首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in vivo experiment was performed with pigs to study the inhibitory effect of fermented feed on the bacterial population of the gastrointestinal tract. Results demonstrated a significant positive correlation between pH and lactobacilli in the stomach contents of pigs in dry feed as well as in the stomach contents of pigs fed fermented feed. Furthermore, a significant positive correlation between the pH and the numbers of bacteria in the family Enterobacteriaceae in the contents of the stomach of pigs fed dry feed was found. In the stomach contents of pigs fed fermented feed, a significant negative correlation was found between the concentration of the undissociated form of lactic acid and the numbers of Enterobacteriaceae. The numbers of Enterobacteriaceae in the contents of the stomach, ileum, cecum, colon, and rectum of pigs fed fermented feed were significantly lower compared with the contents of the stomach, ileum, caecum, colon, and rectum of pigs fed dry feed. The numbers of total lactobacilli were significantly higher in the stomach contents of pigs fed fermented feed and in the ileum contents of one pig group fed fermented feed compared with the contents of pigs fed dry feed. However, the influence of lactobacilli on numbers of Enterobacteriaceae could not be demonstrated. It was concluded that fermented feed influences the bacterial ecology of the gastrointestinal tract and reduces the levels of Enterobacteriaceae in the different parts of the gastrointestinal tract.  相似文献   

2.
Microbial catabolic capacity in digesta from the gastrointestinal tract of pigs fed either dry feed or fermented liquid feed (FLF) was determined with the PhenePlate multisubstrate system. The in vitro technique was modified to analyze the kinetics of substrate catabolism mediated by the standing stock of enzymes (potential rates of fermentation), allowing a quantitative evaluation of the dietary effect on the catabolic capacity of the microbiota. In total, the potential rates of fermentation were significantly reduced in digesta from the large intestine (cecum, P < 0.1; colon, P < 0.01; and rectum, P < 0.0001) of pigs fed FLF compared to pigs fed dry feed. No effect of diet was observed in the stomach (P = 0.71) or the distal part of the small intestine (P = 0.97). The highest rates of fermentation and the most significant effect of diet were observed for readily fermentable carbohydrates like maltose, sucrose, and lactose. Feeding FLF to pigs also led to a reduction in the large intestine of the total counts of anaerobic bacteria in general and lactic acid bacteria specifically, as well as of microbial activity, as determined by the concentration of ATP and short-chain fatty acids. The low-molecular-weight carbohydrates were fermented mainly to lactic acid in the FLF before being fed to the animals. This may have limited microbial nutrient availability in the digesta reaching the large intestine of pigs fed FLF and may have caused the observed reduction in activity and density of the cecal and colonic microbial population. On the other hand, feeding FLF to pigs reduced the viable counts of coliform bacteria (indicator of Escherichia coli and Salmonella spp.) most profoundly in the stomach and the distal part of the small intestine, probably due to the bactericidal effect of lactic acid and low pH. The results presented clearly demonstrate that feeding FLF to pigs had a great impact on the indigenous microbiota, as reflected in bacterial numbers, short-chain fatty acid concentration, and substrate utilization. However, completely different mechanisms may be involved in the proximal and the distal parts of the gastrointestinal tract. The present study illustrates the utility of the PhenePlate system for quantifying the catabolic capacity of the indigenous gastrointestinal tract microbiota.  相似文献   

3.
Microbial catabolic capacity in digesta from the gastrointestinal tract of pigs fed either dry feed or fermented liquid feed (FLF) was determined with the PhenePlate multisubstrate system. The in vitro technique was modified to analyze the kinetics of substrate catabolism mediated by the standing stock of enzymes (potential rates of fermentation), allowing a quantitative evaluation of the dietary effect on the catabolic capacity of the microbiota. In total, the potential rates of fermentation were significantly reduced in digesta from the large intestine (cecum, P < 0.1; colon, P < 0.01; and rectum, P < 0.0001) of pigs fed FLF compared to pigs fed dry feed. No effect of diet was observed in the stomach (P = 0.71) or the distal part of the small intestine (P = 0.97). The highest rates of fermentation and the most significant effect of diet were observed for readily fermentable carbohydrates like maltose, sucrose, and lactose. Feeding FLF to pigs also led to a reduction in the large intestine of the total counts of anaerobic bacteria in general and lactic acid bacteria specifically, as well as of microbial activity, as determined by the concentration of ATP and short-chain fatty acids. The low-molecular-weight carbohydrates were fermented mainly to lactic acid in the FLF before being fed to the animals. This may have limited microbial nutrient availability in the digesta reaching the large intestine of pigs fed FLF and may have caused the observed reduction in activity and density of the cecal and colonic microbial population. On the other hand, feeding FLF to pigs reduced the viable counts of coliform bacteria (indicator of Escherichia coli and Salmonella spp.) most profoundly in the stomach and the distal part of the small intestine, probably due to the bactericidal effect of lactic acid and low pH. The results presented clearly demonstrate that feeding FLF to pigs had a great impact on the indigenous microbiota, as reflected in bacterial numbers, short-chain fatty acid concentration, and substrate utilization. However, completely different mechanisms may be involved in the proximal and the distal parts of the gastrointestinal tract. The present study illustrates the utility of the PhenePlate system for quantifying the catabolic capacity of the indigenous gastrointestinal tract microbiota.  相似文献   

