首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
The objective of the present study is to establish a minigene model for studying pre-mRNA alternative splicing. To prepare the minigene DNA constructs, with human or mouse genomic DNA as templates, GluR-B, FGF-2R and Zis “minigene” fragments were amplified using PCR and cloned to the eukaryotic expression vectors. The three constructed minigenes and the expression vectors of Tra2β1 and Zis2 were co-transfected in Hela cells. RT-PCR analysis was performed to semi-quantitatively determine the spliced products from the minigenes. The results demonstrated that the constructed minigenes are useful in studying the pre-mRNA alternative splicing in cultured cells. With the established Zis minigene, we for the first time found that Zis2 isoform regulates the alternative splicing of Zis minigene.  相似文献   

3.
4.
体外(in vitro)生化研究已证明哺乳动物Tra2蛋白是前体mRNA剪接的重要调控因子,但是,对该蛋白在in vivo条件下的剪接功能,尤其是在神经特异性基因剪接中的功能及其细胞特异性,目前所知甚少。本文采用in vivo分析模型,在COS-l和PFSK两种不同类型的细胞中,研究了两个神经特异性基因(GluR-B,SMN2)剪接的细胞特异性,同时分析了Tra2β1在这两个基因剪接中的功能及其细胞特异性。结果表明,在研究的两种细胞中,GluR-B和SMN2“小基因”的剪接均具有明显的细胞特异性;而Tra2β1蛋白的过量表达在这两种不同的细胞中对“小基因”的剪接有显著的相同倾向的调节作用,提示Tra2β1蛋白对该两个基因剪接的调节作用可能没有细胞特异性。  相似文献   

5.
SR蛋白在前体mRNA可变剪接调控中发挥重要作用.SRp38作为一种新近发现的具有神经及生殖组织特异性的SR蛋白,能够调控一些在神经组织中起重要作用的基因(如GluR-B,Trk-C,NCAML1等)的前体mRNA可变剪接,同时还可以在有丝分裂M期及热休克时抑制前体mRNA剪接的发生.利用Western blot以及免疫组织化学方法研究了SRp38蛋白在小鼠视网膜中的表达以及分布情况,结果显示,SRp38蛋白在视网膜中的表达具有区域特异性,在外网层、内核层、内网层以及节细胞层中均有表达,而在外核层无表达.对分离培养的小鼠视网膜细胞进行免疫双标记分析的结果表明,SRp38蛋白在视杆-双极细胞的胞体、轴突、树突中表达.通过瞬时共转染以及RT_PCR分析,发现在R28细胞中,SRp38过表达可以促进GluR-B小基囚Flip亚型的剪接.结果提示SRp38蛋白可能通过调控小鼠视网膜内前体mRNA可变剪接、进而在小鼠视网膜功能中发挥重要作用.  相似文献   

6.
To induce neural differentiation of P19 cells, two different treatments, RA (retinoic acid) and cell aggregation, are required. However, there has been no report that RA treatment alone or cell aggregation alone could control alternative splicing regulation in P19 cells. Therefore, we focused on alternative splicing effects by neural induction (RA treatment and/or cell aggregation) in P19 cells. We analysed the splicing patterns of several genes, including 5‐HT3R‐A (5‐hydroxytryptamine receptor), Actn1 (actinin alpha1), CUGBP2 (CUG‐binding protein) and PTB (polypyrimidine track‐binding protein), which showed different responses during the early neural induction of P19 cells. We show here that RA treatment alone changes the alternative splice mechanism of 5‐HT3R‐A. Cell aggregation alone controls alternative splicing regulation of Actn1. Both treatments (RA and cell aggregation) compensate and regulate the alternative splicing mechanism of CUGBP2. However, PTB is independent of RA and cell aggregation. Taken together, our results suggest that RA treatment and cell aggregation independently regulate the alternative splicing mechanism in the early stage of P19 cells during neural differentiation.  相似文献   

