首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rotating drum mesh filter bioreactor (RDMFBR) with a 100 μm mesh coupled to an anaerobic filter was used for the anaerobic digestion of biodegradable municipal solid waste (BMW). Duplicate systems were operated for 72 days at an organic loading rate (OLR) of 7.5 gVS l−1 d−1. Early in the experiment most of the methane was produced in the 2nd stage. This situation gradually reversed as methanogenesis became established in the 1st stage digester, which eventually produced 86–87% of the total system methane. The total methane production was 0.2 l g−1 VSadded with 60–62% volatile solids destruction. No fouling was experienced during the experiment at a transmembrane flux rate of 3.5 l m−2 h−1. The system proved to be robust and stably adjusted to a shock loading increase to 15 gVS l−1 d−1, although this reduced the overall methane production to 0.15 l g−1 VSadded.  相似文献   

2.
Studies on the performance of a laboratory scale upflow anaerobic solids removal (UASR) digester were carried out using sand-laden cow manure slurries having total solids (TS) concentration as 50 and 100 g/l. Hydraulic retention time (HRT) was maintained as 32.4 days, which resulted in the volatile solids (VS) loading rates of 1 and 1.64 g/l d. The UASR system was designed to remove sand from the manure slurry, while anaerobically digesting biodegradable solids inside a single reactor. To enhance the contact of microorganisms and substrate, the liquor from the top of the digester was recirculated through the bed of settled solids at its bottom. Volatile solids reduction through this process was observed to be 62% and 68% in the case of feed slurries having TS concentration as 50 and 100 g/l (referred in the text as 5% and 10% feed slurries), respectively. The methane production rates were observed to be 0.22 and 0.38 l/l d, while methane yield was 0.21 and 0.27 l CH4/g VS loaded, for 5% and 10% feed slurries, respectively. This indicates that the increase in the VS loading had a positive impact on methane production rate and methane yield. It would be of interest to study the performance of a UASR digester at higher solids loadings and with longer solids retention times. Nonetheless, the presented study showed that sand-laden manure slurries can be successfully digested in a UASR digester producing methane energy equivalent to 4 kW h per m3 of digester volume per day.  相似文献   

3.
An anaerobic digester receiving food waste collected mainly from domestic kitchens was monitored over a period of 426 days. During this time information was gathered on the waste input material, the biogas production, and the digestate characteristics. A mass balance accounted for over 90% of the material entering the plant leaving as gaseous or digestate products. A comprehensive energy balance for the same period showed that for each tonne of input material the potential recoverable energy was 405 kWh. Biogas production in the digester was stable at 642 m3 tonne−1 VS added with a methane content of around 62%. The nitrogen in the food waste input was on average 8.9 kg tonne−1. This led to a high ammonia concentration in the digester which may have been responsible for the accumulation of volatile fatty acids that was also observed.  相似文献   

4.
The influence of the hydraulic retention time (HRT) and organic loading rate (OLR) on the performance of the hydrolytic–acidogenic step of a two-stage anaerobic digestion process of sunflower oil cake (SuOC) were assessed. The experiments were performed in laboratory-scale completely stirred tank reactors at mesophilic (35 °C) temperature. Six OLR (ranging from 4 to 9 g VS L−1 d−1) for four HRTs (8, 10, 12 and 15 days) were tested to check the effect of each operational variable. Based on the results obtained, it can be concluded that the hydrolysis yields obtained for all HRTs and OLRs assayed were in the range of 20.5–30.1%. In addition, the acidification degree of the substrate was mainly influenced by the OLR but not by the HRTs, the highest value (83.8%) being achieved for an HRT of 10 days and an OLR of 6 g VS L−1 d−1.  相似文献   

5.
Many beer breweries use high-rate anaerobic digestion (AD) systems to treat their soluble high-strength wastewater. Biogas from these AD systems is used to offset nonrenewable energy utilization in the brewery. With increasing nonrenewable energy costs, interest has mounted to also digest secondary residuals from the high-rate digester effluent, which consists of yeast cells, bacteria, methanogens, and small (hemi)cellulosic particles. Mesophilic (37 °C) and thermophilic (55 °C) lab-scale, low-rate continuously-stirred anaerobic digestion (CSAD) bioreactors were operated for 258 days by feeding secondary residuals at a volatile solids (VS) concentration of ∼40 g l−1. At a hydraulic retention time (HRT) of 15 days and a VS loading rate of 2.7 g VS l−1 day−1, the mesophilic bioreactor showed an average specific volumetric biogas production rate of 0.88 l CH4 l−1 day−1 and an effluent VS concentration of 22.2 g VS l−1 (43.0% VS removal efficiency) while the thermophilic bioreactor displayed similar performances. The overall methane yield for both systems was 0.21 l CH4 g−1 VS fed and 0.47–0.48 l CH4 g−1 VS removed. A primary limitation of thermophilic digestion of this protein-rich waste is the inhibition of methanogens due to higher nondissociated (free) ammonia (NH3) concentrations under similar total ammonium (NH4 +) concentrations at equilibrium. Since thermophilic AD did not result in advantageous methane production rates or yields, mesophilic AD was, therefore, superior in treating secondary residuals from high-rate AD effluent. An additional digester to convert secondary residuals to methane may increase the total biogas generation at the brewery by 8% compared to just conventional high-rate digestion of brewery wastewater alone. JIMB-2008: BioEnergy—Special issue.  相似文献   