4.
A two-by-two factorial experiment with pigs was conducted to study the effect of feed grinding (fine and coarse) and feed processing (pelleted and nonpelleted) on physicochemical properties, microbial populations, and survival of Salmonella enterica serovar Typhimurium DT12 in the gastrointestinal tracts of pigs. Results demonstrated a strong effect of diet on parameters measured in the stomachs of the pigs, whereas the effect was less in the other parts of the gastrointestinal tract. Pigs fed the coarse nonpelleted (C-NP) diet showed more solid gastric content with higher dry matter content than pigs fed the fine nonpelleted (F-NP), coarse pelleted (C-P), or fine pelleted (F-P) diet. Pigs fed the C-NP diet also showed significantly increased number of anaerobic bacteria (P < 0.05), increased concentrations of organic acids, and reduced pH in the stomach. In addition, pigs fed the C-NP diet showed increased in vitro death rate of S. enterica serovar Typhimurium DT12 in content from the stomach (P < 0.001). Pigs fed the C-NP diet had a significantly higher concentration of undissociated lactic acid in gastric content than pigs fed the other diets (P < 0.001). A strong correlation between the concentration of undissociated lactic acid and the death rate of S. enterica serovar Typhimurium DT12 was found. In the distal small intestine, cecum, and midcolon, significantly lower numbers of coliform bacteria were observed in pigs fed the coarse diets than in pigs fed the fine diets (P < 0.01). Pigs fed the C-NP diet showed the lowest number of coliform bacteria in these segments of the gastrointestinal tract. Pigs fed the coarse diets showed increased concentration of butyric acid in the cecum (P < 0.05) and colon (P < 0.10) compared with pigs fed the fine diets. It was concluded that feeding a coarsely ground meal feed to pigs changes the physicochemical and microbial properties of content in the stomach, which decreases the survival of Salmonella during passage through the stomach. In this way the stomach acts as a barrier preventing harmful bacteria from entering and proliferating in the lower part of the gastrointestinal tract.  相似文献   

5.
A two-by-two factorial experiment with pigs was conducted to study the effect of feed grinding (fine and coarse) and feed processing (pelleted and nonpelleted) on physicochemical properties, microbial populations, and survival of Salmonella enterica serovar Typhimurium DT12 in the gastrointestinal tracts of pigs. Results demonstrated a strong effect of diet on parameters measured in the stomachs of the pigs, whereas the effect was less in the other parts of the gastrointestinal tract. Pigs fed the coarse nonpelleted (C-NP) diet showed more solid gastric content with higher dry matter content than pigs fed the fine nonpelleted (F-NP), coarse pelleted (C-P), or fine pelleted (F-P) diet. Pigs fed the C-NP diet also showed significantly increased number of anaerobic bacteria (P < 0.05), increased concentrations of organic acids, and reduced pH in the stomach. In addition, pigs fed the C-NP diet showed increased in vitro death rate of S. enterica serovar Typhimurium DT12 in content from the stomach (P < 0.001). Pigs fed the C-NP diet had a significantly higher concentration of undissociated lactic acid in gastric content than pigs fed the other diets (P < 0.001). A strong correlation between the concentration of undissociated lactic acid and the death rate of S. enterica serovar Typhimurium DT12 was found. In the distal small intestine, cecum, and midcolon, significantly lower numbers of coliform bacteria were observed in pigs fed the coarse diets than in pigs fed the fine diets (P < 0.01). Pigs fed the C-NP diet showed the lowest number of coliform bacteria in these segments of the gastrointestinal tract. Pigs fed the coarse diets showed increased concentration of butyric acid in the cecum (P < 0.05) and colon (P < 0.10) compared with pigs fed the fine diets. It was concluded that feeding a coarsely ground meal feed to pigs changes the physicochemical and microbial properties of content in the stomach, which decreases the survival of Salmonella during passage through the stomach. In this way the stomach acts as a barrier preventing harmful bacteria from entering and proliferating in the lower part of the gastrointestinal tract.  相似文献   

