首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human ether-a-go-go related-gene K+ channels (hERG) participate in the regulation of tumor cell proliferation and apoptosis. HERG channel activity is up-regulated by growth factors. Kinases sensitive to growth factor signaling include the serine/threonine protein kinase B-RAF. The present study thus explored whether B-RAF influences hERG channel expression and activity. To this end, hERG channels were expressed in Xenopus oocytes with or without wild-type B-RAF, hERG channel activity was determined utilizing dual-electrode voltage clamp and hERG protein abundance in the cell membrane was analyzed utilizing confocal microscopy as well as chemiluminescence. Moreover, in rhabdomyosarcoma RD cells the effect of B-RAF inhibitor PLX-4720 on hERG-mediated current was quantified by whole-cell patch clamp and hERG cell surface protein abundance by utilizing biotinylation of cell surface proteins as well as flow cytometry. As a result, co-expression of wild-type B-RAF in hERG-expressing Xenopus oocytes significantly increased hERG channel activity and hERG channel protein abundance in the cell membrane. Treatment for 24 hours of B-RAF and hERG-expressing Xenopus oocytes with B-RAF inhibitor PLX-4720 (10 µM) significantly decreased hERG-mediated current and hERG cell surface expression. Similarly, in rhabdomyosarcoma RD cells, treatment for 24 hours with B-RAF inhibitor PLX-4720 significantly decreased hERG cell membrane protein abundance and hERG-mediated current. In conclusion, B-RAF is a powerful regulator of hERG channel activity and cell surface hERG protein abundance.  相似文献   

2.
Na+-coupled phosphate cotransporters of the SLC34 gene family catalyze the movement of inorganic phosphate (Pi) across epithelia by using the free energy of the downhill electrochemical Na+ gradient across the luminal membrane. Electrogenic (NaPi-IIa/b) and electroneutral (NaPi-IIc) isoforms prefer divalent Pi and show strict Na+:Pi stoichiometries of 3:1 and 2:1, respectively. For electrogenic cotransport, one charge is translocated per transport cycle. When NaPi-IIa or NaPi-IIb are expressed in Xenopus oocytes, application of the Pi transport inhibitor phosphonoformic acid (PFA) blocks a leak current that is not detectable in the electroneutral isoform. In this review, we present the experimental evidence that this transport-independent leak originates from a Na+-dependent uniport carrier mode intrinsic to NaPi-IIa/b isoforms. Our findings, based on the characteristics of the PFA-inhibitable leak measured from wild-type and mutant constructs, can be incorporated into an alternating access class model in which the leak and cotransport modes are mutually exclusive and share common kinetic partial reactions.  相似文献   

3.
Klotho, a transmembrane protein, which can be cleaved off as β-glucuronidase and hormone, is released in both, kidney and choroid plexus and encountered in blood and cerebrospinal fluid. Klotho deficiency leads to early appearance of age-related disorders and premature death. Klotho may modify transport by inhibiting 1,25(OH)2D3 formation or by directly affecting channel and carrier proteins. The present study explored whether Klotho influences the activity of the Na+-coupled excitatory amino acid transporters EAAT3 and EAAT4, which are expressed in kidney (EAAT3), intestine (EAAT3) and brain (EAAT3 and EAAT4). To this end, cRNA encoding EAAT3 or EAAT4 was injected into Xenopus oocytes with and without additional injection of cRNA encoding Klotho. EAAT expressing Xenopus oocytes were further treated with recombinant human β-Klotho protein with or without β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL). Electrogenic excitatory amino acid transport was determined as L-glutamate-induced current (Iglu) in two electrode voltage clamp experiments. EAAT3 and EAAT4 protein abundance in the Xenopus oocyte cell membrane was visualized by confocal microscopy and quantified utilizing chemiluminescence. As a result, coexpression of Klotho cRNA significantly increased Iglu in both, EAAT3 or EAAT4-expressing Xenopus oocytes. Klotho cRNA coexpression significantly increased the maximal current and cell membrane protein abundance of both EAAT3 and EAAT4. The effect of Klotho coexpression on EAAT3 and EAAT4 activity was mimicked by treating EAAT3 or EAAT4-expressing Xenopus oocytes with recombinant human β-Klotho protein. The effects of Klotho coexpression and of treatment with recombinant human β-Klotho protein were both abrogated in the presence of DSAL (10 µM). In conclusion, Klotho is a novel, powerful regulator of the excitatory amino acid transporters EAAT3 and EAAT4.  相似文献   