7.
8.
Sexual differentiation in Drosophila is regulated through alternative splicing of doublesex. Female-specific splicing is activated through the activity of splicing enhancer complexes assembled on multiple repeat elements. Each of these repeats serves as a binding platform for the cooperative assembly of a heterotrimeric complex consisting of the SR proteins Tra, Tra2 and 9G8. Using quantitative kinetic analyses, we demonstrate that each component of the enhancer complex is capable of recruiting the spliceosome. Surprisingly, Tra, Tra2 and 9G8 are much stronger splicing activators than other SR protein family members and their activation potential is significantly higher than expected from their serine/arginine content. 9G8 activates splicing not only through its RS domains but also through its RNA-binding domain. The RS domains of Tra and Tra2 are required but not sufficient for efficient complex assembly. Thus, the regulated assembly of the dsx enhancer complexes leads to the generation of an extended activation domain to guarantee the ‘all or none’ splicing switch that is required during Drosophila sexual differentiation.  相似文献   

9.
10.
Chen X  Li J  Wu K  Han Y  Xu P 《Neurochemical research》2005,30(2):271-275
The present study demonstrates a high level of the nuclear Transformer 2 (Tra2) protein in adult mouse brain relative to other tissues, including muscle, heart, liver, lungs, kidney and small intestine, suggesting the potential importance of Tra2 in neural function. The level of Tra2 in mouse cerebrum is developmentally regulated, peaking at neonate stage. In P19 carcinoma cells, Tra2 is transiently up-regulated upon retinoic acid (RA) treatment. Although over-expression of Tra2 protein alone does not elicit P19 differentiation, under these conditions the response of P19 cells to RA is significantly increased. The results suggest that Tra2 proteins may act as a mediator in the signal pathway associated with RA-induced differentiation in P19 cells.  相似文献   

11.
12.
SR proteins are well known to promote exon inclusion in regulated splicing through exonic splicing enhancers. SR proteins have also been reported to cause exon skipping, but little is known about the mechanism. We previously characterized SRSF1 (SF2/ASF)-dependent exon skipping of the CaMKIIδ gene during heart remodeling. By using mouse embryo fibroblasts derived from conditional SR protein knockout mice, we now show that SR protein-induced exon skipping depends on their prevalent actions on a flanking constitutive exon and requires collaboration of more than one SR protein. These findings, coupled with other established rules for SR proteins, provide a theoretical framework to understand the complex effect of SR protein-regulated splicing in mammalian cells. We further demonstrate that heart-specific CaMKIIδ splicing can be reconstituted in fibroblasts by downregulating SR proteins and upregulating a RBFOX protein and that SR protein overexpression impairs regulated CaMKIIδ splicing and neuronal differentiation in P19 cells, illustrating that SR protein-dependent exon skipping may constitute a key strategy for synergism with other splicing regulators in establishing tissue-specific alternative splicing critical for cell differentiation programs.  相似文献   

13.
14.
An J  Yuan Q  Wang C  Liu L  Tang K  Tian HY  Jing NH  Zhao FK 《Proteomics》2005,5(6):1656-1668
Mouse embryonic carcinoma P19 cell has been used extensively as a model to study molecular mechanisms of neural differentiation in vitro. After retinoic acid (RA) treatment and aggregation, P19 cells can differentiate into neural cells including neurons and glial cells. In this study, comparative proteomic analysis is utilized to approach the protein profiles associated with the RA-induced neural differentiation of P19 cells. Image analysis of silver stained two-dimensional gels indicated that 28 protein spots had significantly differential expression patterns in both quantity and quality. With mass spectrometry analysis and protein functional exploration, many proteins demonstrated an association with distinct aspects of neural differentiation. These proteins were gag polyprotein, rod cGMP-specific 3',5'-cyclic phosphodiesterase, 53 kDa BRG1-associated factor A, N-myc downstream regulated 1, Vitamin D receptor associated factor 1, stromal cell derived factor receptor 1, phosphoglycerate mutase, Ran-specific GTPase-activating protein, and retinoic acid (RA)-binding protein. While some cytoskeleton-related proteins such as beta cytoskeletal actin, gamma-actin, actin-related protein 1, tropomyosin 1, and cofilin 1 are related to cell migration and aggregation, other proteins have shown a relationship with distinct aspects of neural differentiation including energy production and utilization, protein synthesis and folding, cell signaling transduction, and self-protection. The differential expression patterns of these 28 proteins indicate their different roles during the neural differentiation of P19 cells. As an initial step toward unveiling the regulations involved in the commitment of pluripotent cells to a neural fate, information from this study may be helpful to uncover the molecular mechanisms of neural differentiation.  相似文献   

