首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 244 毫秒
1.
叶绿体是植物细胞内一种重要的细胞器.它不仅是光合作用的场所,还是其它多种中间代谢的场所.叶绿体起源于蓝细菌,与其原核祖先类似,通过二分裂方式进行增殖.最近的研究表明,叶绿体的分裂装置包含原核起源和真核起源的蛋白质,它们在叶绿体的内膜内侧和外膜外侧协同作用以完成叶绿体的分裂.在过去十几年里,包括丝状温度敏感蛋白Z(FtsZ)、Min系统蛋白、质体分裂蛋白(PDV)和ARC蛋白等在内的多个叶绿体分裂相关组分被分离鉴定.本文简要介绍了叶绿体分裂装置各成员的发现、叶绿体被膜的收缩和叶绿体分裂位点的选择机制.另外,植物发育过程中叶绿体分裂可能受到细胞的控制,但目前对细胞如何调控叶绿体分裂知之甚少.本文对该领域的最新研究进展也进行了综述.  相似文献   

2.
革兰氏阴性细菌的外膜由脂多糖、磷脂、外膜蛋白和脂蛋白等成分组成,是细菌抵御外界有害物质的首要物理屏障,与细菌致病性和耐药性密切相关.外膜各组分依赖特定的系统进行跨膜转运,包括脂多糖转运系统(lipopolysaccharide transport, Lpt)、脂质不对称维持系统(maintenance of lipid asymmetry, Mla)、β-桶状装配机器(β-barrel assembly machinery,Bam)以及脂蛋白定位系统(localization of lipoprotein,Lol).这些系统能够保证细菌外膜的完整与稳定,被视为维持细菌生命活动的"命门".因此,本文系统地综述革兰氏阴性细菌外膜主要成分的跨膜转运系统结构与功能,并对其未来研究方向进行展望,为新型靶向抗菌类药物研发提供新的思路.  相似文献   

3.
本文报告了用电镜对国内分离的{株犬布氏菌和W.H. O.的4种对照菌(包括犬布氏菌、猪布氏菌、羊布氏菌和牛布氏茵)进行的电镜观察结果。所有上述菌株的形状和大小基本一致,均为球杆状,其球状体直径为0.70—0.73μm;杆状体长1.0一1.46μm,宽0.5--0.7μm。细胞壁均由外膜和肽聚糖两部分组成,具有革兰氏阴性细胞壁的特征。国内株犬布氏菌的细胞表面,经常产生乳头状突起,它包有外膜,内含肽聚糖,实际上是细胞壁的一部分。外胰主要由脂多糖(LPS)组成,因此乳头状突起有可能是细菌释放内毒素(Endotoxin)的一种形式。这一现象在W.H.O.菌株中比较少见。细胞分又生长,在布氏菌中比较普遍,尤以W.H.O.菌株更为多见。超薄切片的结果表明,细胞分又是由杆状细菌的侧分裂形成的。但 是,一般报道多认为细菌的繁殖方式是横分裂。  相似文献   

4.
<正> 脑膜炎奈瑟氏菌是引起流行性脑脊髓膜炎(流脑)的病原菌,其细胞的超微结构是比较复杂的。核区含有DNA组成的纤维样核质,胞浆区含有丰富的核糖体(Ribosome),胞浆膜与双层膜结构,浆膜外间有致密的肽聚糖层(Peptidoglycan)或粘肽层(Mucopeptide)。外膜(Outer mem-brane)是一种起伏不平的膜,其厚7.5nm。外膜是多糖(群特异性多糖,脂多糖)、脂类和蛋白质复合物。外膜蛋白常以脂多糖和  相似文献   

5.
β-桶状结构外膜蛋白是革兰氏阴性细菌细胞外膜层的主要组成部分,在营养吸收、维持外膜完整性、病原菌致病性及多重耐药性等方面发挥着重要的作用,对细菌的存活至关重要。详细了解这些蛋白的合成、折叠与组装到外膜的过程在增加筛选抗病原菌药物靶位、增强有益菌的生物活性等方面具有重要意义。本文对近年来革兰氏阴性细菌β-桶状结构外膜蛋白的合成、转运、折叠及组装到外膜过程的研究结果进行了综合论述,重点叙述了β-桶状结构外膜蛋白组装复合体的研究进展,并在此基础对这一类蛋白的折叠与膜整合过程提出一些新的见解,便于读者快速、全面了解该领域的最新发现和发展。  相似文献   