4.
Janus-activated kinase-2 (JAK2) participates in the regulation of the Na+-coupled glucose transporter SGLT1 and the Na+-coupled amino acid transporter SLC6A19. Concentrative cellular creatine uptake is similarly accomplished by Na+-coupled transport. The carrier involved is SLC6A8 (CreaT). The present study thus explored whether JAK2 regulates the activity of SLC6A8. To this end, cRNA encoding SLC6A8 was injected into Xenopus oocytes with or without cRNA encoding wild-type JAK2, constitutively active V617FJAK2 or inactive K882EJAK2. Electrogenic creatine transport was determined in those oocytes by dual-electrode voltage-clamp experiments. In oocytes injected with cRNA encoding SLC6A8 but not in oocytes injected with water or with cRNA encoding JAK2 alone, addition of 1 mM creatine to the extracellular bath generated an inward current (I crea). In SLC6A8 expressing oocytes I crea was significantly decreased by coexpression of JAK2 or V617FJAK2 but not by coexpression of K882EJAK2. According to kinetic analysis, coexpression of JAK2 decreased the maximal transport rate without significantly modifying the affinity of the carrier. In oocytes expressing SLC6A8 and V617FJAK2 I crea was gradually increased by the JAK2 inhibitor AG490 (40 μM). In SLC6A8 and JAK2 coexpressing oocytes the decline of I crea following disruption of carrier insertion with brefeldin A (5 μM) was similar in the absence and presence of JAK2. In conclusion, JAK2 is a novel regulator of the creatine transporter SLC6A8, which downregulates the carrier, presumably by interference with carrier protein insertion into the cell membrane.  相似文献   

5.
The Na+,glutamate cotransporter EAAT3 is expressed in a wide variety of tissues. It accomplishes transepithelial transport and the cellular uptake of acidic amino acids. Regulation of EAAT3 activity involves a signaling cascade including the phosphatidylinositol-3 (PI3)-kinase, the phosphoinositide dependent kinase PDK1, and the serum and glucocorticoid inducible kinase SGK1. Targets of SGK1 include the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3). The present experiments explored whether PIKfyve participates in the regulation of EAAT3 activity. To this end, EAAT3 was expressed in Xenopus oocytes with or without SGK1 and/or PIKfyve and glutamate-induced current (Iglu) determined by dual electrode voltage clamp. In Xenopus oocytes expressing EAAT3 but not in water injected oocytes glutamate induced an inwardly directed Iglu. Coexpression of either, SGK1 or PIKfyve, significantly enhanced Iglu in EAAT3 expressing oocytes. The increased Iglu was paralleled by increased EAAT3 protein abundance in the oocyte cell membrane. Iglu and EAAT3 protein abundance were significantly larger in oocytes coexpressing EAAT3, SGK1 and PIKfyve than in oocytes expressing EAAT3 and either, SGK1 or PIKfyve, alone. Coexpression of the inactive SGK1 mutant K127NSGK1 did not significantly alter Iglu in EAAT3 expressing oocytes and completely reversed the stimulating effect of PIKfyve coexpression on Iglu. The stimulating effect of PIKfyve on Iglu was abolished by replacement of the serine by alanine in the SGK consensus sequence (S318APIKfyve). Moreover, additional coexpression of S318APIKfyve significantly blunted Iglu in Xenopus oocytes coexpressing SGK1 and EAAT3. The observations demonstrate that PIKfyve participates in EAAT3 regulation likely downstream of SGK1.  相似文献   