15.
NELL2 was first identified as a mammalian homolog of chick NEL (Neural EGF-like) protein. It is almost exclusively expressed in neurons of the rat brain and has been suggested to play a role in neural differentiation. However, there is still no clear evidence for the detailed function of NELL2 in the differentiation of neurons. In this study, we identified NELL2 function during neural differentiation of mouse embryonic carcinoma P19 cells. Endogenous expression of NELL2 in the P19 cells increased in parallel with the neuronal differentiation induced by retinoic acid (RA). We found that the mouse NELL2 promoter contains RA response elements (RAREs) and that treatment with RA increased NELL2 promoter activity. Transfection of P19 cells with NELL2 expression vectors induced a dramatic increase in cell aggregation, resulting in the facilitation of neural differentiation. Moreover, NELL2 significantly increased N-cadherin expression in the P19 cell. These data suggest that NELL2 plays an important role in the regulation of neuronal differentiation via control of N-cadherin expression and cell aggregation.  相似文献   

16.
The serine/arginine-rich (SR) proteins are one type of major actors in regulation of pre-mRNA splicing. Their functions are closely related to the intracellular spatial organization. The RS domain and phosphorylation status of SR proteins are two critical factors in determining the subcellular distribution. Mammalian Transformer-2β (Tra2β) protein, a member of SR proteins, is known to play multiple important roles in development and diseases. In the present study, we characterized the subcellular and subnuclear localization of Tra2β protein and its related mechanisms. The results demonstrated that in the brain the nuclear and cytoplasmic localization of Tra2β were correlated with its phosphorylation status. Using deletional mutation analysis, we showed that the nuclear localization of Tra2β was determined by multiple nuclear localization signals (NLSs) in the RS domains. The point-mutation analysis disclosed that phosphorylation of serine residues in the NLSs inhibited the function of NLS in directing Tra2β to the nucleus. In addition, we identified at least two nuclear speckle localization signals within the RS1 domain, but not in the RS2 domain. The nuclear speckle localization signals determined the localization of RS1 domain-contained proteins to the nuclear speckle. The function of the signals did not depend on the presence of serine residues. The results provide new insight into the mechanisms by which the subcellular and subnuclear localization of Tra2β proteins are regulated.  相似文献   

17.
SR proteins and related factors play widespread roles in alternative pre-mRNA splicing and are known to promote splice site recognition through their Arg-Ser-rich effector domains. However, binding of SR regulators to some targets results in repression of splice sites through a distinct mechanism. Here, we investigate how activated and repressed targets of the Drosophila SR regulator Transformer2 elicit its differing effects on splicing. We find that, like activation, repression affects early steps in the recognition of splice sites and spliceosome assembly. Repositioning of regulatory elements reveals that Tra2 complexes that normally repress splicing from intronic positions activate splicing when located in an exon. Protein tethering experiments demonstrate that this position dependence is an intrinsic property of Tra2 and further show that repression and activation are mediated by separate effector domains of this protein. When other Drosophila SR factors (SF2 and Rbp1) that activate splicing from exonic positions were tethered intronically they failed to either activate or repress splicing. Interestingly, both activities of Tra2 favor the exonic identity of the RNA sequences that encompass its binding sites. This suggests a model in which these two opposite functions act in concert to define both the position and extent of alternatively spliced exons.  相似文献   

18.
19.
20.
The fibroblast growth factor receptor (FGFR)-2 gene contains two mutually exclusive exons, K-SAM and BEK. We made a cell line designed to become drug-resistant on repression of BEK exon splicing. One drug-resistant derivative of this line carried an insertion within the BEK exon of a sequence containing at least two independent splicing silencers. One silencer was a pyrimidine-rich sequence, which markedly increased binding of polypyrimidine tract-binding protein to the BEK exon. The BEK exon binds to polypyrimidine tract-binding protein even in the silencer's absence. Several exonic pyrimidine runs are required for this binding, and they are also required for overexpression of polypyrimidine tract-binding protein to repress BEK exon splicing. These results show that binding of polypyrimidine tract-binding protein to exon sequences can repress splicing. In epithelial cells, the K-SAM exon is spliced in preference to the BEK exon, whose splicing is repressed. Mutation of the BEK exon pyrimidine runs decreases this repression. If this mutation is combined with the deletion of a sequence in the intron upstream from the BEK exon, a complete switch from K-SAM to BEK exon splicing ensues. Binding of polypyrimidine tract binding protein to the BEK exon thus participates in the K-SAM/BEK alternative splicing choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号