6.
代先祝  罗峰 《微生物学报》2014,54(3):261-268
摘要:β-桶状结构外膜蛋白是革兰氏阴性细菌细胞外膜层的主要组成部分,在营养吸收、维持外膜完整性、病原菌致病性及多重耐药性等方面发挥着重要的作用,对细菌的存活至关重要。详细了解这些蛋白的合成、折叠与组装到外膜的过程在增加筛选抗病原菌药物靶位、增强有益菌的生物活性等方面具有重要意义。本文对近年来革兰氏阴性细菌β-桶状结构外膜蛋白的合成、转运、折叠及组装到外膜过程的研究结果进行了综合论述,重点叙述了β-桶状结构外膜蛋白组装复合体的研究进展,并在此基础对这一类蛋白的折叠与膜整合过程提出一些新的见解,便于读者快速、全面了解该领域的最新发现和发展。  相似文献   

7.
大肠杆菌细胞内共有3个潜在的分裂位点,一个在细胞中部,另外两个位于细胞的两极。正常情况下,细菌仅利用中部的分裂位点以二分裂方式进行细胞的对称分裂。大肠杆菌细胞分裂时,中部潜在分裂位点的选择受到min操纵子(含minC、minD、minE3个基因)的精细调控。minC基因所编码的MinC蛋白是细胞分裂的抑制因子,与具有ATPase活性的MinD蛋白结合后被激活。在MinE蛋白的作用下,MinC和MinD蛋白在大肠杆菌细胞的两极间来回振荡。整个振荡周期中,MinC蛋白在细胞两极的两个潜在分裂位点处所停留的时间  相似文献   

8.
多种革兰阴性菌在其对数生长期可产生外膜泡,它是外膜的最新合成部分,不含肽聚糖,内膜和细胞质成分,其主要化学成分是脂多糖,外膜泡的形成与脱落实质是活菌释放内毒素的一种方式,此外,它还能作为一些细菌毒素的载体。外膜泡具有蛋白水解酶活性,能增强细菌的粘附力,并赋予细菌抵抗宿主血清杀菌的能力。它还具有防御作用,细菌通过释放外膜泡可摆脱吸附的噬菌体,外膜泡的多种生物学活性使细菌的致病性大大增强,是一种重要的毒力因子。  相似文献   

9.
陈国忠  张燕娇  陈师勇 《微生物学报》2017,57(12):1769-1777
细菌脂蛋白是细胞膜的重要组成成分,在革兰氏阴性菌的生理及致病性中扮演着重要的角色。革兰氏阴性菌中已知负责胞内脂蛋白转运的是Lol(Localization of lipoprotein)系统。该系统识别成熟脂蛋白的分泌信号,将外膜脂蛋白转运并定位于细胞外膜内侧。近年来的研究发现,跨细胞外膜进行表面展示的脂蛋白实际上在革兰氏阴性菌中广泛存在,其分泌机制开始成为研究热点。为了对革兰氏阴性菌中脂蛋白分泌机制的研究现状有一个系统全面的了解,本文概述了脂蛋白转运过程中Lol系统5个转运蛋白的功能与保守性、不同细菌中脂蛋白分泌信号的差异以及表面展示脂蛋白可能的分泌机制。  相似文献   

10.
细菌细胞分裂位点的调控机制及其研究进展   总被引:2,自引:0,他引:2  
大肠杆菌细胞内共有3个潜在的分裂位点,一个在细胞中部,另外两个位于细胞的两极。正常情况下,细菌仅利用中部的分裂位点以二分裂方式进行细胞的对称分裂。大肠杆菌细胞分裂时,中部潜在分裂位点的选择受到min操纵子(含minC、minD、minE3个基因)的精细调控。minC基因所编码的MinC蛋白是细胞分裂的抑制因子,与具有ATPase活性的MinD蛋白结合后被激活。在MinE蛋白的作用下,MinC和MinD蛋白在大肠杆菌细胞的两极问来回振荡。整个振荡周期中,MinC蛋白在细胞两极的两个潜在分裂位点处所停留的时间较长,分裂复合物无法正常组装,因而细胞两极的潜在分裂位点被屏蔽;而MinC蛋白在细胞中部的分裂位点所停留的时间较短,不能有效地抑制分裂复合物的组装,因此,各种细胞分裂蛋白在中部的分裂位点组装形成稳定的分裂复合物,使正常的细胞分裂得以进行。  相似文献   

