首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
Hairy roots have the potential to produce a variety of valuable small and large molecules. The mist reactor is a gas phase bioreactor that has shown promise for low‐cost culture of hairy roots. Using a newer, disposable culture bag, mist reactor performance was studied with two species, Artemisia annua L. and Arachis hypogaea (peanut), at scales from 1 to 20 L. Both species of hairy roots when grown at 1 L in the mist reactor showed growth rates that surpassed that in shake flasks. From the information gleaned at 1 L, Arachis was scaled further to 4 and then 20 L. Misting duty cycle, culture medium flow rate, and timing of when flow rate was increased were varied. In a mist reactor increasing the misting cycle or increasing the medium flow rate are the two alternatives for increased delivery of liquid nutrients to the root bed. Longer misting cycles beyond 2–3 min were generally deemed detrimental to growth. On the other hand, increasing the medium flow rate to the sonic nozzle especially during the exponential phase of root growth (weeks 2–3) was the most important factor for increasing growth rates and biomass yields in the 20 L reactors. A. hypogaea growth in 1 L reactors was µ = 0.173 day?1 with biomass yield of 12.75 g DW L?1. This exceeded that in shake flasks at µ = 0.166 day?1 and 11.10 g DW L?1. Best growth rate and biomass yield at 20 L was µ = 0.147 and 7.77 g DW L?1, which was mainly achieved when medium flow rate delivery was increased. The mist deposition model was further evaluated using this newer reactor design and when the apparent thickness of roots (+hairs) was taken into account, the empirical data correlated with model predictions. Together these results establish the most important conditions to explore for future optimization of the mist bioreactor for culture of hairy roots. Biotechnol. Bioeng. 2010;107: 802–813. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
Summary The efficient exchange of gases between roots and their environment is one of the biggest challenges in bioreactor design for transformed root cultures. Gas-phase reactors can alleviate this problem as well as provide a new tool for studying the biological response of roots and other differentiated tissues to changes in the gas phase composition. In our comparison of liquid- and gas-phase reactors, roots grown in liquid (shake flasks or bubble column reactors) are shown to be under hypoxic stress. Roots grown in a gas-phase reactor (nutrient mist), while not hypoxic, produced 50% less biomass. These results suggest that the response of the tissues to gas phase composition are complex and need further study.  相似文献   

3.
Artemisia annua hairy roots were grown in liquid-phase bubble column and gas-phase nutrient mist reactors. In most cases the bubble column reactor accumulated more biomass than the mist reactor; the highest final biomass concentrations observed were 15.3 g DW/L in the bubble column reactor and 14.4 g DW/L in the mist reactor. Further analysis showed that the average specific growth rate in the mist reactors was essentially constant and independent of the biomass concentration at the beginning of the mist mode. In contrast, at low packing densities the average growth rate in the bubble column reactors was higher than in the mist reactors, decreasing to comparable rates at high packing densities. Finally, an aerosol deposition model was used to compare the volume of medium captured by the root bed in the mist reactor to the volume of medium required to maintain a specified growth rate. The results suggest that under the current operating conditions, lower growth rates in the mist reactor may be due to insufficient nutrient availability.  相似文献   

4.
The transient growth of Artemisia annua hairy roots was compared for cultures grown in shake flasks and in bubble column and mist reactors. Instantaneous growth rates were obtained by numerically differentiating the transient biomass measurements. Specific sugar consumption rates showed good agreement with literature values. From the growth rate and sugar consumption rate, the specific yield and maintenance coefficient for sugar were determined for all three culture systems. These values were statistically indistinguishable for roots grown in shake flasks and bubble columns. In contrast, the values for roots grown in bubble columns and mist reactors were statistically different, suggesting that sugar utilization by roots grown in these two systems may be different. By measuring respiration rates in the bubble column reactor we also determined the actual biomass yield and maintenance coefficient for O(2) and CO(2). Together with an elemental analysis of the roots, this allowed us to obtain a reasonable carbon balance.  相似文献   

5.
Artemisia annua hairy roots grown in nutrient mist reactors produced nearly three times as much artemisinin as roots grown in bubble column reactors, 2.64 µg/g DW and 0.98 µg/g DW, respectively.  相似文献   