6.
Tumor cells utilize preferably glucose for energy production. They accomplish cellular glucose uptake in part through Na+-coupled glucose transport mediated by SGLT1 (SLC5A1). This study explored the possibility that the human papillomavirus 18 E6 protein HPV18 E6 (E6) participates in the stimulation of SGLT1 activity. E6 is one of the two major oncoproteins of high-risk human papillomaviruses, which are the causative agent for cervical carcinoma. According to Western blotting, SGLT1 is expressed in the HPV18-positive cervical carcinoma cell line HeLa. To explore whether E6 affects SGLT1 activity, SGLT1 was expressed in Xenopus oocytes with and without E6 and electrogenic glucose transport determined by dual electrode voltage clamp. In SGLT1-expressing oocytes, but not in oocytes injected with water or expressing E6 alone, glucose triggered a current (Ig). Ig was significantly increased by coexpression of E6 but not by coexpression of E2. According to chemiluminescence and confocal microscopy, coexpression of E6 significantly increased the SGLT1 protein abundance in the cell membrane. The decay of Ig following inhibition of carrier insertion by Brefeldine A (5 μM) was not significantly affected E6 coexpression. Accrodingly, E6 was not effective by increasing carrier protein stability in the membrane. In conclusion, HPV18 E6 oncoprotein participates in the upregulation of SGLT1.  相似文献   

7.
The Na+-coupled glucose transporter SGLT1 (SLC5A1) accomplishes concentrative cellular glucose uptake even at low extracellular glucose concentrations. The carrier is expressed in renal proximal tubules, small intestine and a variety of nonpolarized cells including several tumor cells. The present study explored whether SGLT1 activity is regulated by caveolin-1, which is known to regulate the insertion of several ion channels and carriers in the cell membrane. To this end, SGLT1 was expressed in Xenopus oocytes with or without additional expression of caveolin-1 and electrogenic glucose transport determined by dual electrode voltage clamp experiments. In SGLT1-expressing oocytes, but not in oocytes injected with water or caveolin-1 alone, the addition of glucose to the extracellular bath generated an inward current (Ig), which was increased following coexpression of caveolin-1. Kinetic analysis revealed that caveolin-1 increased maximal Ig without significantly modifying the glucose concentration required to trigger half maximal Ig (KM). According to chemiluminescence and confocal microscopy, caveolin-1 increased SGLT1 protein abundance in the cell membrane. Inhibition of SGLT1 insertion by brefeldin A (5 μM) resulted in a decline of Ig, which was similar in the absence and presence of caveolin-1. In conclusion, caveolin-1 up-regulates SGLT1 activity by increasing carrier protein abundance in the cell membrane, an effect presumably due to stimulation of carrier protein insertion into the cell membrane.  相似文献   

8.
The WNK-dependent STE20/SPS1-related proline/alanine-rich kinase SPAK is a powerful regulator of ion transport. The study explored whether SPAK similarly regulates nutrient transporters, such as the Na+-coupled glucose transporter SGLT1 (SLC5A1). To this end, SGLT1 was expressed in Xenopus oocytes with or without additional expression of wild-type SPAK, constitutively active T233ESPAK, WNK-insensitive T233ASPAK or catalytically inactive D212ASPAK, and electrogenic glucose transport determined by dual-electrode voltage-clamp experiments. Moreover, Ussing chamber was employed to determine the electrogenic glucose transport in intestine from wild-type mice (spak wt/wt) and from gene-targeted mice carrying WNK-insensitive SPAK (spak tg/tg). In SGLT1-expressing oocytes, but not in water-injected oocytes, the glucose-dependent current (I g) was significantly decreased following coexpression of wild-type SPAK and T233ESPAK, but not by coexpression of T233ASPAK or D212ASPAK. Kinetic analysis revealed that SPAK decreased maximal I g without significantly modifying the glucose concentration required for halfmaximal I g (K m). According to the chemiluminescence experiments, wild-type SPAK but not D212ASPAK decreased SGLT1 protein abundance in the cell membrane. Inhibition of SGLT1 insertion by brefeldin A (5 μM) resulted in a decline of I g, which was similar in the absence and presence of SPAK, suggesting that SPAK did not accelerate the retrieval of SGLT1 protein from the cell membrane but rather down-regulated carrier insertion into the cell membrane. Intestinal electrogenic glucose transport was significantly lower in spak wt/wt than in spak tg/tg mice. In conclusion, SPAK is a powerful negative regulator of SGLT1 protein abundance in the cell membrane and thus of electrogenic glucose transport.  相似文献   