11.
本文以大肠杆菌脂蛋白信号肽基因为探针探测分析在亲缘关系上离大肠杆菌最远的摩氏摩根菌和奇异变形杆菌的脂蛋白信号肽基因并与其他肠杆菌进行比较。结果表明肠杆菌脂蛋白信号肽在结构上有共同特征,这些结构特征是信号肽功能所必需。摩根菌脂蛋白前体在分泌过程中亦为甘油修饰,信号肽被切掉成为成熟的脂蛋白组装于细菌的外膜。  相似文献   

12.
鼠伤寒沙门菌表达两个不同的Ⅲ型分泌系统(typeⅢsecretion/translocation systems, TTSS),分别由致病岛1和2(pathogenicityi slands 1 and 2, SPI-1 and SPI-2)编码。细菌依赖TTSS将效应蛋白转运至宿主细胞,通过“触发”机制诱导细菌进入宿主细胞。这些效应蛋白可诱导细胞骨架重排,导致“巨吞饮”,促使细菌入侵。本综述依据多种沙门菌效应蛋白的功能,建立沙门菌侵袭模型。TTSS活化并转运效应蛋白进入宿主细胞发挥功能(Ⅰ)。小G蛋白交换因子SopE和肌醇磷酸酯酶SopB通过激活CDC42和Rac1,诱导内陷相关的蛋白聚集(Ⅱ)。SipA和SipC通过降低肌动蛋白临界浓度、刺激网素成束、稳定纤维状肌动蛋白(fibrousactin, F-actin)以及使肌动蛋白核化等功能,促使细菌入侵(Ⅲ)。SopB可使膜内陷区PIP2的浓度降低以及VAMP8聚集,促使细胞膜分裂(Ⅳ)。这些效应蛋白的联合作用,使膜皱褶在局部向外显著延伸,使沙门菌被细胞内形成的特殊膜结构包裹。沙门菌的另一种效应蛋白SptP,通过刺激小G蛋白内源性GTPase的活性,抑制小G蛋白的活化,使细胞膜恢复至原有状态(Ⅴ)。  相似文献   

13.
蛋白质入核转运的机制和研究进展   总被引:2,自引:0,他引:2  
细胞核膜是由外膜和内膜组成的磷脂双分子层结构,同时镶嵌一些核孔复合体(NPC).核孔复合体是胞浆和胞核之间主动和被动转运的生理屏障.核内功能蛋白在胞浆内合成后通过核孔复合体进入胞核,这个过程除了需要NPC上核孔蛋白、胞浆内核转运受体和RanGTP等蛋白的参与外, 货物蛋白本身的结构特征在其入核转运过程中亦发挥重要作用.本文着重就蛋白入核转运的机制及近年来取得的相关进展进行综述.  相似文献   

14.
作用于H~ —ATP酶复合体质子通道的能量传递抑制剂 TPT、DQCD和 OM能明显抑制叶绿体光合磷酸化反应和膜上 ATP酶活性,减小恒态ΛpH值,加速ΛpH和515 nm吸收衰减。这种在正常叶绿体加速H_(in)~ 经CF_0外流与在残缺膜中阻塞质子外流不一致。TPT等物质是干扰了CF_0与CF_1的构象连接,使 CF_0的质子传导失去CF_1的控制,H_(in)~ 无效漏失或质子逆向转移受影响,从而抑制与质子传导紧密相关的光合磷酸化反应和膜上ATP酶活性。  相似文献   

15.
滞留菌是一类处于低代谢休眠状态的抗生素耐受细菌亚群,能够在致死性压力应激后存活下来,是抗生素治疗失败和复发性感染的主要原因之一。毒素-抗毒素系统(toxin-antitoxin system, TA)作为压力应激模块普遍存在于各种细菌中,由稳定的毒素和不稳定但可以中和毒素的同源抗毒素组成。压力情况下,第二信使(p)ppGpp激活Lon,随后大多数II型TA系统被激活,诱导滞留菌形成。同样在(p)ppGpp存在的情况下,Obg刺激hokB转录,使毒素积累,抑制细菌DNA复制、转录、翻译等重要的生理过程,驱动细菌形成滞留菌。SOS反应是激活TA系统的另一个主要途径,解除了对tisB转录的抑制,使其在细胞内积累并插入细胞膜,破坏质子动力势,降低胞内ATP水平,诱使休眠和滞留菌形成。讨论TA系统介导滞留菌形成的机制有助于提出新型抗菌策略。  相似文献   

