首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A recombinant Escherichia coli strain (E. coli NO3) containing genomic DNA fragments from azo-reducing wild-type Pseudomonas luteola strain decolorized a reactive azo dye (C.I. Reactive Red 22) at approx. 17 mg dye h–1 g cell. The ability to decolorize the azo dye probably did not originate from the plasmid DNA. Acclimation in azo-dye-containing media gave a nearly 10% increase in the decolorization rate of E. coli NO3. Growth with 1.25 g glucose l–1 completely stopped the decolorization activity. When the decolorization metabolites from E. coli NO3 were analyzed by HPLC and MS, the results suggested that decolorization of the azo dye may be due to cleavage of the azo bond.  相似文献   

2.
This study presents the improved biodegradation of Congo red, a toxic azo dye, using mutant Bacillus sp. obtained by random mutagenesis of wild Bacillus sp. using UV and ethidium bromide. The mutants obtained were screened based on their decolorization performance and best mutants were selected for further studies. Better decolorization was observed in the initial Congo red concentration range 100–1000 mg/l for wild species whereas mutant strain was found to offer better decolorization up to 3000 mg/l. Mutant strain offered 12–30% reduction in time required for the complete decolorization by wild strain. The optimum pH and temperature were found to be 7.0 and 37 °C, respectively. Two efficient strains such as Bacillus sp. ACT 1 and Bacillus sp. ACT 2 were isolated from the various mutants obtained. Bacillus sp. ACT 2 showed improved enzymatic production and Bacillus sp. ACT 1 showed improved growth compared to wild strain. The enzyme responsible for the degradation was found to be azoreductase by SDS–PAGE and about 53% increased production of enzyme was achieved with mutant species. The experimental data were modeled using growth and substrate inhibition models.  相似文献   

3.
A 6.3 kb DNA fragment containing genes responsible for azo-dye decolorization was cloned and expressed in Escherichia coli. The resulting recombinant strain E. coli CY1 decolorized 200 mg azo dye (C.I. Reactive Red 22) l–1 at 28 °C at 8.2 mg g cell–1 h–1, while the host (E. coli DH5) had no color-removal activity. Addition of 0.5 mM isopropyl--d-thiogalacto-pyranoside (IPTG) increased the decolorization rate 3.4-fold. The dependence of the decolorization rate on initial dye concentration essentially followed Monod-type kinetics and the maximal rate occurred with the dye at 600 mg l–1. The decolorization rate of E. coli CY1 was optimal at 40 °C and pH 11. Aeration (increased dissolved O2 level) strongly inhibited the decolorization, but decolorization occurred effectively under static incubation conditions (no agitation was employed). The CY1 strain also exhibited excellent stability during repeated-batch operations.  相似文献   

4.
Galactomyces geotrichum MTCC 1360, a yeast species showed 88% ADMI (American dye manufacturing institute) removal of mixture of structurally different dyes (Remazol red, Golden yellow HER, Rubine GFL, Scarlet RR, Methyl red, Brown 3 REL, Brilliant blue) (70 mg l−1) within 24 h at 30 °C and pH 7.0 under shaking condition (120 rpm). Glucose (0.5%) as a carbon source was found to be more effective than other sources used. The medium with metal salt (CaCl2, ZnSO4, FeCl3, MgCl2, CuSO4) (0.5 mM) showed less ADMI removal as compared to control, but did not inhibit complete decolorization. The presence of tyrosinase, NADH-DCIP reductase and induction in laccase activity during decolorization indicated their role in degradation. HPTLC (High performance thin layer chromatography) analysis revealed the removal of individual dyes at different time intervals from dye mixture, indicating preferential degradation of dyes. FTIR (Fourier transform infrared spectroscopy) and HPLC (High performance liquid chromatography) analysis of samples before and after decolorization confirmed the biotransformation of dye. The reduction of COD (Chemical oxygen demand) (69%), TOC (Total organic carbon) (43%), and phytotoxicity study indicated the conversion of complex dye molecules into simpler oxidizable products having less toxic nature.  相似文献   

