首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
PIKE/nuclear PI 3-kinase signaling in preventing programmed cell death   总被引:5,自引:0,他引:5  
PI 3-kinase enhancer (PIKE) is a nuclear GTPase that enhances PI 3-kinase (PI3K) activity. Nerve growth factor (NGF) treatment leads to PIKE activation by triggering the nuclear translocation of PLC-gamma1, which acts as a physiological guanine nucleotide exchange factor (GEF) for PIKE. PI3K occurs in the nuclei of a broad range of cell types, and various stimuli elicit PI3K nuclear translocation. While cytoplasmic PI3K has been well characterized, little is known about the biological function of nuclear PI3K. Surprisingly, nuclei from 30 min NGF-treated PC12 cells are resistant to DNA fragmentation initiated by the activated cell-free apoptosome, and both PIKE and nuclear PI3K are sufficient and necessary for this effect. Moreover, pretreatment of the control nucleus with PI(3,4,5)P3 alone mimics the anti-apoptotic activity of NGF by selectively preventing apoptosis, for which nuclear Akt is required but not sufficient. Recently, a nuclear PI(3,4,5)P3 receptor, nucleophosmin/B23, has been identified from NGF-treated PC12 nuclear extract. PI(3,4,5)P3/B23 complex mediates the anti-apoptotic effects of NGF by inhibiting DNA fragmentation activity of caspase-activated DNase (CAD). Thus, PI(3,4,5)P3/B23 complex and nuclear Akt effectors might coordinately mediate PIKE/nuclear PI3K signaling in promoting cell survival by NGF.  相似文献   

2.
Akt is one of the critical mediators in cellular signaling, and overactivation of Akt related pathway frequently occurs in hepatocellular carcinoma (HCC). In this study, we presented that Akt was upregulated in HCC cell lines, and its active phosphorylated form was mainly located in the nucleus. Employing the laser confocal techniques for imaging intracellular protein dynamics, we monitored the transnuclear movement of GFP-tagged wild-type Akt1 (Akt1-WT-GFP) and its inactive mutant (Akt1-T308A/S473A-GFP) in live SMMC-7721 HCC cells, and both of fusion proteins were found to distribute over the cytoplasm and nucleus. Moreover, it was found that platelet derived growth factor (PDGF) was able to accelerate the nuclear translocation of wild-type Akt1 in HCC cells but failed to speed up the motion of the mutant. It was demonstrated that activation of phosphatidylinositol 3-kinase (PI3K) and Akt1 facilitated the nuclear translocation of Akt1, but the phosphorylation at threonine 308 and serine 473 was not prerequisite.  相似文献   

3.
Suppressing the activity of Gsk3β is critical for maintenance of murine pluripotent stem cells. In murine embryonic stem cells (mESCs), Gsk3β is inhibited by multiple mechanisms, including its inhibitory phosphorylation on serine 9 by protein kinase B (Akt), a major effector of the canonical phosphatidylinositol 3-kinase (PI3K) pathway. A second PI3K/Akt-regulated mechanism promotes the nuclear export of Gsk3β, thereby restricting its access to nuclear substrates such as c-myc and β-catenin. Although Gsk3β shuttles between the nucleus and cytoplasm under self-renewing conditions, its localization is primarily cytoplasmic because its rate of nuclear export exceeds its rate of nuclear import. In this report, we show that Gsk3β is exported from the nucleus in a complex with Frat. Loss of PI3K/Akt activity results in dissociation of this complex and retention of Gsk3β in the nucleus. Frat continues to shuttle between the nucleus and cytoplasm under these conditions and remains predominantly in the cytoplasm. These results indicate that Frat carries Gsk3β out of the nucleus under self-renewing conditions and that PI3K regulates this by promoting its association with Frat. These findings provide new links between PI3K/Akt signaling and regulation of Gsk3β activity by Frat, an oncogene previously shown to cooperate with Myc in tumorigenesis.  相似文献   

