首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Tyrosine phosphorylation of the Rab24 GTPase in cultured mammalian cells   总被引:4,自引:0,他引:4  
Several members of the large family of Rab GTPases have been shown to function in vesicular trafficking in mammalian cells. However, the exact role of Rab24 remains poorly defined. Rab24 differs from other Rab proteins in that it has a low intrinsic GTPase activity and is not efficiently prenylated. Here we report an additional unique property of Rab24; i.e., the protein can undergo tyrosine phosphorylation when overexpressed in cultured cells. Immunoblot analyses with specific anti-phosphotyrosine monoclonal antibodies revealed the presence of phosphotyrosine (pTyr) on myc-Rab24 in whole cell lysates and immunoprecipitated samples. No pTyr was detected on other overexpressed myc-tagged GTPases (H-Ras, Rab1b, Rab6, Rab11 or Rab13). Comparisons of myc-Rab24 in the soluble and particulate fractions from HEK293 and HEp-2 cells indicated that the cytosolic pool of Rab24 was more heavily phosphorylated than the membrane pool. Treatment of transfected cells with the broad-spectrum tyrosine kinase inhibitor, genistein, as well as the specific Src-family kinase inhibitor, PP2, eliminated the pTyr signal from Rab24. In contrast the receptor tyrosine kinase inhibitor, tyrphostin A25, had no effect. Tyrosine phosphorylation of Rab24 was reduced by alanine substitution of two unique tyrosines, one found in a strong consensus phosphorylation motif (Y [Formula: see text] ) in the hypervariable domain (Y172) and the other falling within the GXXXGK(S/T) motif known as the P-loop (Y17). The latter region is known to influence GTP hydrolysis in Rab proteins, so the phosphorylation of Y17 could contribute to the low intrinsic GTPase activity of Rab24. This is the first report of tyrosine phosphorylation in any member of the Ras superfamily and it raises the possibility that this type of modification could influence Rab24 targeting and interactions with effector protein complexes.  相似文献   

2.
The Legionella pneumophila protein AnkX that is injected into infected cells by a Type IV secretion system transfers a phosphocholine group from CDP-choline to a serine in the Rab1 and Rab35 GTPase Switch II regions. We show here that the consequences of phosphocholination on the interaction of Rab1/Rab35 with various partner proteins are quite distinct. Activation of phosphocholinated Rabs by GTP/GDP exchange factors (GEFs) and binding to the GDP dissociation inhibitor (GDI) are strongly inhibited, whereas deactivation by GTPase activating proteins (GAPs) and interactions with Rab-effector proteins (such as LidA and MICAL-3) are only slightly inhibited. We show that the Legionella protein lpg0696 has the ability to remove the phosphocholine group from Rab1. We present a model in which the action of AnkX occurs as an alternative to GTP/GDP exchange, stabilizing phosphocholinated Rabs in membranes in the GDP form because of loss of GDI binding ability, preventing interactions with cellular GTPase effectors, which require the GTP-bound form. Generation of the GTP form of phosphocholinated Rab proteins cannot occur due to loss of interaction with cellular GEFs.  相似文献   

3.
Posttranslational modification of Rab proteins by geranylgeranyltransferase type II requires that they first bind to Rab escort protein (REP). Following prenylation, REP is postulated to accompany the modified GTPase to its specific target membrane. REP binds preferentially to Rab proteins that are in the GDP state, but the specific structural domains involved in this interaction have not been defined. In p21 Ras, the α2 helix of the Switch 2 domain undergoes a major conformational change upon GTP hydrolysis. Therefore, we hypothesized that the corresponding region in Rab1B might play a key role in the interaction with REP. Introduction of amino acid substitutions (I73N, Y78D, and A81D) into the putative α2 helix of Myc-tagged Rab1B prevented prenylation of the recombinant protein in cell-free assays, whereas mutations in the α3 and α4 helices did not. Additionally, upon transient expression in transfected HEK-293 cells, the Myc-Rab1B α2 helix mutants were not efficiently prenylated as determined by incorporation of [3H]mevalonate. Metabolic labeling studies using [32P]orthophosphate indicated that the poor prenylation of the Rab1B α2 helix mutants was not directly correlated with major disruptions in guanine nucleotide binding or intrinsic GTPase activity. Finally, gel filtration analysis of cytosolic fractions from 293 cells that were coexpressing T7 epitope-tagged REP with various Myc-Rab1B constructs revealed that mutations in the α2 helix of Rab1B prevented the association of nascent (i.e., nonprenylated) Rab1B with REP. These data indicate that the Switch 2 domain of Rab1B is a key structural determinant for REP interaction and that nucleotide-dependent conformational changes in this region are largely responsible for the selective interaction of REP with the GDP-bound form of the Rab substrate.  相似文献   

