首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
于清  曹志艳  董金皋 《微生物学报》2007,47(6):1013-1018
根据已知植物病原真菌黑色素生物合成相关基因scd(scytalone dehydratase)氨基酸序列保守区域设计简并引物,分别以玉米大斑病菌基因组DNA和cDNA为模板,通过PCR技术获得scd基因的同源片段,利用SMART-RACE技术和3′RACE技术获得了scd的cDNA全长序列。并根据scd基因cDNA全长序列设计基因特异性引物扩增玉米大斑病菌基因组DNA获得了该基因DNA全长。通过DNA序列和cDNA序列对比分析发现scd基因编码一个180个氨基酸的开放阅读框架,DNA序列含有两个分别为50bp和78bp的内含子。生物信息学分析表明其氨基酸序列与水稻胡麻叶斑病菌的scd基因的相似性很高。DHN黑色素生物合成途径特异性抑制剂—Carpropamid处理玉米大斑病菌,在12~24h之内可以抑制病菌分生孢子的萌发和附着胞的产生,但随着处理时间的延长抑制剂的抑制作用变弱,并且经过抑制剂处理的病菌不能侵入寄主组织或不能在寄主组织内扩展。初步明确了scd与玉米大斑病菌黑色合成途径及致病性的关系。  相似文献   

2.
钙信号途径参与小斑病菌致病过程的调控   总被引:6,自引:0,他引:6  
为确定Ca^2+信号途径与玉米小斑病菌致病过程的相关性,用可从不同位点阻断Ca^2+信号转导途径的抑制剂分别处理小斑病菌的分生孢子,结果表明:Ca“螯合剂EGTA、Ca^2+通道抑制剂Verapamil、影响钙调素与钙调素依赖蛋白激酶作用位点的抑制剂KN-93,随着浓度的增加,对孢子萌发和附着胞形成过程的抑制作用明显增强;同一浓度下,抑制剂对附着胞形成过程的抑制作用大于孢子萌发过程;抑制剂可使附着胞形态明显变小甚至不能形成。以上结果表明钙信号途径参与了玉米小斑病菌主要致病过程的调控。  相似文献   

3.
为确定Ca2+信号途径与玉米小斑病菌致病过程的相关性,用可从不同位点阻断Ca2+信号转导途径的抑制剂分别处理小斑病菌的分生孢子,结果表明:Ca2+螯合剂EGTA、Ca2+通道抑制剂Verapam il、影响钙调素与钙调素依赖蛋白激酶作用位点的抑制剂KN-93,随着浓度的增加,对孢子萌发和附着胞形成过程的抑制作用明显增强;同一浓度下,抑制剂对附着胞形成过程的抑制作用大于孢子萌发过程;抑制剂可使附着胞形态明显变小甚至不能形  相似文献   

4.
为了确定Ca^2 信号途径是否参与、在哪一时期参与稻瘟病菌分生孢子萌发及附着胞形成过程的调控,用四种可从不同位点阻断 Ca^2 信号途径的抑制剂分别处理分生孢子,观察抑制剂对孢子萌发及附着胞形成过程的抑制作用。结果表明:Ca^2 螯合剂 EGTA、Ca^2 通道抑制剂 Verapamil、抑制磷脂酶 C 活性的抑制剂 U-73122、影响钙调素与钙调素依赖蛋白激酶作用位点的抑制剂 KN-93,随着浓度的增加,对孢子萌发和附着胞形成过程的抑制作用明显增强;同一浓度下,抑制剂对附着胞形成过程的抑制作用大于孢子萌发过程;抑制剂影响孢子萌发和附着胞形成过程在萌发早期(1-4h)最有效;在完全被抑制、不能萌发的孢子内出现了许多颗粒状囊泡;抑制剂可使附着胞形态明显变小甚至不能形成。以上结果表明钙信号途径参与了稻瘟病菌孢子萌发及疏水条件下附着胞形成过程的调控。  相似文献   

5.
为了确定Ca2+信号途径是否参与、在哪一时期参与稻瘟病菌分生孢子萌发及附着胞形成过程的调控,用四种可从不同位点阻断Ca2+信号途径的抑制剂分别处理分生孢子,观察抑制剂对孢子萌发及附着胞形成过程的抑制作用.结果表明Ca2+螯合剂EGTA、Ca2+通道抑制剂Verapamil、抑制磷脂酶C活性的抑制剂U-73122、影响钙调素与钙调素依赖蛋白激酶作用位点的抑制剂KN-93,随着浓度的增加,对孢子萌发和附着胞形成过程的抑制作用明显增强;同一浓度下,抑制剂对附着胞形成过程的抑制作用大于孢子萌发过程;抑制剂影响孢子萌发和附着胞形成过程在萌发早期(1~4h)最有效;在完全被抑制、不能萌发的孢子内出现了许多颗粒状囊泡;抑制剂可使附着胞形态明显变小甚至不能形成.以上结果表明钙信号途径参与了稻瘟病菌孢子萌发及疏水条件下附着胞形成过程的调控.  相似文献   