4.
5.
Ahn JY  Rong R  Liu X  Ye K 《The EMBO journal》2004,23(20):3995-4006
PI 3-kinase (PI3K) occurs in the nuclei of a broad range of cell types, and various stimuli elicit PI3K nuclear translocation. However, little is known about the biological function of nuclear PI3K. Here we show that nuclear PI3K and its upstream regulator PIKE mediate the antiapoptotic activity of nerve growth factor (NGF) in the isolated nuclei. The nuclei from NGF-treated PC12 cells, EGF-treated HEK293 cells and HeLa cells are resistant to DNA fragmentation initiated by activated cell-free apoptosome. Nuclei from constitutively active PI3K adenovirus-infected cells display the same resistance as those treated by NGF, whereas PI3K inhibitors, dominant-negative PI3K or PIKE abolishes it. Knockdown of either PI3K or PIKE diminishes the antiapoptotic activity of NGF. PI (3,4,5)P3 alone mimics the antiapoptotic activity of NGF, for which nuclear Akt is required. These results demonstrate that PIKE/nuclear PI3K signaling through nuclear PI (3,4,5)P3 and Akt plays an essential role in promoting cell survival.  相似文献   

6.
7.
Ye K  Hurt KJ  Wu FY  Fang M  Luo HR  Hong JJ  Blackshaw S  Ferris CD  Snyder SH 《Cell》2000,103(6):919-930
While cytoplasmic PI3Kinase (PI3K) is well characterized, regulation of nuclear PI3K has been obscure. A novel protein, PIKE (PI3Kinase Enhancer), interacts with nuclear PI3K to stimulate its lipid kinase activity. PIKE encodes a 753 amino acid nuclear GTPase. Dominant-negative PIKE prevents the NGF enhancement of PI3K and upregulation of cyclin D1. NGF treatment also leads to PIKE interactions with 4.1N, which has translocated to the nucleus, fitting with the initial identification of PIKE based on its binding 4.1N in a yeast two-hybrid screen. Overexpression of 4.1N abolishes PIKE effects on PI3K. Activation of nuclear PI3K by PIKE is inhibited by the NGF-stimulated 4.1N translocation to the nucleus. Thus, PIKE physiologically modulates the activation by NGF of nuclear PI3K.  相似文献   

8.
9.
Erythroid differentiation of human erythroleukemia cell line K562 induced by erythropoietin is a complex process that involves modifications at nuclear level, including nuclear translocation of phosphatidyl-inositol 3-kinase. In this work we show that erythropoietin stimulation of K562 cells can induce nuclear translocation of active Akt, a downstream molecule of the phosphatidyl-inositol 3-kinase signaling pathway. Akt shows a peak of activity in whole cell homogenates at earlier stage when compared to the nucleus, which shows a peak delayed of 10 min. Akt increases its intranuclear amount and activity rapidly and transiently in response to EPO. Almost all Akt kinase that translocates to the nucleus shows a marked phosphorylation on serine 473. Nuclear enzyme translocation is blocked by the phosphatidyl-inositol 3-kinase inhibitor Ly294002 or Wortmannin. The specific Akt pharmacological inhibitor VI, VII and VIII that act as blocking enzyme activation inhibited translocation as well, whereas Akt inhibitor IX, that inhibits Akt activity, did not block Akt nuclear translocation. When cells were treated by means of siRNA sequences or with the Akt inhibitors the differentiation process was arrested, thus showing the requirement of the nuclear translocation of the active enzyme to differentiate. These findings strongly suggest that the intranuclear translocation of active Akt kinase represents an important step in the signaling pathway that mediates erythropoietin-induced erythroid differentiation.  相似文献   

10.
We have examined the issue of whether or not in PC12 cells it may be observed a nerve growth factor (NGF) nuclear translocation of an active (phosphorylated) Akt. Western blot analysis with antibodies to either total or phosphorylated Akt showed a maximal nuclear translocation after 15 min of NGF stimulation. NGF increased rapidly and transiently the enzymatic activity of immunoprecipitable nuclear Akt and after 45 min the values returned to a level close to the basal one. Enzyme translocation was blocked by the selective phosphoinositide 3-kinase inhibitor, LY294002. Confocal microscopy of samples stained with antibody to Akt showed an evident increase in immunostaining intensity in the nuclear interior after NGF treatment. Treatment of cells with inhibitors of protein phosphatase PP2A, calyculin A, or okadaic acid, maintained the phosphorylation levels of nuclear Akt. Immunoprecipitation experiments revealed an association between Akt and PP2A that was maximal when nuclear Akt activity was decreased. Both total and active Akt associated with the nuclear matrix and, in particular, with the protein nucleolin, with which Akt co-immunoprecipitated. These findings strongly suggest that the intranuclear translocation of active Akt is an important step in the signaling pathways elicited by the neurotrophin NGF and that the intranuclear control of Akt is achieved through the action of PP2A.  相似文献   