6.
In vitro growth of Solanum chrysotrichum hairy roots was carried out in three different types of reactors: shake flasks, a glass-draught internal-loop 2-L basic design airlift reactor (BDR), and a novel modified mesh-draught with wire-helixes 2-L reactor (MR). In each of them, the growth patterns were different, as well as some of the dynamic parameters. The specific growth rates were 0.08, 0.067, and 0.112 d(-1) for shake flasks, BDR, and MR, respectively. In shake flasks and in the MR, growth followed first-order kinetics. In the MR without roots, superficial liquid velocity in the riser and downcomer ranged from 2.1 to 2.7 and 1.4 to 1.7 cm s(-1), respectively (nearly the same as the BDR values). After 42 days in culture, tissue density in the MR was twice that found in the BDR and about the same as that found in the shake flasks. At the tissue densities reached at 42 days, superficial liquid velocities in the MR and BDR downcomers were 4-5 and 7-8 times lower, and mixing times were 11 and 18 times longer than those observed without roots. Tissue densities measured at three points in the MR's downcomer and riser ranged from 10.21 to 12.17 and 4.94 to 5.24 gDW L(-1) respectively. Dynamic gas hold-up dropped faster when roots grew radially in the mesh-draught. In addition, root cultures were scaled-up in a 10-L MR reactor in which some geometric relations were maintained, such as the Q/V radio. Growth in 10-L MR followed first-order kinetics, but despite this, specific growth velocity was 0.09 d(-1) and overall tissue density diminished slightly with respect to that of the 2-L MR. Tissue inoculation, distribution, and harvest were more easily accomplished in the MRs.  相似文献   

7.
Summary A nutrient mist bioreactor was modified for culturing transformed roots of Beta vulgaris and Carthamus tinctorius on a nylon support. Culture conditions of misting cycle, inoculum size, batch or continuous operation and sucrose concentration were varied in order to maximize growth over a 1-week period. Root tissue cultured in nutrient mists in a 1.8-1 culture chamber achieved levels of growth equivalent to hairy roots cultured in shake flasks with identical medium. Our results demonstrate the effectiveness of nutrient mist culture as applied to hairy roots, thereby providing an alternative means for successful culture of these tissues. Correspondence to: A. A. DiIorio  相似文献   

8.
Present investigation involves hairy root cultivation of Azadirachta indica in a modified stirred tank reactor under optimized culture conditions for maximum volumetric productivity of azadirachtin. The selected hairy root line (Az-35) was induced via Agrobacterium rhizogenes LBA 920-mediated transformation of A. indica leaf explants (Coimbatore variety, India). Liquid culture of the hairy roots was developed in a modified Murashige and Skoog medium (MM2). To further enhance the productivity of azadirachtin, selected growth regulators (1.0?mg/l IAA and 0.025?mg/l GA3), permeabilizing agent (0.5?% v/v DNBP), a biotic elicitor (1?% v/v Curvularia (culture filtrate)) and an indirectly linked biosynthetic precursor (50?mg/l cholesterol) were added in the growth medium on 15th day of the hairy root cultivation period in shake flask. Highest azadirachtin production (113?mg/l) was obtained on 25th day of the growth cycle with a biomass of 21?g/l DW. Further, batch cultivation of hairy roots was carried out in a novel liquid-phase bioreactor configuration (modified stirred tank reactor with polyurethane foam as root support) to investigate the possible scale-up of the established A. indica hairy root culture. A biomass production of 15.2?g/l with azadirachtin accumulation in the hairy roots of 6.4?mg/g (97.28?mg/l) could be achieved after 25?days of the batch cultivation period, which was ~27 and ~14?% less biomass and azadirachtin concentration obtained respectively, in shake flasks. An overall volumetric productivity of 3.89?mg/(l?day) of azadirachtin was obtained in the bioreactor.  相似文献   

9.
Summary Border cells from Artemisia annua were examined from hairy roots grown in shake flasks, culture plates, a bubble column reactor, and a nutrient mist (aeroponic) reactor. When well-hydrated roots were subjected to shear, border cells were first released as an agglomerate and did not disperse for several hours. Staining with neutral red and fluorescein diacetate (FDA) showed that both agglomerates and dispersed cells were alive. It was determined that FDA is cleaved by pectin methylesterase (PME) and that PME may not be particularly active in the released agglomerates until the border cells disperse. Untransformed roots isolated from A. annua plants showed no border cell agglomerate formation and border cells readily dispersed. These results suggest that our hairy root clone is deficient in border cell release perhaps resulting from the transformation process.  相似文献   