4.
Prenylated Rab GTPases cycle between membrane-bound and soluble forms. Membrane-bound GDP-Rabs interact with GDP dissociation inhibitor (GDI), resulting in the dissociation of a Rab.GDI complex, which in turn serves as a precursor for the membrane re-association of Rabs. We have now characterized the binding of Rab3A to synaptic vesicles in vitro using either purified complexes or rat brain cytosol as source for GDI.Rab3A. Binding of Rab3A results in the immediate release of GDI from the membrane. Furthermore, binding does not require the presence of additional guanine nucleotides (GDP or GTP) or of cytosolic factors. Although nucleotide exchange follows binding, binding is initially reversible, suggesting that binding of GDP-Rab3A and nucleotide exchange are separate and independent events. Comparison with the binding of Rab1B revealed that both Rab proteins bind preferentially to their respective resident membranes although some promiscuity was observable. Binding is saturable and involves a protease-sensitive binding site that is tightly associated with the vesicle membrane.  相似文献   

5.
Mapping the functionality of GTPases through small molecule inhibitors represents an underexplored area in large part due to the lack of suitable compounds. Here we report on the small chemical molecule 2-(benzoylcarbamothioylamino)-5,5-dimethyl-4,7-dihydrothieno[2,3-c]pyran-3-carboxylic acid (PubChem CID 1067700) as an inhibitor of nucleotide binding by Ras-related GTPases. The mechanism of action of this pan-GTPase inhibitor was characterized in the context of the Rab7 GTPase as there are no known inhibitors of Rab GTPases. Bead-based flow cytometry established that CID 1067700 has significant inhibitory potency on Rab7 nucleotide binding with nanomolar inhibitor (K(i)) values and an inhibitory response of ≥97% for BODIPY-GTP and BODIPY-GDP binding. Other tested GTPases exhibited significantly lower responses. The compound behaves as a competitive inhibitor of Rab7 nucleotide binding based on both equilibrium binding and dissociation assays. Molecular docking analyses are compatible with CID 1067700 fitting into the nucleotide binding pocket of the GTP-conformer of Rab7. On the GDP-conformer, the molecule has greater solvent exposure and significantly less protein interaction relative to GDP, offering a molecular rationale for the experimental results. Structural features pertinent to CID 1067700 inhibitory activity have been identified through initial structure-activity analyses and identified a molecular scaffold that may serve in the generation of more selective probes for Rab7 and other GTPases. Taken together, our study has identified the first competitive GTPase inhibitor and demonstrated the potential utility of the compound for dissecting the enzymology of the Rab7 GTPase, as well as serving as a model for other small molecular weight GTPase inhibitors.  相似文献   

6.
Mss4 is a mammalian protein that was identified as a suppressor of a yeast secretory mutant harboring a mutation in the GTPase Sec4 and was found to stimulate GDP release from this protein. We have now performed a biochemical characterization of the Mss4 protein and examined the specificity of its association with mammalian GTPases. Mss4 is primarily a soluble protein with a widespread tissue distribution. Recombinant Mss4 binds GTPases present in tissue extracts, and by a gel overlay assay binds specifically Rab Rab10proteins. We further define the Mss4-GTPase interaction to a subset of Rabs belonging to the same subfamily branch which include Rab1, Rab3, Rab8, Rab10, Sec4 and Ypt1 but not Rab2, Rab4, Rab5, Rab6, Rab9 and Rab11. Accordingly, Mss4 co-precipitates from a brain extract with Rab3a but not Rab5. Mss4 only stimulates GDP release from, and the association of GTP gamma S with, this Rab subset. Recombinant Mss4 and Rab3a form a stable complex in solution that is dissociated with either GDP or GTP gamma S. Injection of Mss4 into the squid giant nerve terminal enhances neurotransmitter release. These results suggest that Mss4 behaves as a guanylnucleotide exchange factor (GEF) for a subset of Rabs to influence distinct vesicular transport steps along the secretory pathway.  相似文献   