5.
Seasonal changes of field populations and growth rates of two dinoflagellates, Ceratium furca and Ceratium fusus, were examined in the temperate coastal water of Sagami Bay, Japan. Weekly field sampling was conducted from August 2002 to August 2003, and laboratory experiments were also carried out to investigate effects of temperature, irradiance and photoperiod on the growth rates of these two Ceratium species. In the field, the abundances of both species increased significantly from April to August 2003, were gradually decreased from November 2002 and were not observed in January 2003. C. fusus was able to increase at lower temperatures in February 2003 compared to C. furca. In the laboratory, the two species did not grow at <10 °C or >32 °C. The highest specific growth rate of C. furca was 0.72 d−1 at 24 °C and 600 μmol m−2 s−1. Optimum growth rates (>0.4 d−1) of C. furca were observed at temperatures from 18 to 28 °C and at irradiances from 216 to 796 μmol m−2 s−1. The highest growth rate of C. fusus was 0.56 d−1 at 26 °C and 216 μmol m−2 s−1. Optimum growth rates of C. fusus were observed at the same irradiance rage of C. furca, whereas optimum temperature range was narrower (26–28 °C). The growth curves of both species indicated saturation of the growth rates when light intensity was above 216 μmol m−2 s−1, and did not show photoinhibition at irradiances up to 796 μmol m−2 s−1. The specific growth rates of both Ceratium species were clearly decreased at L:D = 10:14 relative to those at L:D = 14:10 and L:D = 12:12. The present study indicates the two Ceratium species can adapt to a wide range of temperature and irradiance.  相似文献   

6.
Biodecolourisation of an azo dye by anaerobic cultures using a liposomal textile levelling agent as primary substrate was assessed. Liposomes seem to facilitate the uptake of the dye (Acid Orange 7) by anaerobic biomass, leading to a fast decolourisation (colour removal of 96% was achieved in the first sample port of the reactor profiles). On the other hand, the presence of dye (60–300 mg l−1) caused a decrease in the chemical oxygen demand (COD) degradation rate (4.1–2.5 g COD removed l−1 d−1 for 60 and 300 mg l−1 of dye, respectively), suggesting inhibitory effects.Aerobic degradation of aromatic amines was investigated in aerobic respirometric assays with different types of inocula. Sulfanilic acid and aniline were mineralised by inocula with a significant microbiological diversity, even with domestic effluent. These results were confirmed by a significant reduction of COD, total organic carbon (TOC) and a high oxygen consumption (biochemical oxygen demand/theoretical oxygen demand), 92±4%. Kinetic analysis showed that a sigmoid function describes quite well the experimental data, even better than the exponential model. Orthanilic and metanilic acids and 1-amino-2-naphtol were persistent under the tested conditions.  相似文献   

7.
The red tide dinoflagellate Karenia brevis (Davis) G. Hansen and Moestrup is noted for causing mass mortalities of marine organisms in the Gulf of Mexico. Most research has focused on culture isolates from the eastern Gulf of Mexico. In this investigation, we examine the effects of light, temperature and salinity on the growth rate of K. brevis from the western Gulf of Mexico. Growth rates of K. brevis were determined under various combinations of irradiance (19, 31, 52, 67, and 123 μmol m−2 s−1), salinity (25, 30, 35, 40 and 45), and temperature (15, 20, 25, and 30 °C). Maximum growth rates varied from 0.17 to 0.36 div day−1 with exponential growth rates increasing with increasing irradiance. Little or no growth was supported at 19 μmol photons m−2 s−1 for any experiment. Maximum growth rates at 15 °C were much lower than at other temperatures. Maximum growth rates of the Texas clone (SP3) fell within the range of Florida clones reported in the literature (0.17–0.36 div day−1 versus 0.2–1.0 div day−1). The Texas clone SP3 had a very similar light saturation point compared to that of a Florida isolate (Wilson's clone) (67 μmol m−2 s−1 versus 65 μmol m−2 s−1), and light compensation (20–30 μmol m−2 s−11). The upper and lower salinity tolerance of the Texas clone was similar than that of some Florida clones (45 versus 46 and 25 versus 22.5, respectively). In our study, the Texas clone had the same temperature tolerance reported for Florida clones (15–30 °C). While individual clones can vary considerably in maximum growth rates, our results indicate only minor differences exist between the Texas and Florida strains of K. brevis in their temperature and salinity tolerance for growth. While the literature notes lower salinity occurrences of K. brevis in nearby Louisiana, our isolate from the southern Texas coast has the higher salinity requirements typical of K. brevis in the eastern Gulf of Mexico.  相似文献   