6.
This study examines the co-digestion of intermediate landfill leachate and sewage sludge from a municipal wastewater treatment plant. Application of leachate as a co-fermentation component increased the concentrations of soluble organic compounds (expressed as total organic carbon), ammonium nitrogen, and alkalinity in the digester influents.The biogas yield obtained from the co-fermentation of a 20:1 sewage sludge: intermediate leachate mixture was 1.30 m3 per kg of removed volatile solids (VS), while that from a 10:1 mixture was 1.24 m3 per kg of removed VS. These values exceeded the biogas yield for the sludge alone by 13% and 8%, respectively. The leachate addition influenced the proportion of methane to a minor extent. Increased methane yields of 16.9% and 6.2% per kg of removed VS were found for the two sewage sluge:intermediate leachate mixtures, respectively.  相似文献   

7.
Li Y  Yan XL  Fan JP  Zhu JH  Zhou WB 《Bioresource technology》2011,102(11):6458-6463
The objective of this work was to examine the feasibility of biogas production from the anaerobic co-digestion of herbal-extraction residues with swine manure. Batch and semi-continuous experiments were carried out under mesophilic anaerobic conditions. Batch experiments revealed that the highest specific biogas yield was 294 mL CH4 g−1 volatile solids added, obtained at 50% of herbal-extraction residues and 3.50 g volatile solids g−1 mixed liquor suspended solids. Specific methane yield from swine manure alone was 207 mL CH4 g−1 volatile solid added d−1 at 3.50 g volatile solids g−1 mixed liquor suspended solids. Furthermore, specific methane yields were 162, 180 and 220 mL CH4 g−1 volatile solids added d−1 for the reactors co-digesting mixtures with 10%, 25% and 50% herbal-extraction residues, respectively. These results suggested that biogas production could be enhanced efficiently by the anaerobic co-digestion of herbal-extraction residues with swine manure.  相似文献   

8.
Lin Y  Wang D  Li Q  Xiao M 《Bioresource technology》2011,102(4):3673-3678
This paper presented results from anaerobic co-digestion of pulp and paper sludge (PPS) and monosodium glutamate waste liquor (MGWL). A bench-scale anaerobic digester, 10 L in volume was developed, to operate under mesophilic (37 ± 2 °C) batch condition. Under versatile and reliable anaerobic conduct, high efficiency for bioconversion of PPS and MGWL were obtained in the system. The accumulative methane yield attained to 200 mL g−1 VSadded and the peak value of methane daily production was 0.5 m3/(m3 d). No inhibitions of volatile fatty acids (VFAs) and ammonia on anaerobic co-digestion were found. pH 6.0-8.0 and alkalinity 1000-4000 mg CaCO3/L were got without adjustment. This work showed that there was a good potential to the use of PPS and MGWL to anaerobic co-digestion for methane production.  相似文献   

9.
The impact of increasing organic load on anaerobic digestion foaming was studied at both full and bench scale. Organic loadings of 1.25, 2.5 and 5 kg VS m−3 were applied to bench-scale digesters. Foaming was monitored at a full scale digester operated in a comparable organic loading range over 15 months. The bench scale batch studies identified 2.5 kg VS m−3 as a critical threshold for foam initiation while 5 kg VS m−3 resulted in persistent foaming. Investigation of a full scale foaming event corroborated the laboratory observation that foaming may be initiated at a loading rate of ?2.5 kg VS m−3. Experimental findings on foam composition and differences in the quality characteristics between foaming and non-foaming sludges indicated that foam initiation derived from the combined effect of the liquid and gas phases inside a digester and that the solids/biomass ultimately stabilized foaming.  相似文献   