11.
RPS3, a conserved, eukaryotic ribosomal protein of the 40 S subunit, is required for ribosome biogenesis. Because ribosomal proteins are abundant and ubiquitous, they may have additional extraribosomal functions. Here, we show that human RPS3 is a physiological target of Akt kinase and a novel mediator of neuronal apoptosis. NGF stimulation resulted in phosphorylation of threonine 70 of RPS3 by Akt, and this phosphorylation was required for Akt binding to RPS3. RPS3 induced neuronal apoptosis, up-regulating proapoptotic proteins Dp5/Hrk and Bim by binding to E2F1 and acting synergistically with it. Akt-dependent phosphorylation of RPS3 inhibited its proapoptotic function and perturbed its interaction with E2F1. These events coincided with nuclear translocation and accumulation of RPS3, where it functions as an endonuclease. Nuclear accumulation of RPS3 results in an increase in DNA repair activity to some extent, thereby sustaining neuronal survival. Abolishment of Akt-mediated RPS3 phosphorylation through mutagenesis accelerated apoptotic cell death and severely compromised nuclear translocation of RPS3. Thus, our findings define an extraribosomal role of RPS3 as a molecular switch that accommodates apoptotic induction to DNA repair through Akt-mediated phosphorylation.  相似文献   

12.
The nuclear GTPase PIKE (PI 3-kinase Enhancer) binds PI 3-kinase and enhances it lipid kinase activity. PIKE predominantly distributes in the brain, and nerve growth factor stimulation triggers PIKE activation by provoking nuclear translocation of PLC-gamma1, which acts as a physiologic guanine nucleotide exchange factor (GEF) for PIKE through its SH3 domain. PIKE contains GTPase and ArfGAP domains, which are separated by a PH domain. C-terminal ArfGAP domain activates its internal GTPase activity, and this process is regulated by the interaction between phosphatidylinositols and PH domain. PI 3-kinase occurs in the nuclei of a broad range of cell types, and various stimuli elicit its nuclear translocation. The nuclei from NGF-treated PC12 cells are resistant to DNA fragmentation initiated by activated cell-free apoptosome, for which PIKE/nuclear PI 3-kinase signaling through nuclear PI(3,4,5)P(3) and Akt plays an essential role. As a nuclear receptor for PI(3,4,5)P(3,) B23 binds to PI(3,4,5)P(3) in an NGF-dependent way. The PI(3,4,5)P(3)/B23 complex inhibits DNA fragmentation activity of CAD. Nuclear Akt regulation of apoptosis is dependent on its phosphorylation of key substrates in the nucleus, but the identities of these substrates are unknown. Identification of its nuclear substrates will further our understanding of the physiological roles of nuclear PI 3-kinase/Akt signaling.  相似文献   

13.
14.
Neurotrophins, activating the PI3K/Akt signaling pathway, control neuronal survival and plasticity. Alterations in NGF, BDNF, IGF-1, or insulin signaling are implicated in the pathogenesis of Alzheimer disease. We have previously characterized a bigenic PS1×APP transgenic mouse displaying early hippocampal Aβ deposition (3 to 4 months) but late (17 to 18 months) neurodegeneration of pyramidal cells, paralleled to the accumulation of soluble Aβ oligomers. We hypothesized that PI3K/Akt/GSK-3β signaling pathway could be involved in this apparent age-dependent neuroprotective/neurodegenerative status. In fact, our data demonstrated that, as compared with age-matched nontransgenic controls, the Ser-9 phosphorylation of GSK-3β was increased in the 6-month PS1×APP hippocampus, whereas in aged PS1×APP animals (18 months), GSK-3β phosphorylation levels displayed a marked decrease. Using N2a and primary neuronal cell cultures, we demonstrated that soluble amyloid precursor protein-α (sAPPα), the predominant APP-derived fragment in young PS1×APP mice, acting through IGF-1 and/or insulin receptors, activated the PI3K/Akt pathway, phosphorylated the GSK-3β activity, and in consequence, exerted a neuroprotective action. On the contrary, several oligomeric Aβ forms, present in the soluble fractions of aged PS1×APP mice, inhibited the induced phosphorylation of Akt/GSK-3β and decreased the neuronal survival. Furthermore, synthetic Aβ oligomers blocked the effect mediated by different neurotrophins (NGF, BDNF, insulin, and IGF-1) and sAPPα, displaying high selectivity for NGF. In conclusion, the age-dependent appearance of APP-derived soluble factors modulated the PI3K/Akt/GSK-3β signaling pathway through the major neurotrophin receptors. sAPPα stimulated and Aβ oligomers blocked the prosurvival signaling. Our data might provide insights into the selective vulnerability of specific neuronal groups in Alzheimer disease.  相似文献   