8.
A multi-functional enzyme ICChI with chitinase/lysozyme/exochitinase activity from the latex of Ipomoea carnea subsp. fistulosa was purified to homogeneity using ammonium sulphate precipitation, hydrophobic interaction and size exclusion chromatography. The enzyme is glycosylated (14–15%), has a molecular mass of 34.94 kDa (MALDI–TOF) and an isoelectric point of pH 5.3. The enzyme is stable in pH range 5.0–9.0, 80 °C and the optimal activity is observed at pH 6.0 and 60 °C. Using p-nitrophenyl-N-acetyl-β-d-glucosaminide, the kinetic parameters Km, Vmax, Kcat and specificity constant of the enzyme were calculated as 0.5 mM, 2.5 × 10−8 mol min−1 μg enzyme−1, 29.0 s−1 and 58.0 mM−1 s−1 respectively. The extinction coefficient was estimated as 20.56 M−1 cm−1. The protein contains eight tryptophan, 20 tyrosine and six cysteine residues forming three disulfide bridges. The polyclonal antibodies raised and immunodiffusion suggests that the antigenic determinants of ICChI are unique. The first fifteen N-terminal residues G–E–I–A–I–Y–W–G–Q–N–G–G–E–G–S exhibited considerable similarity to other known chitinases. Owing to these unique properties the reported enzyme would find applications in agricultural, pharmaceutical, biomedical and biotechnological fields.  相似文献   

9.
Laboratory investigation of the potential use of Penicillium sp. as biosorbent for the removal of acid violet dye from aqueous solution was studied with respect to pH, temperature, biosorbent, initial dye concentrations. Penicillium sp. decolourizes acid violet (30 mg l−1) within 12 h agitation of 150 rpm at pH 5.7 and temperature of 35 °C. The pellets exhibited a high dye adsorption capacity (5.88 mg g−1) for acid violet dye over a pH range (4–9); the maximum adsorption was obtained at pH 5.7. The increase of temperature favored biosorption for acid violet, but the optimum temperature was 35 °C. Adsorption kinetic data were tested using pseudo-first-order, pseudo-second-order and kinetic studies showed that the biosorption process follows pseudo-first-order rate kinetics with an average rate constant of 0.312 min−1. Isotherm experiments were conducted to determine the sorbent–desorption behavior of examined dye from aqueous solutions using Langmuir and Freundlich equations. Langmuir parameter indicated a maximum adsorption capacity of 4.32 mg g−1 for acid violet and RL value of 0.377. Linear plot of log qe vs log Ce shows that applicability of Freundlich adsorption isotherm model. These results suggest that this fungus can be used in biotreatment process as biosorbent for acid dyes.  相似文献   

10.
The influence of light and temperature on the cylindrospermopsin (CYN) production of two Aphanizomenon flos-aquae strains, isolated from North-eastern German lakes, was investigated with semi-continuously growing cultures. A light gradient from 10 to 60 μE m−2 s−1 in combination with temperatures of 16, 20, and 25 °C was tested.CYN concentrations varied by a maximum factor of 2.7 in strain 10E9 with a significant decrease with increasing temperature. Strain 22D11 showed less pronounced changes, i.e. by a factor of 1.6, and without clear relationship to temperature.Reaction patterns of CYN production to changing light intensities are different at different temperatures. In both strains CYN concentrations increase significantly at 20 °C between 10 and 60 μE m−2 s−1, whereas they decrease significantly at 25 °C in the same light gradient. The amount of synthesised CYN is not reflected by growth rates of the strains in a uniform manner. Nonetheless several temperature–light combinations which constitute physiological stress seem to trigger CYN production and particularly CYN release from cells. The lowest growth rate observed at 16 °C and 60 μE m−2 s−1 of strain 22D11 may reflect photoinhibition due to the lower temperature and related limited CO2-fixation. Under these conditions, extracellular CYN concentrations increased to 58% of total CYN, while the share of extracellular CYN of all other light and temperature regimes was 11–26%. From the results and the experimental design we conclude an active release of the toxin into medium to be more likely than mere leakage from cells.  相似文献   