9.
Janus kinase-2 (JAK2), a signaling molecule mediating effects of various hormones including leptin and growth hormone, has previously been shown to modify the activity of several channels and carriers. Leptin is known to inhibit and growth hormone to stimulate epithelial Na+ transport, effects at least partially involving regulation of the epithelial Na+ channel ENaC. However, no published evidence is available regarding an influence of JAK2 on the activity of the epithelial Na+ channel ENaC. In order to test whether JAK2 participates in the regulation of ENaC, cRNA encoding ENaC was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild type JAK2, gain-of-function V617FJAK2 or inactive K882EJAK2. Moreover, ENaC was expressed with or without the ENaC regulating ubiquitin ligase Nedd4-2 with or without JAK2, V617FJAK2 or K882EJAK2. ENaC was determined from amiloride (50 μM)-sensitive current (I amil) in dual electrode voltage clamp. Moreover, I amil was determined in colonic tissue utilizing Ussing chambers. As a result, the I amil in ENaC-expressing oocytes was significantly decreased following coexpression of JAK2 or V617FJAK2, but not by coexpression of K882EJAK2. Coexpression of JAK2 and Nedd4-2 decreased I amil in ENaC-expressing oocytes to a larger extent than coexpression of Nedd4-2 alone. Exposure of ENaC- and JAK2-expressing oocytes to JAK2 inhibitor AG490 (40 μM) significantly increased I amil. In colonic epithelium, I amil was significantly enhanced by AG490 pretreatment (40 μM, 1 h). In conclusion, JAK2 is a powerful inhibitor of ENaC.  相似文献   

10.
《Molecular membrane biology》2013,30(2-3):137-144
Abstract

AMP-activated protein kinase (AMPK), a serine/threonine kinase activated upon energy depletion, stimulates energy production and limits energy utilization. It has previously been shown to enhance cellular glucose uptake through the GLUT family of facilitative glucose transporters. The present study explored the possibility that AMPK may regulate Na+-coupled glucose transport through SGLT1 (SLC5A1). To this end, SGLT1 was expressed in Xenopus oocytes with and without AMPK and electrogenic glucose transport determined by dual electrode voltage clamping experiments. In SGLT1-expressing oocytes but not in oocytes injected with water or expressing constitutively active γR70QAMPK (α1β1γ1(R70Q)) alone, the addition of glucose to the extracellular bath generated a current (Ig), which was half maximal (KM) at ≈ 650 μM glucose concentration. Coexpression of γR70QAMPK did not affect KM but significantly enhanced the maximal current (≈ 1.7 fold). Coexpression of wild type AMPK or the kinase dead αK45RAMPK mutant (α1(K45R)β1γ1) did not appreciably affect Ig. According to confocal microscopy and Western Blotting, AICAR (1 mM), phenformin (1 mM) and A-769662 (10 μM) enhanced the SGLT1 protein abundance in the cell membrane of Caco2 cells suggesting that AMPK activity may increase membrane translocation of SGLT1. These observations support a role for AMPK in the regulation of Na+-coupled glucose transport.  相似文献   

11.
Voltage clamp fluorometry (VCF) combines conventional two-electrode voltage clamp with fluorescence measurements to detect protein conformational changes, as sensed by a fluorophore covalently attached to the protein. We have applied VCF to a type IIb Na+-coupled phosphate cotransporter (NaPi-IIb), in which a novel cysteine was introduced in the putative third extracellular loop and expressed in Xenopus oocytes. Labeling this cysteine (S448C) with methanethiosulfonate (MTS) reagents blocked cotransport function, however previous electrophysiological studies (Lambert G., I.C. Forster, G. Stange, J. Biber, and H. Murer. 1999. J. Gen. Physiol. 114:637–651) suggest that substrate interactions with the protein can still occur, thus permitting study of a limited subset of states. After labeling S448C with the fluorophore tetramethylrhodamine MTS, we detected voltage- and substrate-dependent changes in fluorescence (ΔF), which suggested that this site lies in an environment that is affected by conformational change in the protein. ΔF was substrate dependent (no ΔF was detectable in 0 mM Na+) and showed little correlation with presteady-state charge movements, indicating that the two signals provide insight into different underlying physical processes. Interpretation of ion substitution experiments indicated that the substrate binding order differs from our previous model (Forster, I., N. Hernando, J. Biber, and H. Murer. 1998. J. Gen. Physiol. 112:1–18). In the new model, two (rather than one) Na+ ions precede Pi binding, and only the second Na+ binding transition is voltage dependent. Moreover, we show that Li+, which does not drive cotransport, interacts with the first Na+ binding transition. The results were incorporated in a new model of the transport cycle of type II Na+/Pi cotransporters, the validity of which is supported by simulations that successfully predict the voltage and substrate dependency of the experimentally determined fluorescence changes.  相似文献   