6.
为了确定Ca2+信号途径是否参与、在哪一时期参与稻瘟病菌分生孢子萌发及附着胞形成过程的调控,用四种可从不同位点阻断Ca2+信号途径的抑制剂分别处理分生孢子,观察抑制剂对孢子萌发及附着胞形成过程的抑制作用。结果表明:Ca2+螯合剂EGTA、Ca2+通道抑制剂Verapamil、抑制磷脂酶C活性的抑制剂U-73122、影响钙调素与钙调素依赖蛋白激酶作用位点的抑制剂KN-93,随着浓度的增加,对孢子萌发和附着胞形成过程的抑制作用明显增强;同一浓度下,抑制剂对附着胞形成过程的抑制作用大于孢子萌发过程;抑制剂影响孢子萌发和附着胞形成过程在萌发早期(1~4h)最有效;在完全被抑制、不能萌发的孢子内出现了许多颗粒状囊泡;抑制剂可使附着胞形态明显变小甚至不能形成。以上结果表明钙信号途径参与了稻瘟病菌孢子萌发及疏水条件下附着胞形成过程的调控。  相似文献   

7.
[目的]克隆玉米大斑病菌CnB基因,并进行初步的生物信息学分析.[方法]采用cDNA末端快速扩增(Rapid Amplification of cDNA Ends,RACE)技术,扩增玉米大斑病菌CnB基因全长cDNA序列和DNA序列.运用相关生物信息学软件对该基因序列进行分析和预测其编码蛋白的结构功能.[结果]CnB基因含4个外显子和3个内含子,最大开放阅读框为525 bp(GenBank登录号EF 469732),编码174个氨基酸;预测蛋白含约59.77%的α螺旋,8.62%的β转角,6.32%的延伸串,25.29%的不规则卷曲;含有高度保守的4个"EF-hand"Ca2 结合区域,属于Ca2 结合蛋白家族成员,与小麦叶枯病菌(Phaeosphaeria nodorum)、灰葡萄孢(B.cinerea)、粗糙麦孢霉(Neurospora crassa)等病原真菌中CnB基因有90%以上的氨基酸同源性.[结论]首次在玉米大斑病菌中克隆得到CnB基因,为进一步研究该基因功能奠定基础.  相似文献   

8.
茶多酚对几种植物病原真菌的抑制作用及机理研究   总被引:6,自引:1,他引:5  
用不同浓度的茶多酚液对玉米小斑病菌(Bipolaris maydis)、香蕉炭疽病菌(Colletotrichum musae)和莲腐败病菌(Fusarium oxysporum f. sp.)进行抑菌测定.结果表明:茶多酚对三种植物病原真菌生长和分生孢子萌发都具有极显著的抑制作用(P<0.01);不同浓度的茶多酚液对同种植物病原真菌的抑制作用不同,随着茶多酚浓度的增大,其抑制力增强,其中10和5 mg/mL抑制力最强;茶多酚对三种不同的植物病原真菌的抑制程度也不同,其中对玉米小斑病菌的抑制效果最好,10和5 mg/mL茶多酚稀释液的分生孢子萌发抑制率达100%,且原生质外溢,细胞畸变.其作用机理是破坏了菌体的细胞膜结构和抑制了CAT、POD酶活,使其丧失细胞膜的屏障和酶系的保护功能.  相似文献   

9.
月腺大戟抑菌活性的初步研究   总被引:1,自引:0,他引:1  
以小麦赤霉病菌,辣椒疫霉病菌,葡萄黑曲霉病菌,苹果炭疽病和玉米大斑病菌为实验菌种,采用生长速率法测定月腺大戟根部提取物对病原菌菌丝生长的抑制作用.结果表明,月腺大戟根部提取物对5种农作物常见病菌都有抑制作用,其中对3种病原菌(小麦赤霉病菌、苹果炭疽病菌、玉米大斑病菌)的菌丝抑制作用强烈;乙醇相提取物对病原菌抑制作用比水相提取物的抑制活性强.  相似文献   

10.
玉米大斑病菌原生质体的制备与再生*   总被引:6,自引:0,他引:6  
以玉米大斑病菌(Exserohilum turcicum)0109—8为供试菌株,研究了菌龄、液体培养基、酶系统、酶解时间、稳渗剂对玉米大斑病菌原生质体制备的影响及稳渗剂对原生质体再生的影响。结果表明制备玉米大斑病菌原生质体适宜的条件为:Fries液体培养基培养分生孢子24h,1%Lywallzyme、1%Drislase和1%S创5nailase3种酶溶液混合使用,酶解5h,0.7mol/L KCl为稳渗剂;原生质体再生以0.6mol/L蔗糖作为稳渗液为佳。  相似文献   

