even in the absence of bFGF had much higher capabilities for expansion and osteogenesis than control cells. These results demonstrate not only an effective way to maintain proliferation and differentiation potentials of MSCs but also an important implication about the function of bFGF for self-renewal of stem cells including MSCs.  相似文献   

15.
It is known that umbilical cord blood (UCB) is a rich source of stem cells with practical and ethical advantages. Three important types of stem cells which can be harvested from umbilical cord blood and used in disease treatment are hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). Since these stem cells have shown enormous potential in regenerative medicine, numerous umbilical cord blood banks have been established. In this study, we examined the ability of banked UCB collected to produce three types of stem cells from the same samples with characteristics of HSCs, MSCs and EPCs. We were able to obtain homogeneous plastic rapidly-adherent cells (with characteristics of MSCs), slowly-adherent (with characteristics of EPCs) and non-adherent cells (with characteristics of HSCs) from the mononuclear cell fractions of cryopreserved UCB. Using a protocol of 48?h supernatant transferring, we successfully isolated MSCs which expressed CD13, CD44 and CD90 while CD34, CD45 and CD133 negative, had typical fibroblast-like shape, and was able to differentiate into adipocytes; EPCs which were CD34, and CD90 positive, CD13, CD44, CD45 and CD133 negative, adherent with cobble-like shape; HSCs which formed colonies when cultured in MethoCult medium.  相似文献   

16.
非亲缘脐带血移植是治疗造血系统疾病的重要移植方式之一,但脐带血移植面临的最大挑战是造血干细胞(HSCs)数量不足,特别是成人患者受到脐带血干细胞数量的限制,导致造血及免疫恢复延迟,非复发死亡率升高。体外扩增脐带血HSCs(UCB-HSCs)是解决该问题的途径之一。研究发现可以通过模拟骨髓造血龛(niche)这一生态位使HSCs在体外进行自我更新增殖,而间充质干细胞(MSCs)正是造血龛的重要的组成细胞之一。本文将探讨MSCs在UCB-HSCs体外扩增中的应用。重点以MSCs促造血的特点、机制,促进脐带血干细胞增殖的各种策略以及其临床应用和前景做一综述。  相似文献   

17.
人脐血间充质干细胞分离培养方法的优化   总被引:3,自引:1,他引:2  
目的探讨人脐血间充质干细胞(MSCs)体外培养纯化的最佳方法,为脐血MSCs在临床的广泛应用奠定基础。方法无菌条件下采集足月分娩和早产儿脐血,密度梯度离心法分离脐血单个核细胞,比较胎龄、不同培养基、接种密度、首次换液时间对脐血MSCs原代培养过程的影响,通过免疫荧光方法检测表面标记物的表达情况,观察脐血MSCs的生物学特性。结果足月分娩脐血,采用MesencultTM培养基,以5×106/cm2的密度接种,首次换液时间为7d时,脐血MSCs原代培养成功率较高。相同培养条件下,早产儿脐血培养成功率高于足月分娩脐血。人脐血MSCs强表达CD29、CD44和CD90,不表达造血干细胞表面标志CD34。结论优化筛选到一种合适的人脐血MSCs培养纯化条件。  相似文献   

18.
目的:探讨枸杞多糖诱导人脐血间充质干细胞(MSCs)向神经元样细胞分化的可行性及其机制。方法:无菌条件下收集正常足月儿的脐带血,经肝素抗凝,用相对密度1.077的淋巴细胞分离液分离脐血的单个核细胞,用低糖DMEM培养基进行培养和纯化扩增。选取第3代细胞进行诱导实验,当传代细胞长满瓶底的80%以上时,先用含15?S和10ng/ml bFGF的DMEM完全培养基预诱导24小时,然后用不含血清含1g/L枸杞多糖的DMEM培养基诱导,光镜下观察细胞形态,用免疫组化技术检测细胞Nestin和NF的表达。结果:预诱导后MSCs没有变化,而经枸杞多糖诱导4h后细胞即出现形态学上的改变,细胞变成不规则形,立体感增强,从胞体伸出突起。免疫组化检测显示,细胞Nestin、NF呈阳性。结论:人脐血间充质干细胞经枸杞多糖诱导可转化为神经元样细胞,其诱导机制可能与枸杞多糖的抗氧化作用有关。  相似文献   

19.

Background

In this study, we evaluated the usefulness of two commercially available hyaluronic acid-based hydrogels, HyStem and HyStem-C, for the cultivation of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) and their differentiation towards chondrocytes.

Methods

The WJ-MSCs were isolated from umbilical cord Wharton’s jelly using the explant method and their immunophenotype was evaluated via flow cytometry analysis. According to the criteria established by the International Society for Cellular Therapy, they were true MSCs. We assessed the ability of the WJ-MSCs and chondrocytes to grow in three-dimensional hydrogels and their metabolic activity. Chondrogenesis of WJ-MSCs in the hydrogels was determined using alcian blue and safranin O staining and real-time PCR evaluation of gene expression in the extracellular matrixes: collagen type I, II, III and aggrecan.

Results

Chondrocytes and WJ-MSCs cultured in the HyStem and HyStem-C hydrogels adopted spherical shapes, which are characteristic for encapsulated cells. The average viability of the WJ-MSCs and chondrocytes in the HyStem hydrogels was approximately 67 % when compared with the viability in 2D culture. Alcian blue and safranin O staining revealed intensive production of proteoglycans by the cells in the HyStem hydrogels. Increased expression of collagen type II and aggrecan in the WJ-MSCs cultured in the HyStem hydrogel in the presence of chondrogenic medium showed that under these conditions, the cells have a high capacity to differentiate towards chondrocytes. The relatively high viability of WJ-MSCs and chondrocytes in both HyStem hydrogels suggests the possibility of their use for chondrogenesis.

Conlusions

The results indicate that WJ-MSCs have some degree of chondrogenic potential in HyStem and HyStem-C hydrogels, showing promise for the engineering of damaged articular cartilage.
  相似文献   

20.
Cell-based regenerative medicine is of growing interest in biomedical research. The role of stem cells in this context is under intense scrutiny and may help to define principles of organ regeneration and develop innovative therapeutics for organ failure. Utilizing stem and progenitor cells for organ replacement has been conducted for many years when performing hematopoietic stem cell transplantation. Since the first successful transplantation of umbilical cord blood to treat hematological malignancies, non-hematopoietic stem and progenitor cell populations have recently been identified within umbilical cord blood and other perinatal and fetal tissues. A cell population entitled mesenchymal stromal cells (MSCs) emerged as one of the most intensely studied as it subsumes a variety of capacities: MSCs can differentiate into various subtypes of the mesodermal lineage, they secrete a large array of trophic factors suitable of recruiting endogenous repair processes and they are immunomodulatory.Focusing on perinatal tissues to isolate MSCs, we will discuss some of the challenges associated with these cell types concentrating on concepts of isolation and expansion, the comparison with cells derived from other tissue sources, regarding phenotype and differentiation capacity and finally their therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号