11.
A comparison of the thermoregulation of water foraging wasps (Vespula vulgaris, Polistes dominulus) under special consideration of ambient temperature and solar radiation was conducted. The body surface temperature of living and dead wasps was measured by infrared thermography under natural conditions in their environment without disturbing the insects’ behaviour. The body temperature of both of them was positively correlated with Ta and solar radiation. At moderate Ta (22–28 °C) the regression lines revealed mean thorax temperatures (Tth) of 35.5–37.5 °C in Vespula, and of 28.6–33.7 °C in Polistes. At high Ta (30–39 °C) Tth was 37.2–40.6 °C in Vespula and 37.0–40.8 °C in Polistes. The thorax temperature excess (TthTa) increased at moderate Ta by 1.9 °C (Vespula) and 4.4 °C (Polistes) per kW−1 m−2. At high Ta it increased by 4.0 °C per kW−1 m−2 in both wasps. A comparison of the living water foraging Vespula and Polistes with dead wasps revealed a great difference in their thermoregulatory behaviour. At moderate Ta (22–28 °C) Vespula exhibited distinct endothermy in contrast to Polistes, which showed only a weak endothermic activity. At high Ta (30–39 °C) Vespula reduced their active heat production, and Polistes were always ectothermic. Both species exhibited an increasing cooling effort with increasing insolation and ambient temperature.  相似文献   

12.
In this study we investigated the ability of Chara intermedia to acclimate to different irradiances (i.e. “low-light” (LL): 20–30 μmol photons m−2 s−1 and “high-light” (HL): 180–200 μmol photons m−2 s−1) and light qualities (white, yellow and green), using morphological, photosynthesis, chlorophyll fluorescence and pigment analysis.Relative growth rates increased with increasing irradiance from 0.016 ± 0.003 (LL) to 0.024 ± 0.005 (HL) g g−1 d−1 fresh weight and were independent of light quality. A growth-based branch orientation towards high-light functioning as a mechanism to protect the plant from excessive light was confirmed. It was shown that the receptor responsible for the morphological reaction is sensitive to blue-light.C. intermedia showed higher oxygen evolution (up to 10.5 (HL) vs. 4.5 (LL) nmol O2 mg Chl−1 s−1), photochemical and energy-dependent Chl fluorescence quenching and a lower Fv/Fm after acclimation to HL. With respect to qP, the acclimation of the photosynthetic apparatus depended on light quality and needed the blue part of the spectrum for full development. In addition, pigment composition was influenced by light and the Chl a/Car and Antheraxanthin (A) + Zeaxanthin (Z)/Violaxanthin (V) + A + Z (DES) ratios revealed the expected acclimation behaviour in favour of carotenoid protection under HL (i.e. decrease of Chl a/Car from 3.41 ± 0.48 to 2.30 ± 0.35 and increase of DES from 0.39 ± 0.05 to 0.87 ± 0.03), while the Chl a/Chl b ratios were not significantly affected. Furthermore it was shown that morphological light acclimation mechanisms influence the extent of the physiological modifications.  相似文献   

13.
Gum kondagogu (Cochlospermum gossypium), an exudates tree gum from India was explored for its potential to decontaminate toxic metals (Pb2+ and Cd2+). Optimum biosorption of metals were determined by investigating the contact time, pH, initial concentration of metal ions and biosorbent dose at 25 ± 2 °C. The maximum metal biosorption capacity for gum kondagogu was observed for Pb2+ (48.52 mg g−1) and Cd2+ (47.48 mg g−1) as calculated by Langmuir isotherm model. Kinetic studies showed that the biosorption rates could be described by pseudo-second-order expression. The metal interactions with biopolymer were assessed by FT-IR, SEM–EDXA and XPS analysis. Results based on these techniques suggest that mechanism of metal binding by the biopolymer involves micro-precipitation, ion-exchange and metal complexation.  相似文献   

14.
Feng Li  Yonghong Xie   《Aquatic Botany》2009,91(3):219-223
The aim of this study is to identify how submerged macrophyte Vallisneria spiralis acclimate to sedimentation by investigating the growth, biomass allocation and clonal characteristics in a greenhouse experiment of 30 days. Experimental treatments combined two sediment types (mud and sand) with four sedimentation depths (0, 2, 4 and 8 cm) in a factorial design. Biomass accumulation (0.98–1.33 versus 0.36 g per plant) and relative growth rate (RGR, 0.082–0.093 versus 0.046 g g−1 day−1) decreased only in the 8 cm sand treatment. Neither sedimentation depth nor sediment type influenced biomass allocation. The ratio of spacer length to biomass was significantly higher in the 8 cm sand (20.4 cm g−1) than in other treatments (6.0–8.5 cm g−1). Branching angles and the depths between ramet basal and sediment surface were only affected by sedimentation depth. Clonal ramets developed nearly vertical branching angles (ranged from 78° to 101°) in the 0 cm sedimentation treatment, but the angles of treated plants decreased at the initial 3–5 ramets (ranged from 68° to 78° at the first ramet level), then remained a relatively constant value (about 90°) in the following spacers. These data indicate that plagiotropic stolons were formed to project the ramets to sediment surface and to escape sedimentation stress primarily by elongating spacer length and decreasing branching angle, rather than by adjusting biomass allocation.  相似文献   