10.
The aim of the study was to investigate the long‐term fermentation of an extremely sour substrate without any addition of manure. In the future, the limitation of manure and therefore the anaerobic digestion of silage with a very low buffering capacity will be an increasing general bottleneck for energy production from renewable biomass. During the mesophilic anaerobic digestion of sugar beet silage (without top and leaves) as the sole substrate (without any addition of manure), which had an extreme low pH of around 3.3, the highest specific gas production rate (spec. GPR) of 0.72 L/g volatile solids (VS) d was achieved at a hydraulic retention time (HRT) of 25 days compared to an organic loading rate (OLR) of 3.97 g VS/L d at a pH of around 6.80. The methane (CH4) content of the digester ranged between 58 and 67 %, with an average of 63 %. The use of a new charge of substrate (a new harvest of the same substrate) with higher phosphate content improved the performance of the biogas digester significantly. The change of the substrate charge also seemed to affect the methanogenic population dynamics positively, thus improving the reactor performance. Using a new substrate charge, a further decrease in the HRT from 25 to 15 days did not influence the digester performance and did not seem to affect the structure of the methanogenic population significantly. However, a decrease in the HRT affected the size of the methanogenic population adversely. The lower spec. GPR of 0.54 L/g VS d attained on day 15 of the HRT could be attributed to a lower size of methanogenic population present in the anaerobic digester during this stage of the process. Furthermore, since sugar beet silage is a relatively poor substrate, in terms of the buffering capacity and the availability of nutrients, an external supply of buffering agents and nutrients is a prerequisite for a safe and stable digester operation.  相似文献   

11.
This work examines the methane production potential for the anaerobic co-digestion of swine manure (SM) with winery wastewater (WW). Batch and semi-continuous experiments were carried out under mesophilic conditions. Batch experiments revealed that the highest specific methane yield was 348 mL CH4 g−1 COD added, obtained at 85.4% of WW and 0.7 g COD g−1 VS. Specific methane yield from SM alone was 27 mL CH4 g−1 COD added d−1. Furthermore, specific methane yields were 49, 87 and 107 mL CH4 g−1 COD added d−1 for the reactors co-digesting mixtures with 10% WW, 25% WW and 40% WW, respectively. Co-digestion with 40% WW improved the removal efficiencies up to 52% (TCOD), 132% (SCOD) and 61% (VSS) compared to SM alone. These results suggest that methane can be produced very efficiently by the co-digestion of swine manure with winery wastewater.  相似文献   

12.
The present study focused on the anaerobic biohydrogen production from olive pulp (two phase olive mill wastes, TPOMW) and the subsequent anaerobic treatment of the effluent for methane production under mesophilic conditions in a two-stage process. Biohydrogen production from water-diluted (1:4) olive pulp was investigated at hydraulic retention times (HRT) of 30 h, 14.5 h and 7.5 h while methane production from the effluent of hydrogenogenic reactor was studied at 20 d, 15 d, 10 d and 5 d HRT. In comparison with previous studies, it has been shown that the thermophilic hydrogen production process was more efficient than the mesophilic one in both hydrogen production rate and yield. The methanogenic reactor was successfully operated at 20, 15 and 10 days HRT while it failed when an HRT of 5 days was applied. Methane productivity reached the maximum value of 1.13 ± 0.08 L/L/d at 10 days HRT whereas the methane yield increased with the HRT. The Anaerobic Digestion Model no. 1 (ADM1) was applied to the obtained experimental data from the methanogenic reactor to simulate the digester response at all HRT tested. The ability of the model to predict the experimental results was evident even in the case of the process failure, thus implying that the ADM1 could be a valuable tool for process design even in the case of a complex feedstock. In general, the two-stage anaerobic digestion proved to be a stable, reliable and effective process for energy recovery and stabilization treatment of olive pulp.  相似文献   

13.
Bioremediation of lipid-rich model wastewater was investigated in a packed bed biofilm reactor (anaerobic filter). A detailed study was conducted about the influence of fatty acid concentration on biomethanation of the high-fat liquid effluent of edible oil refineries. The biochemical methane potential (BMP) of the liquid waste was reported and maximum cumulative methane production at the exit of the reactor is estimated to be 785 ml CH4 (STP)/(g VSS added). The effects of hydraulic retention time (HRT), organic loading rate (OLR) and bed porosity on the cold gas efficiency or energy efficiency of the bioconversion process were also investigated. Results revealed that the maximum cold gas efficiency of the process is 42% when the total organic load is 2.1 g COD/l at HRT of 3.33 days. Classical substrate uninhibited Monod model is used to generate the differential system equations which can predict the reactor behavior satisfactorily.  相似文献   

14.
This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 μg PCP g−1 VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l−1 day−1 for R1, and from 0.06 to 4.15 mg PCP l−1 day−1 for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m−3 day−1 at hydraulic retention times (HRT) of 24 h for R1 and 18 h for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency.  相似文献   

15.
This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L−1). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30 °C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8 h. The reactor R1 operating with a HRT of 2 h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H2 mol−1 glucose with 1.3 mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter.  相似文献   