11.
Colletotrichum gloeosporioides forms a specialized infection structure, an appressorium, to infect its host, red pepper. Polyamines (putrescine, spermidine, and spermine) as well as S-adenosyl methionine inhibitor, methylglyoxal-bis-guanyl hydrazone (MGBG), impaired conidial germination and appressorium formation of C. gloeosporioides. Curtailment of cell differentiation by polyamines and MGBG was more evident in conidial germination than in appressorium development. Exogenous addition of calcium restored conidial germination and appressorium formation and expression of calmodulin-encoding gene (CgCaM) inhibited by polyamines. Taken together, proper regulation of intracellular polyamine concentration is indispensable for conidial germination and appressorium formation, and involved in Ca(2+)/calmodulin-dependent signaling pathways of C. gloeosporioides infecting red pepper.  相似文献   

12.
cAMP介导的梨果表皮物化信号对链格孢侵染的调控   总被引:1,自引:0,他引:1  
采用药理学方法,用cAMP抑制剂阿托品(atropine)处理链格孢Alternaria alternata孢子悬浮液,通过体外试验分析cAMP信号级联通路在链格孢响应梨果皮蜡质疏水性、化学组分和外源乙烯利等刺激后启动孢子萌发、附着胞形成的调控作用,并通过体内试验研究其对链格孢致病性的调控。结果表明,高疏水性表面和梨果蜡涂膜表面及1μmol/L的乙烯利均可显著促进链格孢的孢子萌发和附着胞形成。cAMP信号级联通路抑制剂atropine处理后显著抑制了表皮疏水性、蜡质和外源乙烯介导的链格孢的孢子萌发和附着胞形成,其中抑制剂处理后4h,链格孢在疏水性、果蜡涂膜表面和乙烯等处理中附着胞形成率分别较对照降低了75.3%、63.7%和74.3%,同时抑制剂处理还可抑制损伤接种链格孢早酥梨黑斑病的扩展。外源cAMP可以部分恢复抑制剂的作用,外源cAMP+atropine处理后4h,在高疏水性(108°)和果蜡涂膜表面,链格孢附着胞形成率为抑制剂atropine单独处理的2.4倍和1.6倍,表明cAMP信号级联通路可通过调控侵染结构的形成而影响链格孢对梨果表皮物理化学信号的识别和应答。  相似文献   

13.
14.
Protein ubiquitination, which is highly selective, regulates many important biological processes including cellular differentiation and pathogenesis in eukaryotic cells. Here, we integrated pharmacological, molecular and proteomic approaches to explore the role of ubiquitination in Magnaporthe oryzae, the leading fungal disease of rice world-wide. Inhibition of ubiquitin-mediated proteolysis using the 26S proteasome inhibitor, Bortezomib, significantly attenuated conidia germination, appressorium formation and pathogenicity in M. oryzae. Gene expression analysis revealed that many genes associated with protein ubiquitination were developmentally regulated during conidia germination. Only a few, including a polyubiquitin encoding gene, MGG_01282, were more abundantly expressed during appressorium formation and under nitrogen starvation. Targeted gene deletion of MGG_01282, in addition to a significant reduction in protein ubiquitination as determined by immuno blot assays, resulted in pleiotropic effects on M. oryzae including reduced growth and sporulation, abnormal conidia morphology, reduced germination and appressorium formation, and the inability to cause disease. Mutants were also defective in sexual development and were female sterile. Using mass spectrometry, we identified 63 candidate polyubiquitinated proteins under nitrogen starvation, which included overrepresentation of proteins involved in translation, transport and protein modification. Our study suggests that ubiquitination of target proteins plays an important role in nutrient assimilation, development and pathogenicity of M. oryzae.  相似文献   

15.
Cyclophilins are peptidyl prolyl cis-trans isomerases that are highly conserved throughout eukaryotes and that are best known for being the cellular target of the immunosuppressive drug cyclosporin A (CsA). The activity of CsA is caused by the drug forming a complex with cyclophilin A and inhibiting the calmodulin-dependent phosphoprotein phosphatase calcineurin. We have investigated the role of CYP1, a cyclophilin-encoding gene in the phytopathogenic fungus Magnaporthe grisea, which is the causal agent of rice blast disease. CYP1 putatively encodes a mitochondrial and cytosolic form of cyclophilin, and targeted gene replacement has shown that CYP1 acts as a virulence determinant in rice blast. Cyp1 mutants show reduced virulence and are impaired in associated functions, such as penetration peg formation and appressorium turgor generation. CYP1 cyclophilin also is the cellular target for CsA in Magnaporthe, and CsA was found to inhibit appressorium development and hyphal growth in a CYP1-dependent manner. These data implicate cyclophilins as virulence factors in phytopathogenic fungi and also provide evidence that calcineurin signaling is required for infection structure formation by Magnaporthe.  相似文献   