12.
13.
Editorial     
The voltage dependence of the rat renal type II Na+/Pi cotransporter (NaPi-2) was investigated by expressing NaPi-2 in Xenopus laevis oocytes and applying the two-electrode voltage clamp. In the steady state, superfusion with inorganic phosphate (Pi) induced inward currents (Ip) in the presence of 96 mM Na+ over the potential range −140 ≤ V ≤ +40 mV. With Pi as the variable substrate, the apparent affinity constant (K m Pi) was strongly dependent on Na+, increasing sixfold for a twofold reduction in external Na+. K m Pi increased with depolarizing voltage and was more sensitive to voltage at reduced Na+. The Hill coefficient was close to unity and the predicted maximum Ip (Ipmax) was 40% smaller at 50 mM Na+. With Na+ as the variable substrate, K m Na was weakly dependent on both Pi and voltage, the Hill coefficient was close to 3 and Ipmax was independent of Pi at −50 mV. The competitive inhibitor phosphonoformic acid suppressed the steady state holding current in a Na+-dependent manner, indicating the existence of uncoupled Na+ slippage. Voltage steps induced pre–steady state relaxations typical for Na+-coupled cotransporters. NaPi-2-dependent relaxations were quantitated by a single, voltage-dependent exponential. At 96 mM Na+, a Boltzmann function was fit to the steady state charge distribution (Q-V) to give a midpoint voltage (V0.5) in the range −20 to −50 mV and an apparent valency of ∼0.5 e. V0.5 became more negative as Na+ was reduced. Pi suppressed relaxations in a dose-dependent manner, but had little effect on their voltage dependence. Reducing external pH shifted V0.5 to depolarizing potentials and suppressed relaxations in the absence of Na+, suggesting that protons interact with the unloaded carrier. These findings were incorporated into an ordered kinetic model whereby Na+ is the first and last substrate to bind, and the observed voltage dependence arises from the unloaded carrier and first Na+ binding step.  相似文献   

14.
The type IIa Na+/Pi, cotransporter (NaPi-IIa) mediates electrogenic transport of three Na+ and one divalent Pi ion (and one net positive charge) across the cell membrane. Sequence comparison of electrogenic NaPi-IIa and IIb isoforms with the electroneutral NaPi-IIc isoform pointed to the third transmembrane domain (TMD-3) as a possibly significant determinant of substrate binding. To elucidate the role of TMD-3 in the topology and mechanism underlying NaPi-IIa function we subjected it to cysteine scanning mutagenesis. The constructs were expressed in Xenopus oocytes and Pi transport kinetics were assayed by electrophysiology and radiotracer uptake. Cys substitution resulted in only marginally altered kinetics of Pi transport in those mutants providing sufficient current for analysis. Only one site, at the extracellular end of TMD-3, appeared to be accessible to methanethiosulfonate reagents. However, additional mutations carried out at D224 (replaced by E, G or N) and N227 (replaced by D or Q) resulted in markedly altered voltage and substrate dependencies of the Pi-dependent currents. Replacing Asp-224 (highly conserved in electrogenic a and b isoforms) with Gly (the residue found in the electroneutral c isoform) resulted in a mutant that mediated electroneutral Na+-dependent Pi transport. Since electrogenic NaPi-II transports 3 Na+/transport cycle, whereas electroneutral NaPi-IIc only transports 2, we speculate that this loss of electrogenicity might result from the loss of one of the three Na+ binding sites in NaPi-IIa.  相似文献   