6.
A total of 32 pigs of 15+/-0.38 kg body weight were fed for 6 weeks one of four diets differing in their source of dietary fibre. FISH was used to quantify the main bacterial groups in the pig gut using the following probes: Eub338, Bac303, Rfla729, Rbro730, Erec482, Fprau645, Prop853, Str493 and Lab158. FISH counts revealed important differences at four sites along the pig gastrointestinal tract, but we were unable to show differences related to diets. Stomach and jejunal samples gave total bacterial counts of 0.1-5.3 x 10(8) g(-1) of contents. In the stomach, streptococci and lactobacilli were predominant, and the clostridial cluster IX group was abundant (14-41% of total bacterial count). Clostridial cluster IX bacteria were present elsewhere in the gastrointestinal tract at 1-8%. The other groups were generally more abundant in the proximal colon and rectum: Bacteroides/Prevotella (5-10%), clostridial cluster XIVa (10-19%), and cluster IV relatives of Faecalibacterium prausnitzii (1-4%) and ruminococcus (4-10%). Restriction fragment length polymorphism profiles showed changes related to diet, with pigs fed wheat bran having the lowest richness of all diets (P=0.008).  相似文献   

7.
Abstract

Fermentability of fibre has a great impact on the bacterial flora along the gastrointestinal tract of newly weaned piglets. Therefore, this parameter was determined by incubating in vitro different fibre substrates (chicory roots, sugar beet pulp, wheat bran and corn cobs) with contents of jejunum or caecum sampled from slaughtered pigs. Incubating with small intestinal contents, lactic acid was the only fermentation product. Fermentability was highest for chicory roots, followed by wheat bran and sugar beet pulp, while corn cobs were not fermented. Based on SCFA formed in the incubations with caecal contents, ranking of the fermentability of the fibre substrates was in the same order. The effect of adding different fibre substrates to diets of newly weaned piglets on bacteriological and morphological aspects of the gastrointestinal tract was also investigated. In Experiment 1 three groups of five piglets, weaned at four weeks of age, received a control feed (C), C supplemented with corn cobs (50 g/kg) or with chicory roots (20 g/kg). In Experiment 2, diet C was supplemented with sugar beet pulp (120 g/kg) or with wheat bran (75 g/kg). After three weeks animals were euthanized and digesta were sampled from stomach, proximal and distal jejunum, caecum and colon. Furthermore, mucosal scrapings were prepared and tissue samples were taken from jejunum, caecum and colon. Viscosity was determined for jejunal, caecal and colon contents. Corn cobs in the feed increased the number of total bacteria, lactobacilli and bifidobacteria in the stomach and proximal duodenum, while a decreased count of streptococci in distal jejunum contents was noted. Chicory roots increased the counts of Escherichia coli in the distal jejunum and on the mucosa, while sugar beet pulp decreased the number of lactobacilli on the mucosa only. Wheat bran seemed to increase the count of E. coli in jejunal digesta and on the mucosa, and also the number of lactobacilli in the stomach and jejunum. Bifidobacterial numbers were increased but only in the proximal part of the jejunum. Fibre substrates affected the concentration of lactate and SCFA in different parts of the intestinal tract. Feeding corn cobs increased villus length in the proximal jejunum by 13%. The number of intra-epithelial lymphocytes in the villous epithelium of proximal and distal jejunum was decreased by corn cobs and chicory roots supplementation while beet pulp and wheat bran had the opposite effect. In Experiment 1, apoptotic index of the mucosa of the distal jejunum was very low and decreased when corn cobs were fed. Mitotic index in the crypts was only affected by the wheat bran diet and a small decrease was noted. It was concluded that the fermentability of fibre was not an ideal criterion for predicting its effects on the flora. The effect of fibres on viscosity of digesta was negligible probably explaining the lack of clear and consistent influences on the intestinal mucosa.  相似文献   

