首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Doranz BJ  Baik SS  Doms RW 《Journal of virology》1999,73(12):10346-10358
Binding of the extracellular subunit of human immunodeficiency type 1 (HIV-1) envelope (Env) glycoprotein (gp120) to CD4 triggers the induction or exposure of a highly conserved coreceptor binding site in gp120 that helps mediate membrane fusion. Characterizing the structural features involved in gp120-coreceptor binding and the conditions under which binding occurs is important for understanding the fusion process, the evolution of pathogenic strains in vivo, the identification of novel anti-HIV compounds, and the development of HIV vaccines that utilize triggered structures of Env. Here we use the kinetics of interaction between CCR5 and gp120 to understand temporal and structural changes that occur during viral fusion. Using saturation binding and homologous competition analysis, we estimated the K(d) of interaction between CCR5 and gp120 from the macrophage tropic HIV-1 strain JRFL to be 4 nM. Unlike Env-mediated fusion, gp120 binding to CCR5 did not require divalent cations or elevated temperatures. Binding was not significantly affected by the pH of binding, G-protein coupling of CCR5, or partial gp120 deglycosylation. Oligomeric, uncleaved JRFL gp140 failed to bind CCR5 despite its ability to bind CD4 and monoclonal antibody 17b, suggesting that the uncleaved ectodomain of gp41 interferes with full exposure of the chemokine receptor binding site. Exposure of the chemokine receptor binding site on gp120 could be induced rapidly by CD4, but exposure of this site was lost upon CD4 dissociation from gp120, indicating that the conformational changes in gp120 induced by CD4 binding are fully reversible. The functional gp120-soluble CD4 complex was remarkably stable over time and temperature ranges, offering the possibility that complexes in which the highly conserved coreceptor binding site in gp120 is exposed can be used for vaccine development.  相似文献   

2.
The G protein-coupled receptor CXCR4 is a coreceptor, along with CD4, for the human immunodeficiency virus type 1 (HIV-1) and has been implicated in breast cancer metastasis. We studied the binding of the HIV-1 gp120 envelope glycoprotein (gp) to CXCR4 but found that the gp120s from CXCR4-using HIV-1 strains bound nonspecifically to several cell lines lacking human CXCR4 expression. Therefore, we constructed paramagnetic proteoliposomes (CXCR4-PMPLs) containing pure, native CXCR4. CXCR4-PMPLs specifically bound the natural ligand, SDF-1alpha, and the gp120s from CXCR4-using HIV-1 strains. Conformation-dependent anti-CXCR4 antibodies and the CXCR4 antagonist AMD3100 blocked HIV-1 gp120 binding to CXCR4-PMPLs. The gp120-CXCR4 interaction was blocked by anti-gp120 antibodies directed against the third variable (V3) loop and CD4-induced epitopes, structures that have also been implicated in the binding of gp120 to the other HIV-1 coreceptor, CCR5. Compared with the binding of R5 HIV-1 gp120s to CCR5, the gp120-CXCR4 interaction exhibited a lower affinity (K(d) = 200 nm) and was dependent upon prior CD4 binding, even at low temperature. Thus, although similar regions of X4 and R5 HIV-1 gp120s appear to be involved in binding CXCR4 and CCR5, respectively, differences exist in nonspecific binding to cell surfaces, affinity for the chemokine receptor, and CD4 dependence at low temperature.  相似文献   

3.
Retrocyclin,an antiretroviral theta-defensin,is a lectin   总被引:13,自引:0,他引:13  
Theta-defensins are circular octadecapeptides that contain an internal tridisulfide ladder. Because retrocyclin-1, an ancestral hominid theta-defensin, can protect human cells in vitro from infection by T- and M-tropic strains of HIV-1, we used surface plasmon resonance techniques to study its binding to glycoproteins and glycolipids implicated in HIV-1 entry. Retrocyclin-1 bound with high affinity to gp120 (K(d), 35.4 nM), CD4 (K(d), 31 nM), and galactosylceramide (K(d), 24.1 nM). Neither a circular form of retrocyclin without its tridisulfide ladder nor its beta-hairpin precursor with these disulfides intact bound gp120 or CD4 effectively. Retrocyclin also bound fetuin, an extensively glycosylated protein, with high affinity, but it did not bind nonglycosylated gp120 or BSA. However, retrocyclin did bind to a neoglycoprotein, BSA, with covalently attached sugar residues. Experiments with glycosidase-treated fetuin, gp120, and CD4 revealed that both O-linked and N-linked sugars were used as binding sites. In a panel of retrocyclin variants, binding to immobilized gp120 and CD4 were highly correlated to each other and to the peptide's ability to protect human PBMCs from infection by HIV-1. Although small, cysteine-rich antimicrobial peptides with lectin-like properties exist in plants, theta-defensins are the first such molecules to be identified in vertebrates. Retrocyclin's ability to recognize and bind carbohydrate-containing surface molecules is integrally related to its ability to protect cells from HIV-1 infection.  相似文献   