15.
Emissions of greenhouse gases from ponds constructed for nitrogen removal   总被引:6,自引:0,他引:6  
Methane and carbon dioxide emission from three constructed ponds were monitored during an annual cycle. Water temperature was a good predictor of methane emission in all three ponds. In the most intensively studied pond, nitrate concentration in the bottom water could further explain the amount of methane emitted. When water temperature exceeded 15 °C between 1 and 54 mg, CH4 m−2 h−1 was emitted on all occasions, while at temperatures below 10 °C, less than 0.6 mg CH4 m−2 h−1 was emitted. The flux of carbon dioxide differed between the ponds and no consistent patterns were found. In a laboratory study at 20 °C, we showed that high, but naturally occurring, nitrate concentrations (8 and 16 mg NO3–N l−1) constrained the production of methane compared to the treatment with no nitrate addition. Nitrous oxide production was positively correlated with nitrate concentration. Carbon dioxide production was highest at the highest nitrate concentration, which indicates that increased nitrate loading on ponds and wetlands will stimulate organic matter decomposition rates. Our conclusion is that these ponds constructed for nitrate removal emit greenhouse gases comparable to lakes in the temperate region.  相似文献   

16.
The extracellular carboxymethyl cellulase (CSCMCase) from the yeast, Cryptococcus sp. S-2, was produced when grown on cellobiose. It was purified to homogeneity from the supernatant by ultrafiltration, DEAE-5PW anion exchange column and TSK-Gel G3000SW gel filtration. The purified enzyme was monomeric protein with molecular mass of approximately 34 kDa. The optimum temperature and pH for the action of the enzyme were at 40–50 °C and 3.5, respectively. It was stable at pH range of 5.5–7.5 and retained approximately 50% of its maximum activity after incubating at 90 °C for 1 h. Moreover, it could able to hydrolyze carboxymethyl cellulose sodium salt higher than insoluble cellulose substrate such as Avicel, SIGMACELL® and CM cellulose. Due to its action at acidic pH and moderately stable at high temperature, the gene encoding carboxymethyl cellulase (CSCMCase) was isolated and improved the enzyme yield by high cell-density fermentation of Pichia pastoris. The CSCMCase cDNA contains 1023 nucleotides and encodes a 341-amino acid. It was successfully expressed under the control of alcohol oxidase I promoter using methanol induction of P. pastoris fermentation in a 2L ABLE bioreactor. The production of the recombinant carboxymethyl cellulases was higher than that from Cryptococcus sp. S-2 of 657-fold (2.75 and 4.2 × 10−3 mg protein L−1, respectively) indicating that the leader sequence of CSCMCase has been recognized and processed as efficiently by P. pastoris. Furthermore, the recombinant enzyme was purified in two-step of ultrafiltration and hydrophobic interaction chromatography which would be much more convenient for large-scale purification for successful industrial application.  相似文献   