8.
Fermentability of fibre has a great impact on the bacterial flora along the gastrointestinal tract of newly weaned piglets. Therefore, this parameter was determined by incubating in vitro different fibre substrates (chicory roots, sugar beet pulp, wheat bran and corn cobs) with contents of jejunum or caecum sampled from slaughtered pigs. Incubating with small intestinal contents, lactic acid was the only fermentation product. Fermentability was highest for chicory roots, followed by wheat bran and sugar beet pulp, while corn cobs were not fermented. Based on SCFA formed in the incubations with caecal contents, ranking of the fermentability of the fibre substrates was in the same order. The effect of adding different fibre substrates to diets of newly weaned piglets on bacteriological and morphological aspects of the gastrointestinal tract was also investigated. In Experiment 1 three groups of five piglets, weaned at four weeks of age, received a control feed (C), C supplemented with corn cobs (50 g/kg) or with chicory roots (20 g/kg). In Experiment 2, diet C was supplemented with sugar beet pulp (120 g/kg) or with wheat bran (75 g/kg). After three weeks animals were euthanized and digesta were sampled from stomach, proximal and distal jejunum, caecum and colon. Furthermore, mucosal scrapings were prepared and tissue samples were taken from jejunum, caecum and colon. Viscosity was determined for jejunal, caecal and colon contents. Corn cobs in the feed increased the number of total bacteria, lactobacilli and bifidobacteria in the stomach and proximal duodenum, while a decreased count of streptococci in distal jejunum contents was noted. Chicory roots increased the counts of Escherichia coli in the distal jejunum and on the mucosa, while sugar beet pulp decreased the number of lactobacilli on the mucosa only. Wheat bran seemed to increase the count of E. coli in jejunal digesta and on the mucosa, and also the number of lactobacilli in the stomach and jejunum. Bifidobacterial numbers were increased but only in the proximal part of the jejunum. Fibre substrates affected the concentration of lactate and SCFA in different parts of the intestinal tract. Feeding corn cobs increased villus length in the proximal jejunum by 13%. The number of intra-epithelial lymphocytes in the villous epithelium of proximal and distal jejunum was decreased by corn cobs and chicory roots supplementation while beet pulp and wheat bran had the opposite effect. In Experiment 1, apoptotic index of the mucosa of the distal jejunum was very low and decreased when corn cobs were fed. Mitotic index in the crypts was only affected by the wheat bran diet and a small decrease was noted. It was concluded that the fermentability of fibre was not an ideal criterion for predicting its effects on the flora. The effect of fibres on viscosity of digesta was negligible probably explaining the lack of clear and consistent influences on the intestinal mucosa.  相似文献   

9.
Because of limitations imposed on the antibiotic use in animal industry, there is a need for alternatives to maintain the efficiency of production. One of them may be the use of fermented liquid feed (FLF) but how it affects gut ecology is poorly understood. We investigated the effect of three diets, standard dry feed (control), dry feed supplemented with antibiotics, and fermented liquid feed (FLF, fermented with Lactobacillus plantarum), on gut bacterial diversity in piglets. The structure of the ileal and caecal communities was estimated by sequencing the SSU rRNA gene libraries. Antibiotic-supplemented feed slightly increased bacterial diversity in the ileum but reduced it in the caecum while in FLF-fed animals bacterial diversity was elevated. The majority of bacterial sequences in the ileum of all three groups belonged to lactobacilli (92–98%). In the caecum the lactobacilli were still dominant in control and antibiotic-fed animals (59% and 64% of total bacterial sequences, respectively) but in FLF-fed animals they fell to 31% with the concomitant increase in the Firmicutes diversity represented by the Dorea, Coprococcus, Roseburia and Faecalibacterium genera. Thus FLF affects the gut ecology in a different way than antibiotics and contributes to the enhanced bacterial diversity in the gastrointestinal tract.  相似文献   

10.
The effect of the two-year milk-feeding on the gastrointestinal (GI) microflora of a cynomolgus monkey was determined. Bifidobacterium spp. in the animal fed with cow's milk alone were distributed in higher number in the stomach, duodenum, cecum, and rectum. The increasingly higher numbers of Lactobacillus spp. and Candida spp. were counted in all regions of the GI tract of the animal fed with the formula diet. Bacteroidaceae, Enterobacteriaceae, and Streptococcus spp. were detected from the upper to lower intestines in the monkey given only milk, whereas in the monkey given the formula, those bacterial species were localized in only the lower intestines.  相似文献   