4.
Harrop  HA; Rider  CC 《Glycobiology》1998,8(2):131-137
We have employed a direct radiolabel binding assay to investigate the interaction between3H-heparin and recombinant envelope glycoproteins, rgp120s, derived from several different isolates of HIV-1. Comparable dose-dependent binding is exhibited by rgp120s from isolates IIIB, GB8, MN and SF-2. Under identical experimental conditions the binding of3H- heparin to a recombinant soluble form of the cellular receptor for gp120, CD4, is negligible. The binding of3H-heparin to rgp120 is competed for by excess unlabeled heparin and certain other, but not all, glycosaminoglycan and chemically modified heparins. Of a range of such polysaccharides tested, ability to compete with3H-heparin for binding was strictly correlated with inhibition of HIV-1 replication in vitro. Those possessing potent anti-HIV-1 activity were effective competitors, whereas those having no or little anti-HIV-1 activity were poor competitors. Scatchard analysis indicates that the K d of the interaction between heparin and rgp120 is 10 nM. Binding studies conducted in increasing salt concentrations confirm that the interaction is ionic in nature. Synthetic 33-35 amino acid peptides based on the sequence of the V3 loop of gp120 also bind to heparin with high affinity. V3 loop peptides that are cyclized due to terminal cysteine residues show more selective binding than their uncyclized counterparts. Overall, these data demonstrate further that heparin exerts its anti-HIV-1 activity by binding to the envelope glycoprotein of HIV-1, rather than its cellular receptor, CD4. This study confirms that the V3 loop of gp120 is the site at which heparin exerts its anti- HIV-1 activity. Moreover, it reveals that high affinity binding to heparin is shared by all four rgp120s examined, despite amino acid substitutions within the V3 loop.   相似文献   

5.
Schön A  Madani N  Klein JC  Hubicki A  Ng D  Yang X  Smith AB  Sodroski J  Freire E 《Biochemistry》2006,45(36):10973-10980
NBD-556 and the chemically and structurally similar NBD-557 are two low-molecular weight compounds that reportedly block the interaction between the HIV-1 envelope glycoprotein gp120 and its receptor, CD4. NBD-556 binds to gp120 with a binding affinity of 2.7 x 10(5) M(-1) (K(d) = 3.7 muM) in a process characterized by a large favorable change in enthalpy partially compensated by a large unfavorable entropy change, a thermodynamic signature similar to that observed for binding of sCD4 to gp120. NBD-556 binding is associated with a large structuring of the gp120 molecule, as also demonstrated by CD spectroscopy. NBD-556, like CD4, activates the binding of gp120 to the HIV-1 coreceptor, CCR5, and to the 17b monoclonal antibody, which recognizes the coreceptor binding site of gp120. NBD-556 stimulates HIV-1 infection of CD4-negative, CCR5-expressing cells. The thermodynamic signature of the binding of NBD-556 to gp120 is very different from that of another viral entry inhibitor, BMS-378806. Whereas NBD-556 binds gp120 with a large favorable enthalpy and compensating unfavorable entropy changes, BMS-378806 does so with a small binding enthalpy change in a mostly entropy-driven process. NBD-556 is a competitive inhibitor of sCD4 and elicits a similar structuring of the coreceptor binding site, whereas BMS-378806 does not compete with sCD4 and does not induce coreceptor binding. These studies demonstrate that low-molecular-weight compounds can induce conformational changes in the HIV-1 gp120 glycoprotein similar to those observed upon CD4 binding, revealing distinct strategies for inhibiting the function of the HIV-1 gp120 envelope glycoprotein. Furthermore, competitive and noncompetitive compounds have characteristic thermodynamic signatures that can be used to guide the design of more potent and effective viral entry inhibitors.  相似文献   