16.
The kinetics of anaerobic co-digestion of poultry litter and wheat straw has not been widely reported in the literature. Since endogenous decay and yield coefficients are two basic parameters for the design of anaerobic digesters, they are currently estimated only by continues experiments. In this study, numerical integration was employed to develop a novel strategy to estimate endogenous decay and yield coefficients using initial and final liquid data combined with methane volumes produced over time in batch experiments. To verify this method, the kinetics of batch anaerobic co-digestion of poultry litter and wheat straw at different TS and VS levels was investigated, with the corresponding endogenous decay and (non-observed) yield coefficients in the exponential periods determined to be between 0.74 × 10?3 and 6.1 × 10?3 d?1, and between 0.0259 and 0.108 g VSS (g VS)?1, respectively. A general Gompertz model developed early for bio-product could be used to simulate the methane volume profile in the co-digestion. The same model parameters obtained from the methane model combined with the corresponding yield coefficients could also be used to describe the VSS generation and VS destruction.  相似文献   

17.
The two-stage process for extreme thermophilic hydrogen and thermophilic methane production from wheat straw hydrolysate was investigated in up-flow anaerobic sludge bed (UASB) reactors. Specific hydrogen and methane yields of 89 ml-H2/g-VS (190 ml-H2/g-sugars) and 307 ml-CH4/g-VS, respectively were achieved simultaneously with the overall VS removal efficiency of 81% by operating with total hydraulic retention time (HRT) of 4 days . The energy conversion efficiency was dramatically increased from only 7.5% in the hydrogen stage to 87.5% of the potential energy from hydrolysate, corresponding to total energy of 13.4 kJ/g-VS. Dominant hydrogen-producing bacteria in the H2-UASB reactor were Thermoanaerobacter wiegelii, Caldanaerobacter subteraneus, and Caloramator fervidus. Meanwhile, the CH4-UASB reactor was dominated with methanogens of Methanosarcina mazei and Methanothermobacter defluvii. The results from this study suggest the two stage anaerobic process can be effectively used for energy recovery and for stabilization of hydrolysate at anaerobic conditions.  相似文献   

18.
The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating a production potential of 45 T (TS) ha−1 y−1. Biogas production from fresh and macerated U. lactuca yielded up to 271 ml CH4 g−1 VS, which is in the range of the methane production from cattle manure and land based energy crops, such as grass-clover. Drying of the biomass resulted in a 5-9-fold increase in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production of bioenergy.  相似文献   

19.
The maximum propionic acid (HPr) removal rate (RHPr) was investigated in two lab-scale Upflow Anaerobic Sludge Bed (UASB) reactors. Two feeding strategies were applied by modifying the hydraulic retention time (HRT) in the UASBHRT and the influent HPr concentration in the UASBHPr, respectively. The experiment was divided into three main phases: phase 1, influent with only HPr; phase 2, HPr with macro-nutrients supplementation and phase 3, HPr with macro- and micro-nutrients supplementation. During phase 1, the maximum RHPr achieved was less than 3 g HPr-COD L−1 d−1 in both reactors. However, the subsequent supplementation of macro- and micro-nutrients during phases 2 and 3 allowed to increase the RHPr up to 18.1 and 32.8 g HPr-COD L−1 d−1, respectively, corresponding with an HRT of 0.5 h in the UASBHRT and an influent HPr concentration of 10.5 g HPr-COD L−1 in the UASBHPr. Therefore, the high operational capacity of these reactor systems, specifically converting HPr with high throughput and high influent HPr level, was demonstrated. Moreover, the presence of macro- and micro-nutrients is clearly essential for stable and high HPr removal in anaerobic digestion.  相似文献   

20.
This study focuses on the exploitation of cheese whey as a source for hydrogen and methane, in a two-stage continuous process. Mesophilic fermentative hydrogen production from undiluted cheese whey was investigated at a hydraulic retention time (HRT) of 24 h. Alkalinity addition (NaHCO3) or an automatic pH controller were used, to maintain the pH culture at a constant value of 5.2. The hydrogen production rate was 2.9 ± 0.2 L/Lreactor/d, while the yield of hydrogen produced was approximately 0.78 ± 0.05 mol H2/mol glucose consumed, with alkalinity addition, while the respective values when using pH control were 1.9 ± 0.1 L/Lreactor/d and 0.61 ± 0.04 mol H2/mol glucose consumed. The corresponding yields of hydrogen produced were 2.9 L of H2/L cheese whey and 1.9 L of H2/L cheese whey, respectively. The effluent from the hydrogenogenic reactor was further digested to biogas in a continuous mesophilic anaerobic bioreactor. The anaerobic digester was operated at an HRT of 20d and produced approximately 1 L CH4/d, corresponding to a yield of 6.7 L CH4/L of influent. The chemical oxygen demand (COD) elimination reached 95.3% demonstrating that cheese whey could be efficiently used for hydrogen and methane production, in a two-stage process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号