11.
The distribution and abundance of nitric oxide synthase (NOS)-containing neurons and their terminals in the gastrointestinal tract of the guinea-pig were examined in detail using NADPH diaphorase histochemistry and NOS immunohistochemistry. NOS-containing cell bodies were found in the myenteric plexus throughout the gastrointestinal tract and in the submucous plexus of the stomach, colon and rectum. NOS-containing neurons comprised between 12% (in the duodenum) and 54% (in the esophagus) of total myenteric neurons. In the ileum, NOS neurons represented 19% of total myenteric neurons. Most of the NOS neurons throughout the gastrointestinal tract possessed lamellar dendrites and a single axon. NOS-containing terminals were abundant in the circular muscle, including that of the sphincters, but were rare in the longitudinal muscle, except for the taeniae of the caecum. The muscularis mucosae of the esophagus, stomach, colon and rectum received a medium to dense innervation by NOS terminals. Within myenteric ganglia, NOS-containing terminals were extremely sparse in the esophagus, stomach and duodenum, common in the ileum and distal colon and extremely dense in the proximal colon and rectum. The submucous plexus in the ileum and large intestine contained a sparse plexus of NOS-containing terminals. NOS terminals were not observed in the mucosa of any region. We conclude that throughout the gastrointestinal tract of the guinea-pig, NOS neurons are inhibitory motor neurons to the circular muscle; in the ileum and large intestine, NOS neurons may also function as interneurons.  相似文献   

12.
Since the announcement of the ban on the use of antibiotics as antimicrobial growth promoters in the feed of pigs in 2006 the investigation towards alternative feed additives has augmented considerably. Although fermented liquid feed is not an additive, but a feeding strategy, the experimental work examining its possible advantages also saw a rise. The use of fermented liquid feed (FLF) has two main advantages, namely that the simultaneous provision of feed and water may result in an alleviation of the transition from the sow milk to solid feed and may also reduce the time spent to find both sources of nutrients, and secondly, that offering FLF with a low pH may strengthen the potential of the stomach as a first line of defence against possible pathogenic infections. Because of these two advantages, FLF is often stated as an ideal feed for weaned piglets. The results obtained so far are rather variable, but in general they show a better body weight gain and worse feed/gain ratio for the piglets. However, for growing-finishing pigs on average a better feed/gain ratio is found compared to pigs fed dry feed. This better performance is mostly associated with less harmful microbiota and better gut morphology. This review provides an overview of the current knowledge of FLF for pigs, dealing with the FLF itself as well as its effect on the gastrointestinal tract and animal performance.  相似文献   

13.
Since the announcement of the ban on the use of antibiotics as antimicrobial growth promoters in the feed of pigs in 2006 the investigation towards alternative feed additives has augmented considerably. Although fermented liquid feed is not an additive, but a feeding strategy, the experimental work examining its possible advantages also saw a rise. The use of fermented liquid feed (FLF) has two main advantages, namely that the simultaneous provision of feed and water may result in an alleviation of the transition from the sow milk to solid feed and may also reduce the time spent to find both sources of nutrients, and secondly, that offering FLF with a low pH may strengthen the potential of the stomach as a first line of defence against possible pathogenic infections. Because of these two advantages, FLF is often stated as an ideal feed for weaned piglets. The results obtained so far are rather variable, but in general they show a better body weight gain and worse feed/gain ratio for the piglets. However, for growing-finishing pigs on average a better feed/gain ratio is found compared to pigs fed dry feed. This better performance is mostly associated with less harmful microbiota and better gut morphology. This review provides an overview of the current knowledge of FLF for pigs,dealing with the FLF itself as well as its effect on the gastrointestinal tract and animal performance.  相似文献   