6.
The interaction of the chemokine stromal cell-derived factor 1 (SDF-1) with its receptor CXCR4 is vital for cell trafficking during development, is capable of inhibiting human immunodeficiency virus type 1 (HIV-1) utilization of CXCR4 as a coreceptor, and has been implicated in delaying disease progression to AIDS in vivo. Because of the importance of this chemokine-chemokine receptor pair to both development and disease, we investigated the molecular basis of the interaction between CXCR4 and its ligands SDF-1 and HIV-1 envelope. Using CXCR4 chimeras and mutants, we determined that SDF-1 requires the CXCR4 amino terminus for binding and activates downstream signaling pathways by interacting with the second extracellular loop of CXCR4. SDF-1-mediated activation of CXCR4 required the Asp-Arg-Tyr motif in the second intracellular loop of CXCR4, was pertussis toxin sensitive, and did not require the distal C-terminal tail of CXCR4. Several CXCR4 mutants that were not capable of binding SDF-1 or signaling still supported HIV-1 infection, indicating that the ability of CXCR4 to function as a coreceptor is independent of its ability to signal. Direct binding studies using the X4 gp120s HXB, BH8, and MN demonstrated the ability of HIV-1 gp120 to bind directly and specifically to the chemokine receptor CXCR4 in a CD4-dependent manner, using a conformationally complex structure on CXCR4. Several CXCR4 variants that did not support binding of soluble gp120 could still function as viral coreceptors, indicating that detectable binding of monomeric gp120 is not always predictive of coreceptor function.  相似文献   

7.
Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV-1 vaccine.  相似文献   

8.
It is well established that the gp120 V3 loop of T-cell-line-adapted human immunodeficiency virus type 1 (HIV-1) binds both cell-associated and soluble polyanions. Virus infectivity is increased by interactions between HIV-1 and heparan sulfate proteoglycans on some cell types, and soluble polyanions such as heparin and dextran sulfate neutralize HIV-1 in vitro. However, the analysis of gp120-polyanion interactions has been limited to T-cell-line-adapted, CXCR4-using virus and virus-derived gp120, and the polyanion binding ability of gp120 regions other than the V3 loop has not been addressed. Here we demonstrate by monoclonal-antibody inhibition, labeled heparin binding, and surface plasmon resonance studies that a second site, most probably corresponding to the newly defined, highly conserved coreceptor binding region on gp120, forms part of the polyanion binding surface. Consistent with the binding of polyanions to the coreceptor binding surface, dextran sulfate interfered with the gp120-CXCR4 association while having no detectable effect on the gp120-CD4 interaction. The interaction between polyanions and X4 or R5X4 gp120 was readily detectable, whereas weak or undetectable binding was observed with R5 gp120. Analysis of mutated forms of X4 gp120 demonstrated that the V3 loop is the major determinant for polyanion binding whereas other regions, including the V1/V2 loop structure and the NH(2) and COOH termini, exert a more subtle influence. A molecular model of the electrostatic potential of the conserved coreceptor binding region confirmed that it is basic but that the overall charge on this surface is dominated by the V3 loop. These results demonstrate a selective interaction of gp120 with polyanions and suggest that the conserved coreceptor binding surface may present a novel and conserved target for therapeutic intervention.  相似文献   

9.
The novel dendritic cell (DC)-specific human immunodeficiency virus type 1 (HIV-1) receptor DC-SIGN plays a key role in the dissemination of HIV-1 by DC. DC-SIGN is thought to capture HIV-1 at mucosal sites of entry, facilitating transport to lymphoid tissues, where DC-SIGN efficiently transmits HIV-1 to T cells. DC-SIGN is also important in the initiation of immune responses by regulating DC-T cell interactions through intercellular adhesion molecule 3 (ICAM-3). We have characterized the mechanism of ligand binding by DC-SIGN and identified the crucial amino acids involved in this process. Strikingly, the HIV-1 gp120 binding site in DC-SIGN is different from that of ICAM-3, consistent with the observation that glycosylation of gp120, in contrast to ICAM-3, is not crucial to the interaction with DC-SIGN. A specific mutation in DC-SIGN abrogated ICAM-3 binding, whereas the HIV-1 gp120 interaction was unaffected. This DC-SIGN mutant captured HIV-1 and infected T cells in trans as efficiently as wild-type DC-SIGN, demonstrating that ICAM-3 binding is not necessary for HIV-1 transmission. This study provides a basis for the design of drugs that inhibit or alter interactions of DC-SIGN with gp120 but not with ICAM-3 or vice versa and that have a therapeutic value in immunological diseases and/or HIV-1 infections.  相似文献   