7.
Rab9 GTPase resides in a late endosome microdomain together with mannose 6-phosphate receptors (MPRs) and the tail-interacting protein of 47 kDa (TIP47). To explore the importance of Rab9 for microdomain establishment, we depleted the protein from cultured cells. Rab9 depletion decreased late endosome size and reduced the numbers of multilamellar and dense-tubule-containing late endosomes/lysosomes, but not multivesicular endosomes. The remaining late endosomes and lysosomes were more tightly clustered near the nucleus, implicating Rab9 in endosome localization. Cells displayed increased surface MPRs and lysosome-associated membrane protein 1. In addition, cells showed increased MPR synthesis in conjunction with MPR missorting to the lysosome. Surprisingly, Rab9 stability on late endosomes required interaction with TIP47. Rabs are thought of as independent, prenylated entities that reside either on membranes or in cytosol, bound to GDP dissociation inhibitor. These data show that Rab9 stability is strongly influenced by a specific effector interaction. Moreover, Rab9 and the proteins with which it interacts seem critical for the maintenance of specific late endocytic compartments and endosome/lysosome localization.  相似文献   

8.
The AP-1B clathrin adaptor complex plays a key role in the recognition and intracellular transport of many membrane proteins destined for the basolateral surface of epithelial cells. However, little is known about other components that act in conjunction with AP-1B. We found that the Rab8 GTPase is one such component. Expression of a constitutively activated GTP hydrolysis mutant selectively inhibited basolateral (but not apical) transport of newly synthesized membrane proteins. Moreover, the effects were limited to AP-1B-dependent basolateral cargo; basolateral transport of proteins containing dileucine targeting motifs that do not interact with AP-1B were targeted normally despite overexpression of mutant Rab8. Similar results were obtained for a dominant-negative allele of the Rho GTPase Cdc42, previously implicated in basolateral transport but now shown to be selective for the AP-1B pathway. Rab8-GFP was localized to membranes in the TGN-recycling endosome, together with AP-1B complexes and the closely related but ubiquitously expressed AP-1A complex. However, expression of active Rab8 caused a selective dissociation of AP-1B complexes, reflecting the specificity of Rab8 for AP-1B-dependent transport.  相似文献   

9.
Rab GTPases function as essential regulators of vesicle transport in eukaryotic cells. MSS4 was shown to stimulate nucleotide exchange on Rab proteins associated with the exocytic pathway and to have nucleotide-free-Rab chaperone activity. A detailed kinetic analysis of MSS4 interaction with Rab8 showed that MSS4 is a relatively slow exchange factor that forms a long-lived nucleotide-free complex with RabGTPase. In contrast to other characterized exchange factor-GTPase complexes, MSS4:Rab8 complex binds GTP faster than GDP, but still ca. 3 orders of magnitude more slowly than comparable complexes. The crystal structure of the nucleotide-free MSS4:Rab8 complex revealed that MSS4 binds to the Switch I and interswitch regions of Rab8, forming an intermolecular beta-sheet. Complex formation results in dramatic structural changes of the Rab8 molecule, leading to unfolding of the nucleotide-binding site and surrounding structural elements, facilitating nucleotide release and slowing its rebinding. Coupling of nucleotide exchange activity to a cycle of GTPase unfolding and refolding represents a novel nucleotide exchange mechanism.  相似文献   

10.
The biochemical role of guanine nucleotide exchange factors (GEFs) in catalyzing small GTPase GDP-GTP exchange is thought to be twofold: stimulation of GDP dissociation and stabilization of a nucleotide-free GTPase intermediate. Here we report that TrioN, a Dbl family GEF, activates Rac1 by facilitating GTP binding to, as well as stimulating GDP dissociation from, Rac1. The TrioN-catalyzed GDP dissociation is dependent upon the structural nature and the concentration of free nucleotide, and nucleotide binding serves as the rate-limiting step of the GEF reaction. The TrioN-stimulated nucleotide exchange may undergo a novel two nucleotide-one G-protein intermediate involving two cryptic subsites on Rac1 induced by the GEF, with one subsite contributing to the recognition of the beta/gamma phosphates of the incoming GTP and another to the binding of the guanine base of the leaving GDP. We propose that the Rac GEF reaction may proceed by competitive displacement of bound GDP by GTP through a transient intermediate of GEF-[GTP-Rac-GDP].  相似文献   

11.
Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9 Å resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.  相似文献   