15.
The type II Na/phosphate cotransporters (NaPi-II) are critical for the control of plasma phosphate levels in vertebrates. NaPi-IIb mediates phosphate uptake from the small intestine followed by glomerular filtration and selective reabsorption from the renal proximal tubule by NaPi-IIa and NaPi-IIc. A C-terminal stretch of cysteine residues represents the hallmark of the NaPi-IIb isoforms. This motif is well conserved among NaPi-IIb type transporters but not found in other membrane proteins. To investigate the role of this motif we analyzed NaPi-II constructs in transiently and stably transfected MDCK cells. This cell line targets the NaPi-IIb isoforms from flounder and mouse to the apical membrane whereas the mouse IIa isoform shows no plasma membrane preference. Different parts of mouse NaPi-IIa and NaPi-IIb C-termini were fused to GFP-tagged flounder NaPi-II. The constructs showed strong staining of the plasma membrane with NaPi-IIb related constructs sorted predominantly apically, the IIa constructs localized apically and basolaterally with slight intracellular retention. When the cysteine stretch was inserted into the NaPi-IIa C-terminus, the construct was retained in a cytoplasmic compartment. 2-bromopalmitate, a specific palmitoylation inhibitor, released the transporter to apical and basolateral membranes. The drug also leads to a redistribution of the NaPi-IIb construct to both plasma membrane compartments. Immunoprecipitation of tagged NaPi-II constructs from [3H]-palmitate labeled MDCK cells indicated that the cysteine stretch is palmitoylated. Our results suggest that the modified cysteine motif prevents the constructs from basolateral sorting. Additional sorting determinants located downstream of the cysteine stretch may release the cargo to the apical compartment.  相似文献   

16.
Na(+)-coupled phosphate cotransporters of the SLC34 gene family catalyze the movement of inorganic phosphate (P(i)) across epithelia by using the free energy of the downhill electrochemical Na(+) gradient across the luminal membrane. Electrogenic (NaPi-IIa/b) and electroneutral (NaPi-IIc) isoforms prefer divalent P(i) and show strict Na(+):P(i) stoichiometries of 3:1 and 2:1, respectively. For electrogenic cotransport, one charge is translocated per transport cycle. When NaPi-IIa or NaPi-IIb are expressed in Xenopus oocytes, application of the P(i) transport inhibitor phosphonoformic acid (PFA) blocks a leak current that is not detectable in the electroneutral isoform. In this review, we present the experimental evidence that this transport-independent leak originates from a Na(+)-dependent uniport carrier mode intrinsic to NaPi-IIa/b isoforms. Our findings, based on the characteristics of the PFA-inhibitable leak measured from wild-type and mutant constructs, can be incorporated into an alternating access class model in which the leak and cotransport modes are mutually exclusive and share common kinetic partial reactions.  相似文献   

17.
The regulation of the epithelial Na+ channel (ENaC) during cell swelling is relevant in cellular processes in which cell volume changes occur, i.e., migration, proliferation and cell absorption. Its sensitivity to hypotonically induced swelling was investigated in the Xenopus oocyte expression system with the injection of the three subunits of mouse ENaC. We used voltage-clamp techniques to study the amiloride-sensitive Na+ currents (INa(amil)) and video microscopic methodologies to assess oocyte volume changes. Under conditions of mild swelling (25 % reduced hypotonicity) inward current amplitude decreased rapidly over 1.5 min. In contrast, there was no change in current amplitude of H2O-injected oocytes to the osmotic insult. INa(amil) kinetics analysis revealed a decrease in the slower inactivation time constant during the hypotonic stimuli. Currents from ENaC-injected oocytes were not sensitive to external Cl? reduction. Neither short- nor long-term cytochalasin D treatment affected the observed response. Oocytes expressing a DEG mutant β-ENaC subunit (β-S518K) with an open probability of 1 had reduced INa(amil) hypotonic response compared to oocytes injected with wild-type ENaC subunits. Finally, during the hypotonic response ENaC-injected oocytes did not show a cell volume difference compared with water-injected oocytes. On this basis we suggest that hypotonicity-dependent ENaC inhibition is principally mediated through an effect on open probability of channels in the membrane.  相似文献   