15.
Vascular endothelial cells play crucial roles in regulating cardiovascular function, maintaining car-diovascular homeostasis and preventing the occur-rence of cardiac and cerebral vascular diseases. All these protective effects are fulfilled through various vasoactive products secreted by endothelium including nitric oxide (NO), prostacyclin (PGI2) and endothe-lium-derived hyperpolarizing factor (EDHF). NO, pro-duced from L-arginine by endothelial nitric-oxide synthase (eNOS), is an impor…  相似文献   

16.
Endothelial nitric oxide synthase (eNOS) is a key enzyme responsible for the regulation of vascular homeostasis. Many humor factors and mechanical forces can affect eNOS activity via phosphorylation modification but the mechanisms involved vary with stimuli applied. We have demonstrated that cytochrome P450 (CYP) epoxygenase-dependent metabolites of arachidonic acid, epoxyeicosatrienoic acids (EETs), can robustly up-regulate eNOS expression and its activity, however the relevant signaling pathways responsible for activity regulation are not well known. In this study, we explored the role of PI3 kinase (PI3K)/protein kinase B (Akt) signaling pathway in eNOS expression and its phosphorylation in response to EETs via direct addition of EETs into cultured bovine aorta endothelial cells (BAECs) and recombinant adeno-associated virus-mediated transfection of CYP epoxygenase genes CYPF87V and CYP2C11 to produce endogenous EETs followed by co-treatment with PI3K or Akt inhibitor. Results show that both exogenous and endogenous EETs could remarkably enhance eNOS expression and its phosphorylation at Ser1179 and Thr497 residues; PI3K inhibitor LY294002 could inhibit EETs-induced increase in eNOS-Ser(P)1179 but had no effect on the change of eNOS-Thr(P)497, while Akt inhibitor could attenuate the increase in phosphor-eNOS at both residues; both of the two inhibitors could block EETs-enhanced eNOS expression. These results lead to conclusions: (i) EETs-mediated regulation of eNOS activity may be related with the changes of phosphorylation level at eNOS-Ser1179 via PI3K/Akt and eNOS-Thr497 via Akt; (ii) PI3K/Akt signaling pathway is involved in the up-regulation of eNOS expression by EETs.  相似文献   

17.
18.
1,25-dihydroxyvitamin D(3) (VD(3)) induces differentiation in a number of leukemia cell lines and under various conditions is able to either stimulate or inhibit nuclear factor kappa B (NF-kappaB) activity. Here we report a time-dependent biphasic regulation of NF-kappaB in VD(3)-treated HL-60 leukemia cells. After VD(3) treatment there was an early approximately 4 h suppression and a late 8-72 h prolonged reactivation of NF-kappaB. The reactivation of NF-kappaB was concomitant with increased IKK activities, IKK-mediated IkappaBalpha phosphorylation, p65 phosphorylation at residues S276 and S536, p65 nuclear translocation and p65 recruitment to the NF-kappaB/vitamin D responsive element promoters. In parallel with NF-kappaB stimulation, there was an up-regulation of NF-kappaB controlled inflammatory and anti-apoptotic genes such as TNFalpha, IL-1beta and Bcl-xL. VD(3)-triggered reactivation of NF-kappaB was associated with PI3K/Akt phosphorylation. PI3K/Akt antagonists suppressed VD(3)-stimulated IkappaBalpha phosphorylation as well as NF-kappaB-controlled gene expression. The early approximately 4 h VD(3)-mediated NF-kappaB suppression coincided with a prolonged increase of IkappaBalpha protein which require de novo protein synthesis, lasted for as least 72 h and was insensitive to MAPK, IKK or PI3K/Akt inhibitors. Our data suggest a novel biphasic regulation of NF-kappaB in VD(3)-treated leukemia cells and our results may have provided the first molecular explanation for the contradictory observations reported on VD(3)-mediated immune-regulation.  相似文献   