14.
Total numbers of aerotolerant and anaerobic bacteria, and densities of Enterobacteriaceae, lactobacilli, staphylococci, salmonella and shigella, and campylobacteria were enumerated in the contents of the stomach, small intestine (and the associated mucosa), and colon of mink beginning at 2 weeks of age to adulthood, and in adults that were fed diets with different levels and types of fiber or food deprived. Highest densities of all bacterial groups were found in the colon at all ages (up to 108 cfu per g for total anaerobes), but were 2–4 orders of magnitude lower than those of other mammals. When all regions were pooled, significant age-related increases (p<0.05) were detected for anaerobes, aerobes, and staphylococci, and these coincided with the dietary shift at weaning. Enterobacteriaceae did not vary with age. Lactobacilli were never common isolates, but were detected more often after weaning, particularly in adults fed diets containing the 2 sources of fiber. Campylobacteria were detected only at 2 weeks of age, and salmonella and shigella were not isolated from any of the experimental mink. Total bacterial densities, the relative proportions of the bacterial groups, and age- and diet-related effects differ from those known for other mammals, which may be related to the carnivorous diet and rapid movement of digesta through the GIT.  相似文献   

15.
The microbial activity, composition of the gas phase, and gas production rates in the gastrointestinal tract of pigs fed either a low- or a high-fiber diet were investigated. Dense populations of culturable anaerobic bacteria, high ATP concentrations, and high adenylate energy charges were found for the last third of the small intestine, indicating that substantial microbial activity takes place in that portion of the gut. The highest microbial activity (highest bacterium counts, highest ATP concentration, high adenylate energy charge, and low pH) was found in the cecum and proximal colon. Greater microbial activity was found in the stomach and all segments of the hindgut in the pigs fed the high-fiber diet than in the pigs fed the low-fiber diet. Considerable amounts of O2 were found in the stomach (around 5%), while the content of O2 in gas samples taken from all other parts of the gastrointestinal tract was < 1%. The highest concentrations and highest production rates for H2 were found in the last third of the small intestine. No methane could be detected in the stomach or the small intestine. The rate of production and concentration of methane in the cecum and the proximal colon were low, followed by a steady increase in the successive segments of the hindgut. A very good correlation between in vivo and in vitro measurements of methane production was found. The amount of CH4 produced by pigs fed the low-fiber diet was 1.4 liters/day per animal. Substantially larger amounts of CH4 were produced by pigs fed the high-fiber diet (12.5 liters/day)(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study aimed to explore the rule of degradation of dietary proteins by identifying chyme proteins in different segments of the digestive tract of growing pigs, using proteomics techniques. Six growing pigs were fed a corn-soybean meal-based diet for 7 days. The feedstuff and chyme proteins were separately extracted and separated with SDS-PAGE. 2D LCMS/MS combined with protein database searching identified 1,513 proteins in different segments of the gastrointestinal tract, the number of identified exogenous proteins gradually decline from the stomach to colon, with large amounts in the duodenum to the large intestine. More corn proteins than soybean proteins were identified both in the feedstuff and chyme, and these were significantly decreased after digestion in the stomach. More membrane proteins than non-membrane proteins were identified in whole digestive tract. These results regarding the profiles of chyme proteins in different segments of the gastrointestinal tract would provide useful information for optimizing feed formula in pigs.  相似文献   

17.
Little is known about bacterial communities that colonize mucosal surfaces in the human gastrointestinal tract, but they are believed to play an important role in host physiology. The objectives of this study were to investigate the compositions of these populations in the distal small bowel and colon. Healthy mucosal tissue from either the terminal ileum (n = 6) or ascending (n = 8), transverse (n = 8), or descending colon (n = 4) of 26 patients (age, 68.5 +/- 1.2 years [mean +/- standard deviation]) undergoing emergency resection of the large bowel was used to study these communities. Mucosa-associated eubacteria were characterized by using PCR-denaturing gradient gel electrophoresis (DGGE), while real-time PCR was employed for quantitative analysis. Mucosal communities were also visualized in situ using confocal laser scanning microscopy. DGGE banding profiles from all the gut regions exhibited at least 45% homology, with five descending colon profiles clustering at ca. 75% concordance. Real-time PCR showed that mucosal bacterial population densities were highest in the terminal ileum and that there were no significant differences in overall bacterial numbers in different parts of the colon. Bifidobacterial numbers were significantly higher in the large bowel than in the terminal ileum (P = 0.006), whereas lactobacilli were more prominent in the distal large intestine (P = 0.019). Eubacterium rectale (P = 0.0004) and Faecalibacterium prausnitzii (P = 0.001) were dominant in the ascending and descending colon. Site-specific colonization in the gastrointestinal tract may be contributory in the etiology of some diseases of the large intestine.  相似文献   