10.
11.
Summary A transformed root culture of Cichorium intybus L. cv. Lucknow Local grown in different configurations of bioreactors was examined. The roots grown in an acoustic mist bioreactor showed the best performance in terms of increased specific growth rate (0.072d−1) and esculin content (18.5gl−1), the latter of which was comparable to that of shake flask data. C. intybus hairy root cultures grown in an acoustic mist bioreactor produced nearly twice as much esculin as compared to roots grown in bubble column and nutrient sprinkle bioreactors. Studies relating to on-line estimation of conductivity and osmolarity to predict the growth of hairy root cultures are also discussed. The results demonstrate the efficacy and the advantages of an acoustic mist bioreactor for the cultivation of hairy root cultures, especially with reference to C. intybus hairy roots.  相似文献   

12.
Production of monoclonal antibodies by tobacco hairy roots   总被引:5,自引:0,他引:5  
Hairy roots of tobacco (Nicotiana tabacum) were used to produce full-length murine lgG(1) monoclonal antibody. The presence of heavy (gamma) and light (kappa) chains and fully assembled antibody was verified by Western blot analysis of root extracts. Antibody levels in the biomass and medium were quantified by ELISA based on detection of gamma-kappa complexes. Antibody produced by hairy roots was fully functional as demonstrated in bacterial aggregation assays which confirmed bivalent antigen-binding capacity. Eight antibody-producing hairy root clones retained their ability to produce mouse immunoglobulin over a period of 19 months after transformation with Agrobacterium rhizogenes. For hairy roots grown in Gamborg's B5 medium, the maximum level of assembled antibody after 21-day culture in shake flasks was 18 mg L(-1) or 1.8% total soluble protein; up to 14% of the antibody was secreted into the medium. Antibody production by transgenic hairy roots had a negligible effect on growth compared with hairy roots of wild-type tobacco. Antibody accumulation was growth associated with constant specific accumulation rate at the beginning of the culture; however, degradation of antibody was significant after 14 days and the amount of assembled antibody declined. Unlike hybridoma cultures, the time course of antibody accumulation by hairy roots showed a distinctive maximum very soon after the end of exponential growth. Total antibody levels were increased by addition of nitrate, polyvinylpyrrolidone, or gelatin to the medium. Polyvinylpyrrolidone and gelatin also markedly improved extracellular antibody concentrations; with these treatments, up to 43% of the antibody present was secreted into the medium. Antibody production was tested using hairy roots grown in an air-driven bioreactor. The intracellular antibody content after 30-day bioreactor culture was similar to that measured in shake flasks; however, the final extracellular antibody level was 1.7 times higher than the maximum measured in shake flasks. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 401-415, 1997.  相似文献   

13.
The effect of oxidative stress on indole alkaloids accumulation by cell suspensions and root cultures of Uncaria tomentosa in bioreactors was investigated. Hydrogen peroxide (H2O2, 200 μM) added to U. tomentosa cell suspension cultures in shaken flasks induced the production of monoterpenoid oxindole alkaloids (MOA) up to 40.0 μg/L. In a stirred tank bioreactor, MOA were enhanced by exogenous H2O2 (200 μM) from no detection up to 59.3 μg/L. Root cultures grew linearly in shaken flasks with a μ=0.045 days?1 and maximum biomass of 12.08±1.24 g DW/L (at day 30). Roots accumulated 3α‐dihydrocadambine (DHC) 2354.3±244.8 μg/g DW (at day 40) and MOA 348.2±32.1 μg/g DW (at day 18). Exogenous addition of H2O2 had a differential effect on DHC and MOA production in shaken flasks. At 200 μM H2O2, MOA were enhanced by 56% and DHC by 30%; while addition of 800 and 1000 μM H2O2, reduced by 30–40% DHC accumulation without change in MOA. Root cultures in the airlift reactor produced extracellular H2O2 with a characteristic biphasic profile after changing aeration. Maximum MOA was 9.06 mg/L at day 60 while at this time roots reached ca. 1 mg/L of DHC. Intracellular H2O2 in root cultures growing in the bioreactor was 0.87 μmol/g DW compared to 0.26 μmol/g DW of shaken flasks cultures. These results were in agreement with a higher activity of the antioxidant enzymes superoxide dismutase and peroxidase by 6‐ and 2‐times, respectively. U. tomentosa roots growing in the airlift bioreactor were exposed to an oxidative stress and their antioxidant system was active allowing them to produce oxindole alkaloids.  相似文献   