19.
We and others have previously demonstrated the existence of an autonomous nuclear polyphosphoinositide cycle that generates second messengers such as diacylglycerol (DAG), capable of attracting to the nucleus specific protein kinase C (PKC) isoforms (Neri et al. (1998) J. Biol. Chem. 273, 29738-29744). Recently, however, nuclei have also been shown to contain the enzymes responsible for the synthesis of the non-canonical 3-phosphorylated inositides. To clarify a possible role of this peculiar class of inositol lipids we have examined the question of whether nerve growth factor (NGF) induces PKC-zeta nuclear translocation in PC12 cells and whether this translocation is dependent on nuclear phosphatidylinositol 3-kinase (PI 3-K) activity and its product, phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P(3)]. NGF increased both the amount and the enzyme activity of immunoprecipitable PI 3-K in PC12 cell nuclei. Activation of the enzyme, but not its translocation, was blocked by PI 3-K inhibitors wortmannin and LY294002. Treatment of PC12 cells for 9 min with NGF led to an increase in the nuclear levels of PtdIns(3,4,5)P(3). Maximal translocation of PKC-zeta from the cytoplasm to the nucleus (as evaluated by immunoblotting, enzyme activity, and confocal microscopy) occurred after 12 min of exposure to NGF and was completely abrogated by either wortmannin or LY294002. In contrast, these two inhibitors did not block nuclear translocation of the conventional, DAG-sensitive, PKC-alpha. On the other hand, the specific phosphatidylinositol phospholipase C inhibitor, 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine, was unable to abrogate nuclear translocation of the DAG-insensitive PKC-zeta. These data suggest that a nuclear increase in PI 3-K activity and PtdIns(3,4,5)P(3) production are necessary for the subsequent nuclear translocation of PKC-zeta. Furthermore, they point to the likelihood that PKC-zeta is a putative nuclear downstream target of PI 3-K during NGF-promoted neural differentiation.-Neri, L. M., Martelli, A. M., Borgatti, P., Colamussi, M. L., Marchisio, M., Capitani, S. Increase in nuclear phosphatidylinositol 3-kinase activity and phosphatidylinositol (3,4, 5) trisphosphate synthesis precede PKC-zeta translocation to the nucleus of NGF-treated PC12 cells.  相似文献   

20.
As embryonic progenitors for the gametes, PGCs (primordial germ cells) proliferate and develop under strict regulation of numerous intrinsic and external factors. As the most active natural metabolite of vitamin A, all-trans RA (retinoic acid) plays pivotal roles in regulating development of various cells. The proliferating action of RA on PGCs was investigated along with the intracellular PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B; also known as Akt)-mediated NF-κB (nuclear factor κB) signalling cascade. The results show that RA significantly promoted PGC proliferation in a dose- and time-dependent manner, confirmed by BrdU (bromodeoxyuridine) incorporation and cell cycle analysis. However, this promoting effect was attenuated by sequential inhibitors of LY294002 for PI3K, KP372-1 for Akt and SN50 for NF-κB respectively. Western blot analysis showed increased Akt phosphorylation (Ser473) of PGCs after stimulation with RA, but this was abolished by LY294002 or KP372-1. Treatment with RA increased expression of NF-κB and decreased IκBα (inhibitory κBα) expression, which were inhibited by SN50. Blockade of PI3K or Akt activity inhibited NF-κB translocation from the cytoplasm to the nucleus. Finally, mRNA expression of cell cycle regulating genes [cyclin D1 and E, CDK6 (cyclin-dependent kinase 6) and CDK2] was up-regulated in the RA-treated cells. This stimulation was also markedly retarded by combined treatment with LY294002, KP372-1 and SN50. These results suggest that RA activates the PI3K/Akt and NF-κB signalling cascade to promote proliferation of the cultured chicken PGCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号