17.
We studied the seasonal variation on aerobic metabolism and the response of oxidative stress parameters in the digestive glands of the subpolar limpet Nacella (P.) magellanica. Sampling was carried out from July (winter) 2002 to July 2003 in Beagle Channel, Tierra del Fuego, Argentina. Whole animal respiration rates increased in early spring as the animals spawned and remained elevated throughout summer and fall (winter: 0.09 ± 0.02 μmol O2 h− 1 g− 1; summer: 0.31 ± 0.06 μmol O2 h− 1 g− 1). Oxidative stress was assessed at the hydrophilic level as the ascorbyl radical content / ascorbate content ratio (A / AH). The A / AH ratio showed minimum values in winter (3.7 ± 0.2 10− 5 AU) and increased in summer (18 ± 5 10− 5 AU). A similar pattern was observed for lipid radical content (122 ± 29 pmol mg− 1 fresh mass [FW] in winter and 314 ± 45 pmol mg− 1 FW in summer), iron content (0.99 ± 0.07 and 2.7 ± 0.6 nmol mg− 1 FW in winter and summer, respectively) and catalase activity (2.9 ± 0.2 and 7 ± 1 U mg− 1 FW in winter and summer, respectively). Since nitrogen derived radicals are thought to be critically involved in oxidative metabolism in cells, nitric oxide content was measured and a significant difference in the content of the Fe–MGD–NO adduct in digestive glands from winter and summer animals was observed. Together, the data indicate that both oxygen and nitrogen radical generation rates in N. (P.) magellanica are strongly dependent on season.  相似文献   

18.
The effects of temperature, salinity and irradiance on the growth of the red tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee were examined in the laboratory. Exposed to 45 different combinations of temperature (10–30 °C) and salinity (0–40) under saturating irradiance, G. instriatum exhibited its maximum growth rate of 0.7 divisions/day at a combination of 25 °C and a salinity of 30. Optimum growth rates (>0.5 divisions/day) were observed at temperatures ranging from 20 to 30 °C and at salinities from 10 to 35. The organism could not grow at ≤10 °C. In addition, G. instriatum burst at a salinity of 0 at all temperatures, but grew at a salinity of 5 at temperatures between 20 and 25 °C. It is noteworthy that G. instriatum is a euryhaline organism that can live under extremely low salinity. Factorial analysis revealed that the contributions of temperature and salinity to its growth of the organism were almost equal. The irradiance at the light compensation point (I0) was 10.6 μmol/(m2 s) and the saturated irradiance for growth (Is) was 70 μmol/(m2 s), which was lower than Is for several other harmful dinoflagellates (90–110 μmol/(m2 s)).  相似文献   

19.
The current distribution of the introduced seagrass Zostera japonica is restricted to the mid- to upper intertidal zone in the coastal Pacific Northwest region of North America. The climate in this region is cool and wet, becoming hotter and dryer with increasing distance southward. Since temperature is likely to be an important factor affecting distribution of this species, growth of two populations located near the northern and southern limits of its established range along the Pacific Coast of North America were measured in an experimental setting across a range of temperatures typical of those in the field during the growing season (10, 20, and 30 °C). The effects of temperature and population were both significant. Leaf elongation, growth, and areal productivity rates of the northern population were consistently lower than those of the southern population. Across the range of temperatures, mean leaf elongation rates ranged from 0.47 to 1.40 cm2 shoot−1 d−1; mean growth rates ranged from 0.19 to 0.52 mg dry wt shoot−1 d−1. Mean areal productivity ranged from 0.54 to 1.92 g dry wt m−2 d−1. Maximum rates of leaf elongation, growth, and areal productivity for both populations were observed at 20 °C. However, leaf elongation, growth, and areal productivity of the northern population declined markedly at 30 °C, whereas no comparable declines were observed for the southern population. This suggests that Z. japonica populations near the southern limits of its established range may be better adapted to warmer temperatures than populations near the northern range limits and further range extensions southward along the California coast may be likely. These differences could be important in predicting the outcome of competitive interactions between native and introduced seagrass species, and in determining future patterns of distribution and zonation of Pacific Coast seagrasses.  相似文献   

20.
Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L.   总被引:2,自引:0,他引:2  
The uptake of zinc (Zn) by the duckweed Lemna gibba L., native to the north-east region of Algeria, was investigated in quarter Coïc solutions enriched with 6.0, 10.0, 14.0 and 18.0 mg l−1 of Zn supplied as zinc sulphate (ZnSO4). Zinc concentrations were measured in the water daily and in duckweed biomass at the end of the experiments. These results showed that under experimental conditions (pH = 6.0 ± 0.1, T = 21 ± 1 °C, photoperiod = 12 h/j), L. gibba was able to accumulate in its biomass 4.23; 15.62; 23.88 and 25.81 mg g−1 DM, respectively for the four initial concentrations selected. At these concentrations, the metal removed percentages were 61–71%. The mass balance performed on the system showed that about 49–68% of Zn (depending on the initial concentration in water) was removed by precipitation as zinc phosphate. The results showed that this aquatic plant can be successfully used for Zn removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号