16.
变形菌视紫红质(proteorhodopsin,PR)是一类吸光色素膜蛋白,它是由7个跨膜ɑ-螺旋(A~G)组成的视蛋白(opsins)与色素视黄醛(retinal)通过共价键结合而形成。PR广泛存在于海洋和淡水水域的微生物中,是一种质子泵型的视紫红质,可在光的驱动下将质子从细胞质泵到胞质间隙,从而在细胞内外产生质子梯度,形成的化学势能被用于合成ATP、物质的跨膜运输以及驱动鞭毛运动等方面。据估算含PR的细菌在海洋水域中约占总细菌的13%,而每个含PR的细胞中的PR分子数约为2.5×104个。对PR功能的研究表明PR具有增强其宿主菌抵抗外界不良环境的能力;而对于PR三维结构的研究对PR的作用机理及其功能的研究将有更进一步的推动作用。  相似文献   

17.
细菌视紫红质的光电响应特性和机制   总被引:3,自引:2,他引:1  
在ITO导电玻璃上制备定向细菌视紫红质 (BR)电泳沉积膜或LB膜组成光电池系统 ,在短脉冲激光照射下 ,测定其脉冲响应光电压 ;在间断光照射下 ,测定其对光强变化产生的微分响应信号。对脉冲光电响应和微分响应的机理及其关系进行理论分析和解释 ,认为脉冲响应是BR分子内部生色团快速光极化引起的电荷分离和希夫碱及其周围氨基酸去质子化和再质子化过程引起的质子定向运输产生的位移电流 ,是一个快反应过程 ,是微分响应的早期反应和基础。微分响应则是由于菌紫质的光驱动质子泵产生的连续质子流在光开和光关瞬间引起光电池系统充放电以及测量电路的耦合特性引起的 ,是一个慢变化过程  相似文献   

18.
革兰氏阴性菌Ⅴ型分泌系统是细菌病原蛋白分泌的主要途径之一,可分为Ⅴa-Ⅴe5个亚型,其中Ⅴa型(即经典的单体自转运蛋白)是细菌毒力和黏附因子向细胞外分泌的重要工具,其在内膜Sec易位子和外膜BAM蛋白复合体的协助下,通过2个连续的跨膜步骤介导蛋白质穿过阴性菌的内外膜.据信Va型是目前已知蛋白质跨膜转运时最简单的分泌途径...  相似文献   

19.
细菌Ⅴ型分泌系统研究进展   总被引:1,自引:0,他引:1  
目前已知革兰阴性(G-)细菌的分泌系统至少有5种类型,即Ⅰ~Ⅴ型。其中Ⅴ型分泌系统为G-菌外膜通道转运蛋白系统中最大的一个家族,该系统又称自主转运蛋白系统,它首先通过Sec依赖的分泌通路跨内膜转运,到达外周质间隙后,又通过自身的C端在外膜上形成一个β折叠桶实现跨外膜转运。Ⅴ型分泌系统的分泌装置最为单一,且该系统分泌的蛋白在跨外膜转运过程中似乎不需要能量和辅助因子(蛋白)的参与。随着对运用Ⅴ型分泌系统在G-菌表面展示异源性多肽/蛋白质的深入研究,该系统在生物技术领域已展示出巨大的应用前景。  相似文献   

20.
与线粒体分裂有关的蛋白质研究进展   总被引:2,自引:0,他引:2  
孟紫强  耿红 《生命的化学》2002,22(2):118-120
在活细胞内线粒体处于不断的融合与分裂状态,线粒体融合与分裂的动态平衡影响着线粒体的形态和数量,本文对近年来与线粒体分裂有关的蛋白质研究进行了综述:(1)酵母(S.cerevisae)中的Dnm1蛋白或它的同源蛋白质可能通过缠绕于线粒体的收缩部分而影响线粒体外膜分裂;(2)位于线粒体上的3种同源蛋白Mdv1/Fis2/Gag3与Dnm1能短暂结合,它们都是线粒体分裂装置的组成部分;(3)一个插入线粒体外膜的跨膜蛋白Fisl或Mdv2极有可能是线粒体分裂装置的招募因子,并且由它启动分裂过程;(4)分布于膜间隙(IMS)中的Mgm1蛋白并不负责线粒体内膜分裂,这与以前的观点相反。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号