16.
The surface wax of the host, avocado (Persea americana) fruit, induced germination and appressorium formation in the spores of Colletotrichum gloeosporioides. Waxes from nonhost plants did not induce appressorium formation in this fungus, and avocado wax did not induce appressorium formation in most Colletotrichum species that infect other hosts. Bioassays of the thin-layer chromatographic fractions of the avocado wax showed that the fatty alcohol fraction was the main appressorium-inducing component. Testing of authentic n-C8 to n-C32 fatty alcohols revealed that C24 and longer-chain alcohols induced appressorium formation. Gas-liquid chromatography/mass spectrometry analysis of free fatty alcohols revealed that avocado wax contains a high content of very long chains. Waxes from nonhost plants containing an even higher content of the very long-chain alcohols did not induce appressorium formation. Waxes from nonhost plants strongly inhibited appressorium induction by avocado wax. Thus, a favorable balance between appressorium-inducing very long-chain fatty alcohols and the absence of inhibitors allows the fungus to use the host surface wax to trigger germination and differentiation of infection structures in the pathogen.  相似文献   

17.
Lee YH  Dean RA 《The Plant cell》1993,5(6):693-700
Magnaporthe grisea, the causal agent of rice blast, is one of the most destructive fungal pathogens of rice throughout the world. Infection of rice by M. grisea requires the formation of an appressorium, a darkly pigmented, dome-shaped structure. The germ tube tip differentiates into an appressorium following germination of conidia on a leaf surface. When conidia germinate on growth medium or other noninductive surfaces, the emerging germ tube does not differentiate and continues to grow vegetatively. Little is known about the endogenous or exogenous signals controlling the developmental process of infection structure formation. We show here that a hydrophobic surface was sufficient for the induction of the appressorium. Furthermore, we demonstrate that the addition of cAMP, its analogs (8-bromo cAMP and N6-monobutyryl cAMP), or 3-isobutyl-1-methylxanthine (an inhibitor of phosphodiesterase) to germinating conidia or to vegetative hyphae induced appressorium formation on noninductive surfaces. The identification of cAMP as a mediator of infection structure formation provides a clue to the regulation of this developmental process. Elucidation of the mechanism involved is not only of biological interest but may also provide the basis for new disease control strategies.  相似文献   

18.
Fungal conidia contain chemicals that inhibit germination and appressorium formation until they are well dispersed in a favorable environment. Recently, such self-inhibitors were found to be present on the conidia of Magnaporthe grisea, and plant surface waxes were found to relieve this self-inhibition. To determine whether the self-inhibitors suppress the expression of early genes involved in the germination and differentiation of conidia, the calmodulin gene was chosen as a representative early gene, because it was found to be expressed early in Colletotrichum gloeosporioides and Colletotrichum trifolii differentiation. After calmodulin cDNA and genomic DNA from M. grisea were cloned, the promoter of the calmodulin gene was fused to a reporter gene, that for green fluorescent protein (GFP), and transformed into the M. grisea genome. Confocal microscopic examination and quantitation of expression of GFP green fluorescence showed (i) that the expression of the calmodulin gene decreased significantly when self-inhibition of M. grisea appressorium formation occurred because of high conidial density or addition of exogenous self-inhibitors and (ii) that the expression level of this gene was restored when self-inhibition was relieved by the addition of plant surface waxes. The increase in fluorescence correlated with the percentage of conidia that formed appressoria. The induction of calmodulin was also confirmed by RNA blotting. Concanavalin A inhibited surface attachment of conidia, GFP expression, and appressorium formation without affecting germination. The high correlation between GFP expression and appressorium formation strongly suggests that calmodulin gene expression and appressorium formation require surface attachment.  相似文献   

19.
Bacillus subtilis A spores were injured by exposure to heat treatments of 110 to 132 C. Injury was demonstrated by the inability to form colonies on fortified nutrient agar (FNA) unless the medium was supplemented with CaCl(2) and Na(2) dipicolinate (CNA). A preliminary heat treatment fully heat-activated the spores, was not lethal, and did not prevent injury by subsequent secondary heat treatment. Exposure of heat-activated spores to 122 C reduced germination in FNA. The primary germination agents in FNA were identified, and a defined germination medium of glucose, NaCl, l-alanine, and sodium phosphate (GNAP) was developed. Germination of heat-activated spores in GNAP was equivalent to germination in FNA. Injury measured by colony formation on FNA and CNA was correlated to injury measured by reduced germination in both FNA and GNAP. Inactivation of the FNA and GNAP germination systems by secondary treatment exhibited similar kinetics. Therefore, injury expressed as the inability to form colonies on FNA involved alteration of the GNAP germination system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号