10.
Yuan W  Craig S  Si Z  Farzan M  Sodroski J 《Journal of virology》2004,78(10):5448-5457
The synthetic peptide T-20, which corresponds to a sequence within the C-terminal heptad repeat region (HR2) of the human immunodeficiency virus type 1 (HIV-1) gp41 envelope glycoprotein, potently inhibits viral membrane fusion and entry. Although T-20 is thought to bind the N-terminal heptad repeat region (HR1) of gp41 and interfere with gp41 conformational changes required for membrane fusion, coreceptor specificity determined by the V3 loop of gp120 strongly influences the sensitivity of HIV-1 variants to T-20. Here, we show that T-20 binds to the gp120 glycoproteins of HIV-1 isolates that utilize CXCR4 as a coreceptor in a manner determined by the sequences of the gp120 V3 loop. T-20 binding to gp120 was enhanced in the presence of soluble CD4. Analysis of T-20 binding to gp120 mutants with variable loop deletions and the reciprocal competition of T-20 and particular anti-gp120 antibodies suggested that T-20 interacts with a gp120 region near the base of the V3 loop. Consistent with the involvement of this region in coreceptor binding, T-20 was able to block the interaction of gp120-CD4 complexes with the CXCR4 coreceptor. These results help to explain the increased sensitivity of CXCR4-specific HIV-1 isolates to the T-20 peptide. Interactions between the gp41 HR2 region and coreceptor-binding regions of gp120 may also play a role in the function of the HIV-1 envelope glycoproteins.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

12.
We investigated the relative importance of binding site occupancy and epitope specificity in antibody neutralization of human immunodeficiency virus (HIV) type 1 (HIV-1). The neutralization of a T-cell-line-adapted HIV-1 isolate (MN) was analyzed with a number of monovalent recombinant Fab fragments (Fabs) and monoclonal antibodies with a range of specificities covering all confirmed gp120-specific neutralization epitopes. Binding of Fabs to recombinant monomeric gp120 was determined by surface plasmon resonance, and binding of Fabs and whole antibodies to functional oligomeric gp120 was determined by indirect immunofluorescence and flow cytometry on HIV-infected cells. An excellent correlation between neutralization and oligomeric gp120 binding was observed, and a lack of correlation with monomeric gp120 binding was confirmed. A similar degree of correlation was observed between oligomeric gp120 binding and neutralization with a T-cell-line-adapted HIV-1 molecular clone (Hx10). The ratios of oligomer binding/neutralization titer fell, in general, within a relatively narrow range for antibodies to different neutralization epitopes. These results suggest that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Models to account for these observations are proposed.  相似文献   

13.
Y Li  L Luo  N Rasool    C Y Kang 《Journal of virology》1993,67(1):584-588
Conflicting results have been reported regarding the role of carbohydrate on human immunodeficiency virus (HIV) envelope glycoprotein gp120 in CD4 receptor binding. Glycosylated, deglycosylated, and nonglycosylated forms of HIV type 1 (HIV-1) and HIV-2 gp120s were used to examine CD4 receptor-binding activity. Nonglycosylated forms of gp120 generated either by deletion of the signal sequence of HIV-1 gp120 or by synthesis in the presence of tunicamycin failed to bind to CD4. In contrast, highly mannosylated gp120 bound to soluble CD4 molecules well. Enzymatic removal of carbohydrate chains from glycosylated gp120 by endoglycosidase H or an endoglycosidase F/N glycanase mixture had no effect on the ability of gp120 to bind CD4. An experiment which measured the ability of gp120 to bind to CD4 as an assay of the proper conformation of gp120 showed that carbohydrate chains on gp120 are not required for the interaction between gp120 and CD4 but that N-linked glycosylation is essential for generation of the proper conformation of gp120 to provide a CD4-binding site.  相似文献   