18.
Lactobacillus fermentum was present in small numbers in the caecum and colon of only one of 16 rabbits. Studies aimed at elucidating the factors affecting the colonization of lactobacilli in rabbit gut were thus performed. These studies included investigation of the effect of gastric juice and bile salts on the viability of lactobacilli, assay of the survival rates of lactobacilli in the gastrointestinal tracts of the rabbits with or without ileum cannulation and measurement of the adhesive capability of lactobacilli to the rabbit intestinal epithelial cells. Results showed that, although some lactobacilli were resistant to the rather low pH levels of rabbit gastric juice, lack of adhesive capability may prevent them from colonizing in the intestinal tract. Therefore, if lactobacilli are to be used as probiotics for rabbit, factors that affect their viability and ability to colonize should be considered.  相似文献   

19.
To study the fermentation characteristics of different non-conventional dietary fibre (DF) sources with varying levels of indigestible CP content and their effects on the production of fermentation metabolites and on faecal nitrogen (N) excretion, an experiment was conducted with 40 growing pigs (initial BW 23 kg) using wheat bran (WB), pea hulls (PH), pea inner fibres (PIF), sugar beet pulp (SBP) or corn distillers dried grains with solubles (DDGS). The diets also contained soya protein isolate, pea starch and sucrose, and were supplemented with vitamin-mineral premix. Faecal samples were collected for 3 consecutive days from day 10, fed with added indigestible marker (chromic oxide) for 3 days from day 13 and pigs were slaughtered on day 16 from the beginning of the experiment. Digesta from the ileum and colon were collected and analysed for short-chain fatty acids (SCFA) and ammonia (NH3) content. The apparent total tract N digestibility was the lowest (P < 0.001) in diets based on DDGS (74%), medium in diets with WB and SBP (76% each) and highest in those with PIF and PH (79% and 81%, respectively). Expressed per kg fermented non-starch polysaccharides (NSP), faecal N excretion was higher with DDGS and WB diets (130 and 113 g/kg NSP fermented, respectively) and lower with PIF, PH and SBP diets (42, 52 and 55 g/kg NSP fermented, respectively). The PH-based diets had the highest (P < 0.05) SCFA concentrations, both in the ileum and the colon (27 and 122 mMol/kg digesta, respectively). The highest NH3 concentration was also found in the colon of pigs fed with PH (132 mMol/kg digesta). Loading plot of principle component analysis revealed that the CP : NSP ratio was positively related with faecal N excretion and NH3 concentration in colon contents, whereas negatively related with SCFA concentration in colon contents. In conclusion, pea fibres and SBP increased SCFA and reduced NH3 concentration in the pig's intestine and reduced faecal N excretion, which makes pea fibres and SBP an interesting ingredient to use in pig diet to improve the positive effect of DF fermentation on the gastrointestinal tract and reduce faecal N excretion.  相似文献   

20.
Several dietary ingredients may affect the bacterial community structure and metabolism in the porcine gut and may therefore influence animals'' health and performance. This study investigated the effects of cereal source and calcium-phosphorus (CaP) level in the diet on bacterial microbiota and metabolites, nutrient intake, and gut environment in weaned pigs. Pigs (n = 8/treatment) were fed wheat-barley- or corn-based diets with an adequate or high CaP level for 14 days. Effects on microbiota in the stomach, ileum, and midcolon were assessed using quantitative PCR. Data showed that Enterobacteriaceae, Campylobacter spp., and Helicobacter spp., which all contain highly immune reactive lipopolysaccharide (LPS), were abundant at all gut sites. Diet effects on bacteria and metabolites were moderate and occurred mainly in the upper gut, whereas no effects on bacteria, fermentation products, and LPS could be observed in the colon. Differences in carbohydrate intake with corn versus wheat-barley diets selectively stimulated Bifidobacterium in the stomach and ileum. There was a growth advantage for a few bacterial groups in the stomach and ileum of pigs fed the high versus adequate CaP level (i.e., gastric Enterobacteriaceae and ileal Enterococcus, Bacteroides-Prevotella-Porphyromonas, and Campylobacter). Interestingly, gastrointestinal pH was not affected by dietary CaP level. The present findings demonstrate the stability of the bacterial community and gut environment toward dietary changes even in young pigs. The results on stimulation of gastric and ileal Bifidobacterium by corn diets may be employed in nutritional strategies to support gut health after weaning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号