14.
Summary A nutrient-mist bioreactor was designed that separates the nutrient medium from the electronic components via an acoustic window. This eliminates compromising culture sterility when repairing mechanical failures common with commercially available mist reactors. The experimental mist bioreactor is low cost and can be assembled in any laboratory. Toxicity tests of several potential acoustically transparent materials are included. Details of the construction procedures include methods for casting the window. Growth data using the newly designed nutrient mist bioreactor are compared to data from a commercial mist reactor, shake flasks, and Gelrite cultures.Artemisia annua hairy roots andNephrolepis exaltata shoot cultures showed growth comparable to the conventional tissue culture methods.  相似文献   

15.
This paper presents a technique for accurate estimation of growth in root culture systems. Biomass correlations, were used to estimate fresh weight time course data in shake flasks and reactors based on a model of liquid nutrient uptake and osmolality, to account for changing specific water content of roots. This mass balance technique has been developed to permit accurate aseptic on-line estimation of dry weight (DW), fresh weight (FW), and liquid volume (V) in root cultures utilizing either refractive index or electrical conductivity of the liquid medium along with liquid medium osmolality. The ability to predict fresh weight is particularly important since this is proportional to the biomass volume fraction which determines mass transfer and other culture transport characteristics. The proposed model has been validated with time course information (DW, FW, and V) from 125 mL shake flasks and corroborated with data obtained from 2 L reactors. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

16.
Hairy root cultures of red beet (Beta vulgaris) were grown in 3 l bubble column reactor for studying growth and pigment production under the influence of polyamines (PA) and elicitor treatment. Earlier studies with shake flask cultures had shown that combined feeding of spermidine (spd) and putrescine (put) (each 0.75 mM) significantly enhanced betalaine productivity in hairy root cultures of red beet. The present study has been focused on betalaine production in 3 l bubble column bioreactor where the growth pattern and betalaine synthesis under the influence of similar levels of polyamines were followed. A combination of spermidine and putrescine fed to the roots each at levels of 0.75 mM efficiently increased growth and pigment production resulting in 1.23-fold higher biomass (39.2 g FW l−1) and 1.27-fold higher betalaine content (32.9 mg g−1 DW) than control. Treatments with various levels of elicitor-methyl jasmonate (MJ), though progressively retarded biomass, at 40 μM level resulted in a significant increase in betalaine content resulting in 36.13 mg g−1 DW which was 1.4-fold higher than the control. Further higher concentrations of methyl jasmonate treatments supported high as well as rapid accumulation of betalaines, the overall betalaine productivity was hampered mainly because of the inhibitory action on biomass. Pigment release studies with cetyl trimethyl ammonium bromide (CTAB) resulted in optimization of concentration for better efflux of betalaines without showing any inhibitory effect on hairy root viability. These studies on product enhancement and on-line extraction of pigment are useful for developing a bioreactor system for betalaine production using B. vulgaris hairy root cultures. In particular the use of elicitors and efflux studies provide an insight for integrating unit operations and developing a process for continuous operation and higher production of phytochemicals.  相似文献   

17.
This work addresses the symbiotic culture of the arbuscular mycorrhizal (AM) fungus Glomus intraradices with Daucus carota hairy roots transformed by Agrobacterium rhizogenes, in two submerged culture systems: Petri dish and airlift bioreactor. AM fungi play an active role in plant nutrition and protection against plant pathogens. These fungi are obligate biotrophs as they depend on a host plant for their needs in carbohydrates. The effect of the mycorrhizal roots inoculum-to-medium volume ratio on the growth of both symbionts was studied. A critical inoculating condition was observed at approximately 0.6 g dry biomass (DW). L-1 medium, above which root growth was significantly reduced when using a low-salt minimal (M) liquid medium previously developed for hairy root-AM fungi co-culture. Below critical inoculum conditions the maximum specific root growth and specific G. intraradices spore production rates of 0.021 and 0.035 d-1, respectively, were observed for Petri dish cultures. Maximum spore production in the airlift bioreactor was ten times lower than that of Petri dish cultures and obtained with the lowest inoculum assessed (0.13 g DW. L-1 medium) with 1.82 x 10(5) +/- 4.05 x 10(4) (SEM) spores (g DW inoculum)-1 (L medium)-1 in 107 d. This work proposes a second-generation bioprocess for AM fungi propagule production in bioreactors. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