14.
Developing of multi-target HIV-1 entry inhibitors represents an important avenue of drug therapy. Two such inhibitors are hexa-arginine-neomycin-conjugate (NeoR6) and nona-d-arginine-neomycin-conjugate (Neo-r9). Our findings that NeoR6-resistant mutations appear in the gp120 constant regions; and NeoR6 is not CCR5 antagonist, but inhibits CXCR4 and CCR5 HIV-1 using isolates, led us to suggest that NeoR6 may inhibit HIV-1 entry by interfering with the CD4-gp120 binding. To support this notion, we constructed a homology model of unliganded HIV-1(IIIB) gp120 and docked NeoR6 and Neo-r9 to it, using a multistep docking procedure: geometric-electrostatic docking by MolFit; flexible ligand docking by Autodock3 and final refinement of the obtained complexes by Discover3. Binding free energies were calculated by MM-PBSA methodology. The model predicts competitive inhibition of CD4-gp120 binding by NeoR6 and Neo-r9. We determined plausible binding sites between constructed CD4-bound gp120 trimer and homology modeled membranal CXCR4, and tested NeoR6 and Neo-r9 interfering with this interaction. These models support our notion that another mechanism of anti-HIV-1 activity of NeoR6 is inhibition of gp120-CXCR4 binding. These structural models and interaction of NeoR6 and Neo-r9 with gp120 and CXCR4 provide a powerful approach for structural based drug design for selective targeting of HIV-1 entry and/or for inhibition of other retroviruses with similar mechanism of entry.  相似文献   

15.
Interaction of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein with the primary receptor, CD4, promotes binding to a chemokine receptor, either CCR5 or CXCR4. The chemokine receptor-binding site on gp120 elicits CD4-induced (CD4i) antibodies in some HIV-1-infected individuals. Like CCR5 itself, the CD4i antibody 412d exhibits a preference for CCR5-using HIV-1 strains and utilizes sulfated tyrosines to achieve binding to gp120. Here, we show that 412d binding requires the gp120 beta19 strand and the base of the V3 loop, elements that are important for the binding of the CCR5 N terminus. Two gp120 residues in the V3 loop base determined 412d preference for CCR5-using HIV-1 strains. A chimeric molecule in which the 412d heavy-chain third complementarity-determining loop sequence replaces the CCR5 N terminus functioned as an efficient second receptor, selectively supporting the entry of CCR5-using HIV-1 strains. Sulfation of N-terminal tyrosines contributed to the function of this chimeric receptor. These results emphasize the close mimicry of the CCR5 N terminus by the gp120-interactive region of a naturally elicited CD4i antibody.  相似文献   

16.
Preventing cell entry of human immunodeficiency virus 1 (HIV-1) is of interest for the development of innovative therapies. We previously reported a specific interaction between HIV-1 envelope glycoprotein 120 (gp120) and Tat at the cell surface, which enhances virus attachment and entry. We also identified a gp120-mimicking peptide, CT319, that competes with gp120 for Tat binding, thus inhibiting HIV-1 infection. Here we report a molecular dissection of gp120 regions involved in this mechanism. Our findings identify the V1/V2 loop of gp120 as involved in Tat binding, and define this interaction as functionally relevant for HIV-1 entry into host cells.  相似文献   

17.
Many regions within the envelope of human immunodeficiency virus type 1 (HIV-1) that affect its structure and function have been identified. We have previously reported that the interaction of the second conserved (C2) and third variable (V3) regions of gp120 influences the ability of HIV-1 to establish a productive infection in susceptible cells. To better understand the basis for this interaction, we have conducted structure-function analyses of envelope expressed from molecular proviral clones of HIV-1 containing defined mutations in C2 and V3 that individually and in combination differentially affect envelope function. The substitution of a glutamine for an asparagine residue (Q-267) at a potential asparagine-linked glycosylation site in C2, which severely impairs virus infectivity, reduces intracellular processing of gp160 into gp120, the association of gp120 with virions, and the ability of gp120 to bind to the HIV-1 cell surface receptor protein, CD4. The change of an arginine to an isoleucine codon in V3 (I-308), in the presence of the Q-267 mutation, restores virus infectivity to near wild-type levels by increasing the amount of gp120 associated with virions as compared with the Q-267 mutant but does not compensate for the Q-267-induced processing defect. The I-308 change in the context of the wild-type HIV-1 has no affect on processing, association, or CD4 binding. These results indicate that the impaired infectivity of the Q-267 mutant virus is due to a marked reduction in the amount of virion gp120 and suggest that the interaction of C2 and V3 stabilizes the association of gp120 with gp41.  相似文献   