12.
Rab GTPases are Ras-like small molecular weight GTP binding proteins that are involved in various steps along the exocytic and endocytic pathways. Here we report that Rab39, a novel Rab protein, is a Golgi-associated protein involved in endocytosis of HeLa cells. Full-length cDNA of Rab39 contains 1251bp with an open reading frame (ORF) of 636bp, which is predicted to encode a 211 aa protein. By blast analysis of Rab39 cDNA and protein sequence with homologues, we find that Rab39 may be a short variant of Rab34. Rab39 contains conserved motifs involved in phosphate/guanosine binding and a microbody C-terminal targeting signal. RT-PCR analysis indicates that Rab39 is mainly detected in epithelial cell lines, and Northern blot analysis shows that Rab39 is expressed ubiquitously in human tissues. By using FITC-BSA as an endocytic tracer, we show that Rab39 can facilitate endocytosis in HeLa cells when expressed either transiently or stably. Confocal microscopy examination of Rab39 subcellular localization suggests that Rab39 is associated with Golgi-associated organelles. Our findings demonstrate that Rab39 is a novel Rab GTPase involved in cellular endocytosis.  相似文献   

13.
The homotypic fusion of yeast vacuoles requires the Rab-family GTPase Ypt7p and its effector complex, homotypic fusion and vacuole protein sorting complex (HOPS). Although the vacuolar kinase Yck3p is required for the sensitivity of vacuole fusion to proteins that regulate the Rab GTPase cycle-Gdi1p (GDP-dissociation inhibitor [GDI]) or Gyp1p/Gyp7p (GTPase-activating protein)-this kinase phosphorylates HOPS rather than Ypt7p. We addressed this puzzle in reconstituted proteoliposome fusion reactions with all-purified components. In the presence of HOPS and Sec17p/Sec18p, there is comparable fusion of 4-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteoliposomes when they have Ypt7p bearing either GDP or GTP, a striking exception to the rule that only GTP-bound forms of Ras-superfamily GTPases have active conformations. However, the phosphorylation of HOPS by recombinant Yck3p confers a strict requirement for GTP-bound Ypt7p for binding phosphorylated HOPS, for optimal membrane tethering, and for proteoliposome fusion. Added GTPase-activating protein promotes GTP hydrolysis by Ypt7p, and added GDI captures Ypt7p in its GDP-bound state during nucleotide cycling. In either case, the net conversion of Ypt7:GTP to Ypt7:GDP has no effect on HOPS binding or activity but blocks fusion mediated by phosphorylated HOPS. Thus guanine nucleotide specificity of the vacuolar fusion Rab Ypt7p is conferred through downstream posttranslational modification of its effector complex.  相似文献   

14.

Background  

Members of the Rab GTPase family regulate intracellular protein trafficking, but the specific function of Rab24 remains unknown. Several attributes distinguish this protein from other members of the Rab family, including a low intrinsic GTPase activity.  相似文献   

15.
Rabs are the largest family of small GTPases and are master regulators of membrane trafficking. Following activation by guanine‐nucleotide exchange factors (GEFs), each Rab binds a specific set of effector proteins that mediate the various downstream functions of that Rab. Then, with the help of GTPase‐activating proteins, the Rab converts GTP to GDP, terminating its function. There are over 60 Rabs in humans and only a subset has been analyzed in any detail. Recently, Rab35 has emerged as a key regulator of cargo recycling at endosomes, with an additional role in regulation of the actin cytoskeleton. Here, we will focus on the regulation of Rab35 activity by the connecdenn/DENND1 family of GEFs and the TBC1D10/EPI64 family of GTPase‐activating proteins. We will describe how analysis of these proteins, as well as a plethora of Rab35 effectors has provided insights into Rab35 function. Finally, we will describe how Rab35 provides a novel link between the Rab and Arf family of GTPases with implications for tumor formation and invasiveness .   相似文献   

16.
We have determined crystal structures of Sec4, a member of the Rab family in the G protein superfamily, in two states: bound to GDP, and to a non-hydrolyzable GTP analog, guanosine-5'-(beta, gamma)-imidotriphosphate (GppNHp). This represents the first structure of a Rab protein bound to GDP. Sec4 in both states grossly resembles other G proteins bound to GDP and GppNHp. In Sec4-GppNHp, structural features common to active Rab proteins are observed. In Sec4-GDP, the switch I region is highly disordered and displaced relative to the switch I region of Ras-GDP. In two of the four molecules of Sec4-GDP in the asymmetric unit of the Sec4-GDP crystals, the switch II region adopts a conformation similar to that seen in the structure of the small G protein Ran bound to GDP. This allows residues threonine 76, glutamate 80, and arginine 81 of Sec4 to make contacts with other conserved residues and water molecules important for nucleotide binding. In the other two molecules in the asymmetric unit, these interactions do not take place. This structural variability in both the switch I and switch II regions of GDP-bound Sec4 provides a possible explanation for the high off-rate of GDP bound to Sec4, and suggests a mechanism for regulation of the GTPase cycle of Rab proteins by GDI proteins.  相似文献   