18.
This review is concerned with the application of hairy roots, i.e. plant roots formed from plant cells after transformation by Agrobacterium rhizogenes for the production of bioactive compounds. Transformed root cultures have been established from numerous species of dicotyledonous plants. The plants, as well as the main products accumulated in hairy root cultures derived from these plants, are listed in this paper. Data are presented on novel compounds, hitherto detected only in transformed roots but not occurring in the corresponding intact plants. The possible use of hairy root cultures for the over-production of secondary metabolites and biotransformation of chemicals is discussed. In order to enhance the productivity of hairy root cultures, various methods have been derived, and optimized procedures are proposed. They include selection of high-producing clones, elicitation, composition of growth media, culture conditions and genetic approach. Hairy roots usually store secondary metabolites in vacuoles inside the cells. Therefore, several methods have been used to increase the amount of products released into the medium. Unfortunately, no general procedure is known that works in all cases, and the excretion behaviour of hairy root cultures varies from one species to another and even within one species from one clone to another. Special attention is given to the cultivation methods and bioreactor systems for hairy root cultures. Hairy roots are cultivated usually in shake flasks; however, shake flask culture is not suitable for the complex optimization and continuous control of the culture conditions. In this paper, we are going to present bioreactors proposed for the cultivation of hairy roots under more or less controlled conditions. Modifications of typical bacterial bioreactors, i.e. stirred tanks, airlift loop reactors and other constructions, are presented. A very special type of bioreactor providing good conditions for loose root mass multiplication without oxygen or substrate limitations, is the mist bioreactor. Nowadays, it is practically impossible to select the one best bioreactor type for hairy root culture.  相似文献   

19.
The mist culture system was conducted to study secreted polysaccharides from soybean ( Glycine max) roots grown for 15 days. Roots were rinsed with distilled water (DW) for 15 min, then with 30 mM oxalic acid (OXA) for 15 min to remove ionically bound sugar. Released sugars were further fractionated into low (L) and high (H) molecular weight fractions with Sephadex G-10. DW rinsing released 190 microg neutral sugar (NS) and 62 microg uronic acid (UA) per plant, while 374 microg NS and 70 microg UA per plant were released by OXA rinsing. Acetylation analysis revealed that the L fraction by DW and OXA mainly consisted of glucose (Glc), pinitol, and UA, whereas the H fraction mainly consisted of arabinose (Ara), galactose (Gal), Glc, and UA. The presence of rhamnose (2%-6%) in both fractions suggests secretion of rhamnogalacturonans. Methylation analysis revealed that the H fraction by DW and OXA contained T-Ara, 3-, 6-, and 3,6-Gal, suggesting the presence of type II arabinogalactan and arabinogalactan proteins. HPLC analysis detected mono-, di-, and tri-GalA in the L fraction by DW and OXA. Substances corresponding to sucrose, kojibiose, cello- and laminari-oligosaccharides were also found in root exudates.  相似文献   

20.
A mist reactor was used to grow and acclimatize carnation plants in vitro without using ex vitro acclimatization techniques. The acclimatization protocol in the reactor consisted of altering the mist-on period during the course of the culture period and a stepwise reduction in the relative humidity surrounding the plants from 98% to 70% relative humidity (RH) during the final week of in vitro growth. After transfer and further growth in a greenhouse for 5 weeks, survival was 91% for plants grown in reactors, 81% from vented boxes, and 50% from unvented boxes. Ex vitro survival directly correlated with increased in vitro rooting and decreased hyperhydration. In vitro rooting also correlated with high-quality plants, but did not significantly correlate with low hyperhydration, as normal plants often lacked roots. After 5 weeks in the greenhouse, the quantity of mid- and high-quality plants obtained from reactors and ventilated boxes was similar. Conditions in the mist reactor can be manipulated to produce plants that are readily acclimatized and are equal or better in quality and yield than plants produced using conventional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号