18.
Developing of multi-target HIV-1 entry inhibitors represents an important avenue of drug therapy. Two such inhibitors are hexa-arginine-neomycin-conjugate (NeoR6) and nona-d-arginine-neomycin-conjugate (Neo-r9). Our findings that NeoR6-resistant mutations appear in the gp120 constant regions; and NeoR6 is not CCR5 antagonist, but inhibits CXCR4 and CCR5 HIV-1 using isolates, led us to suggest that NeoR6 may inhibit HIV-1 entry by interfering with the CD4-gp120 binding. To support this notion, we constructed a homology model of unliganded HIV-1IIIB gp120 and docked NeoR6 and Neo-r9 to it, using a multistep docking procedure: geometric-electrostatic docking by MolFit; flexible ligand docking by Autodock3 and final refinement of the obtained complexes by Discover3. Binding free energies were calculated by MM-PBSA methodology. The model predicts competitive inhibition of CD4-gp120 binding by NeoR6 and Neo-r9. We determined plausible binding sites between constructed CD4-bound gp120 trimer and homology modeled membranal CXCR4, and tested NeoR6 and Neo-r9 interfering with this interaction. These models support our notion that another mechanism of anti-HIV-1 activity of NeoR6 is inhibition of gp120-CXCR4 binding. These structural models and interaction of NeoR6 and Neo-r9 with gp120 and CXCR4 provide a powerful approach for structural based drug design for selective targeting of HIV-1 entry and/or for inhibition of other retroviruses with similar mechanism of entry.  相似文献   

19.
Miniproteins provide a bridge between proteins and small molecules. Here we adapt methods from combinatorial chemistry to optimize CD4M33, a synthetic miniprotein into which we had previously transplanted the HIV-1 gp120 binding surface of the CD4 receptor. Iterative deconvolution of generated libraries produced CD4M47, a derivative of CD4M33 that had been optimized at four positions. Surface plasmon resonance demonstrated fourfold to sixfold improvement in CD4M47 affinity for gp120 to a level about threefold tighter than that of CD4 itself. Assessment of the neutralization properties of CD4M47 against a diverse range of isolates spanning from HIV-1 to SIVcpz showed that CD4M47 retained the extraordinary breadth of the parent CD4M33, but yielded only limited improvements in neutralization potencies. Crystal structures of CD4M47 and a phenylalanine variant ([Phe23]M47) were determined at resolutions of 2.4 and 2.6 Å, in ternary complexes with HIV-1 gp120 and the 17b antibody. Analysis of these structures revealed a correlation between mimetic affinity for gp120 and overall mimetic-gp120 interactive surface. A correlation was also observed between CD4- and mimetic-induced gp120 structural similarity and CD4- and mimetic-induced gp120 affinity for the CCR5 coreceptor. Despite mimetic substitutions, including a glycine-to-(d)-proline change, the gp120 conformation induced by CD4M47 was as close or closer to the conformation induced by CD4 as the one induced by the parent CD4M33. Our results demonstrate the ability of combinatorial chemistry to optimize a disulfide-containing miniprotein, and of structural biology to decipher the resultant interplay between binding affinity, neutralization breadth, molecular mimicry, and induced affinity for CCR5.  相似文献   

20.
Metastable conformations of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) must be maintained in the unliganded state of the envelope glycoprotein trimer. Binding of gp120 to the primary receptor, CD4, triggers the transition to an open conformation of the trimer, promoting interaction with the CCR5 chemokine receptor and ultimately leading to gp41-mediated virus-cell membrane fusion and entry. Topological layers in the gp120 inner domain contribute to gp120-trimer association in the unliganded state and to CD4 binding. Here we describe similarities and differences between HIV-1 and SIVmac gp120. In both viruses, the gp120 N/C termini and the inner domain β-sandwich and layer 2 support the noncovalent association of gp120 with the envelope glycoprotein trimer. Layer 1 of the SIVmac gp120 inner domain contributes more to trimer association than the corresponding region of HIV-1 gp120. On the other hand, layer 1 plays an important role in stabilizing the CD4-bound conformation of HIV-1 but not SIVmac gp120 and thus contributes to HIV-1 binding to CD4. In SIVmac, CD4 binding is instead enhanced by tryptophan 375, which fills the Phe 43 cavity of gp120. Activation of SIVmac by soluble CD4 is dependent on tryptophan 375 and on layer 1 residues that determine a tight association of gp120 with the trimer. Distinct biological requirements for CD4 usage have resulted in lineage-specific differences in the HIV-1 and SIV gp120 structures that modulate trimer association and CD4 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号