18.
We investigated the mechanisms by which chlorine (Cl2) and its reactive byproducts inhibit Na+-dependent alveolar fluid clearance (AFC) in vivo and the activity of amiloride-sensitive epithelial Na+ channels (ENaC) by measuring AFC in mice exposed to Cl2 (0–500 ppm for 30 min) and Na+ and amiloride-sensitive currents (INa and Iamil, respectively) across Xenopus oocytes expressing human α-, β-, and γ-ENaC incubated with HOCl (1–2000 μm). Both Cl2 and HOCl-derived products decreased AFC in mice and whole cell and single channel INa in a dose-dependent manner; these effects were counteracted by serine proteases. Mass spectrometry analysis of the oocyte recording medium identified organic chloramines formed by the interaction of HOCl with HEPES (used as an extracellular buffer). In addition, chloramines formed by the interaction of HOCl with taurine or glycine decreased INa in a similar fashion. Preincubation of oocytes with serine proteases prevented the decrease of INa by HOCl, whereas perfusion of oocytes with a synthetic 51-mer peptide corresponding to the putative furin and plasmin cleaving segment in the γ-ENaC subunit restored the ability of HOCl to inhibit INa. Finally, INa of oocytes expressing wild type α- and γ-ENaC and a mutant form of βENaC (S520K), known to result in ENaC channels locked in the open position, were not altered by HOCl. We concluded that HOCl and its reactive intermediates (such as organic chloramines) inhibit ENaC by affecting channel gating, which could be relieved by proteases cleavage.  相似文献   

19.
JAK2 (Janus kinase-2) overactivity contributes to survival of tumor cells and the V617FJAK2 mutant is found in the majority of myeloproliferative diseases. Tumor cell survival depends on availability of glucose. Concentrative cellular glucose uptake is accomplished by Na+ coupled glucose transport through SGLT1 (SLC5A1), which may operate against a chemical glucose gradient and may thus be effective even at low extracellular glucose concentrations. The present study thus explored whether JAK2 activates SGLT1. To this end, SGLT1 was expressed in Xenopus oocytes with or without wild type JAK2, V617FJAK2 or inactive K882EJAK2 and electrogenic glucose transport determined by dual electrode voltage clamp experiments. In SGLT1-expressing oocytes but not in oocytes injected with water or JAK2 alone, the addition of glucose to the extracellular bath generated a current (Ig), which was significantly increased following coexpression of JAK2 or V617FJAK2, but not by coexpression of K882EJAK2. Kinetic analysis revealed that coexpression of JAK2 enhanced the maximal transport rate without significantly modifying the affinity of the carrier. The stimulating effect of JAK2 expression was abrogated by preincubation with the JAK2 inhibitor AG490. Chemiluminescence analysis revealed that JAK2 enhanced the carrier protein abundance in the cell membrane. The decline of Ig during inhibition of carrier insertion by brefeldin A was similar in the absence and presence of JAK2. Thus, JAK2 fosters insertion rather than inhibiting retrieval of carrier protein into the cell membrane. In conclusion, JAK2 upregulates SGLT1 activity which may play a role in the effect of JAK2 during ischemia and malignancy.  相似文献   

20.
In the present study we investigated the effect of extracellular gadolinium on amiloride-sensitive Na+ current across Xenopus alveolar epithelium by Ussing chamber experiments and studied its direct effect on epithelial Na+ channels with the patch-clamp method. As observed in various epithelia, the short-circuit current (I sc) and the amiloride-sensitive Na+ current (I ami) across Xenopus alveolar epithelium was downregulated by high apical Na+ concentrations. Apical application of gadolinium (Gd3+) increased I sc in a dose-dependent manner (EC 50 = 23.5 µM). The effect of Gd3+ was sensitive to amiloride, which indicated the amiloride-sensitive transcellular Na+ transport to be upregulated. Benz-imidazolyl-guanidin (BIG) and p-hydroxy-mercuribenzonic-acid (PHMB) probably release apical Na+ channels from Na+-dependent autoregulating mechanisms. BIG did not stimulate transepithelial Na+ currents across Xenopus lung epithelium but, interestingly, it prevented the stimulating effect of Gd3+ on transepithelial Na+ transport. PHMB increased I sc and this stimulation was similar to the effect of Gd3+. Co-application of PHMB and Gd3+ had no additive effects on I sc. In cell-attached patches on Xenopus oocytes extracellular Gd3+ increased the open probability (NP o) of Xenopus epithelial sodium channels (ENaC) from 0.72 to 1.79 and decreased the single-channel conductance from 5.5 to 4.6 pS. Our data indicate that Xenopus alveolar epithelium exhibits Na+-dependent non-hormonal control of transepithelial Na+ transport and that the earth metal gadolinium interferes with these mechanisms. The patch-clamp experiments indicate that Gd3+ directly modulates the activity of ENaCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号