17.
Rab GTPases associated with insulin‐containing secretory granules (SGs) are key in targeting, docking and assembly of molecular complexes governing pancreatic β‐cell exocytosis. Four Rab3 isoforms along with Rab27A are associated with insulin granules, yet elucidation of the distinct roles of these Rab families on exocytosis remains unclear. To define specific actions of these Rab families we employ Rab3GAP and/or EPI64A GTPase‐activating protein overexpression in β‐cells from wild‐type or Ashen mice to selectively transit the entire Rab3 family or Rab27A to a GDP‐bound state. Ashen mice carry a spontaneous mutation that eliminates Rab27A expression. Using membrane capacitance measurements we find that GTP/GDP nucleotide cycling of Rab27A is essential for generation of the functionally defined immediately releasable pool (IRP) and central to regulating the size of the readily releasable pool (RRP). By comparison, nucleotide cycling of Rab3 GTPases, but not of Rab27A, is essential for a kinetically rapid filling of the RRP with SGs. Aside from these distinct functions, Rab3 and Rab27A GTPases demonstrate considerable functional overlap in building the readily releasable granule pool. Hence, while Rab3 and Rab27A cooperate to generate release‐ready SGs in β‐cells, they also direct unique kinetic and functional properties of the exocytotic pathway.   相似文献   

18.
Rab proteins belong to the family of monomeric GTPases which are involved in the cellular membrane trafficking. Rab21 protein exists in interchangeable GTP- and GDP-bound states. Rabs switch between two active and inactive conformations like other GTPases. The inactive form of Rab is bound to GDP while its active form is bounded with the GTP. Interexchange between active and inactive form is mediated by the GDP/GTP exchange factor (GEF) which catalyses the conversion from GDP-bound to GTP-bound form, thereby activating the Rab. While the GTP hydrolysis of Rabs is regulated by a GTPase-activating protein (GAP) which causes Rab inactivation. Here, we report the structural flexibility of the Rab21-GTP and Rab21-GDP complexes by docking and molecular dynamics (MD) simulations. Structural analysis of exchange mechanisms of the co-factors complexed with Rab21 reveals that Cys29, Thr33, His48, Gln78 and Lys133 are essentially important in the activation of proteins. Furthermore, a significant change in the orientation of the interacting co-factors, with slight variation in the free energy of binding was observed. Complexation of GEF with Rab21-GTP and Rab21-GDP reveal a flipping of the switchable residues. Finally, 50 ns MD simulations confirm that the GTP-bound Rab21 complex is thermodynamically more favoured than the corresponding GDP-bound complex. This study provides a detailed understanding of the structural elements involved in the conformational changes of Rab21.  相似文献   

19.
20.
Small G proteins of the Rab family are regulators of intracellular vesicle traffic. Their intrinsic rate of GTP hydrolysis is very low but is enhanced by specific GTPase-activating proteins (GAPs) that switch G proteins to their inactive form. We have characterized the activity of recombinant Rab3-GAP on Rab3A in solution. The K(m) and K(d) values (75 microm) indicate a low affinity of Rab3-GAP for its substrate. The affinity is higher for the transition state analog Rab3A:GDP:AlF(x) (15 microm). The k(cat) (1 s(-)(1)) is within the range of values reported for other GAPs. A mutation in the switch I region of Rab3A disrupted the interaction with Rab3-GAP. Furthermore, Rabphilin, a putative target of Rab3, inhibited the activity of Rab3-GAP on Rab3. Therefore, the Rab3-GAP-binding site involves the switch I region of Rab3 and overlaps with the Rabphilin-binding domain. Substitution of a single arginine residue (Arg-728) of Rab3-GAP disrupted its catalytic activity but not its interaction with Rab3A. We propose that Rab3-GAP, like Ras- and Rho-GAPs, stabilizes the transition state of Rab3 and provides a critical arginine residue to accelerate the GTPase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号