首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 665 毫秒
1.
庄永龙  周敏  李衍达  沈岩 《遗传》2004,26(4):514-518
随着人类基因组序列草图的完成,基因组突变的研究显得日益重要,而越来越多的突变信息的积累,使得各种突变数据库相继诞生。本文根据各种数据库的功能,对目前的人类突变相关数据库资源进行了分类总结,分类为突变数据库、单核苷酸多态信息数据库、与疾病相关的突变数据库、突变对蛋白质的影响、突变图谱以及特定基因的突变信息,分析该如何合理使用这些遗传突变数据资源,以及目前的突变数据库所存在的问题。Abstract:Researches on genome mutation are becoming more and more important with the finish of human genome DNA draft. This review is to classify the existing human mutation databases, including mutation database, SNP(single nucleotide polymorphisms) databases, mutation databases about disease, mutation databases about proteins, mutation databases about map and mutation information about specific gene. We also give advice on how to utilize these mutation databases, and discuss problems of existing databases.  相似文献   

2.
Comparative analyses of genome structure and sequence of closely related species have yielded insights into the evolution and function of plant genomes. A total of 103,844 BAC end sequences delegated -73.8 Mb of O. officinalis that belongs to the CC genome type of the rice genus Oryza were obtained and compared with the genome sequences office cultivar, O. sativa ssp.japonica cv. Nipponbare. We found that more than 45% of O. officinalis genome consists of repeat sequences, which is higher than that of Nipponbare cultivar. To further investigate the evolutionary divergence of AA and CC genomes, two BAC-contigs of O. officinalis were compared with the collinear genomic regions of Nipponbare. Of 57 genes predicted in the AA genome orthologous regions, 39 had orthologs in the regions of the CC genome. Alignment of the orthologous regions indicated that the CC genome has undergone expansion in both genic and intergenic regions through primarily retroelement insertion. Particularly, the density of RNA transposable elements was 17.95% and 1.78% in O. officinalis and O. sativa, respectively. This explains why the orthologous region is about 100 kb longer in the CC genome in comparison to the AA genome.  相似文献   

3.
水稻是最重要的粮食作物之一,世界上大约有一半的人口以水稻为主要粮食.作为基因组研究的模式植物,水稻基因组的测序工作已在世界范围内展开.此项研究工作不仅能破译水稻全基因组序列,还将有助于了解其他禾本科植物的基因组信息.本文对水稻基因组测序工作进展作一综述。 Abstract:Because of the importamce of rice as the staple food source for over half of the world population and since rice is a leading model plant for genomic studies,an international effort has now begun to sequence the rice genome.This project eventually will reveal all of the genomic sequence information of rice and be an indispensable aid in understanding the genomics of other grass species.In this paper,the development and research progress in sequencing of rice genome are reviewed.  相似文献   

4.
小麦及其近缘种中基因组特异性DNA重复序列的研究进展   总被引:7,自引:1,他引:6  
白建荣  贾旭  王道文 《遗传》2002,24(5):595-600
本文对小麦族植物中基因组特异性DNA重复序列的分类、基本特征、分离和鉴定方法、在小麦遗传改良中的应用以及未来研究的发展趋势进行了简述。综合已有的研究结果可以看出基因组特异性DNA重复序列是小麦族植物基因组特异性形成的重要构成部分。对基因组特异性DNA重复序列的研究是认识小麦族植物基因组的有效途径之一,基因组特异性DNA重复序列的应用将进一步促进小麦族植物分子细胞遗传学和普通小麦遗传改良研究的进展。 Advances in Studies of Genome-Specific Repetitive DNA Sequences in Wheat and Related Species BAI Jian-rong1,2,JIA Xu1,WANG Dao-wen1 1.The State Key Laboratory of Plant Cell and Chromosome Engineering,Institute of Genetics and Developmental Biology,The Chinese Academy of Sciences,Beijing 100101,China; 2.Crop Genetics Institute,Shanxi Academy of Agricultural Sciences,Taiyuan 030031,China Abstract:In this paper we review recent advances in studies of several aspects of genome specific repetitive DNA sequences in wheat and related species.The available results demonstrate that genome specific repetitive DNA sequences are important components of genome specificity in wheat and related species.Research on genome specific repetitive DNA sequences is essential to the elucidation of genome function.The application of genome specific repetitive DNA sequences will aid molecular cytogenetic studies in wheat and related species and contributes to genetic improvement of common wheat. Key words:wheat;genome specific repetitive DNA sequence;chromosome  相似文献   

5.
定量四联体     
文章: J.L. Huppert and S. Balasubramanian, “G-quadruplexes in promoters throughout the human genome[G-四联体遍布人类基因组的启动子区域]。”  相似文献   

6.
哺乳动物的基因组“印记”研究进展   总被引:12,自引:2,他引:10  
刘红林 《遗传》2000,22(4):269-272
本文综述了哺乳动物的基因组“印记”的最新研究进展。阐述了基因组“印记”的可能机制及一些最新定位的“印记”基因,并论述了基因组“印记”在发育生物学、遗传学和物种进化研究中的生物学意义。 Abstract:This article reviews the recent advance in genome“imprinting”in mammalian.It covers data on mechanisms of gene imprinting,several imprinted genes that were recently identified and the biological significance of genome imprint in development,genetics and Darwinian evolution.  相似文献   

7.
The St and E are two important basic genomes in the perennial tribe Triticeae (Poaceae). They exist in many perennial species and are very closely related to the A, B and D genomes of bread wheat (Triticum aestivum L.). Genomic Southern hybridization and genomic in situ hybridization (GISH) were used to analyze the genomic relationships between the two genomes (St and E) and the three basic genomes (A, B and D) of T. aestivum. The semi-quantitative analysis of the Southern hybridization suggested that both St and E genomes are most closely related to the D genome, then the A genome, and relatively distant to the B genome. GISH analysis using St and E genomic DNA as probes further confirmed the conclusion. St and E are the two basic genomes of Thinopyrum ponticum (StStE^eE^bE^x) and Th. intermedium (StE^eE^b), two perennial species successfully used in wheat improvement. Therefore, this paper provides a possible answer as to why most of the spontaneous wheat-Thinopyrum translocations and substitutions usually happen in the D genome, some in the A genome and rarely in the B genome. This would develop further use of alien species for wheat improvement, especially those containing St or E in their genome components.  相似文献   

8.
微生物全基因组鸟枪法测序   总被引:4,自引:0,他引:4  
罗春清  杨焕明 《遗传》2002,24(3):310-314
全基因组测序主要有二种策略,一种是分级鸟枪法测序,另一种是全基因组鸟枪法测序。微生物是一种十分重要的遗传资源,运用全基因组鸟枪法可以方便、快捷地完成其基因组的测序任务。本文对微生物全基因组鸟枪法测序中文库构建、插入片段的长短比例、反应投入量、拼接以及补洞等问题作了较细致的描述,有些步骤作了举例说明。 Abstract:Two strategies introduced for whole genome sequencing,one is clone by clone method,the other is whole genome shotgun sequencing,for microbes which are very important to us,whole genome shotgun sequencing method is very convenient.In this article we discussed the library construction、long-to-short-ratio of insert,、total number of reads should be sequenced、assembly and gap filling technologies of the whole microbial genome shotgun sequencing method while some examples presented.  相似文献   

9.
Distribution of T-DNA carrying a Ds element on rice chromosomes   总被引:3,自引:0,他引:3  
Rice is one of the most important crops in the world, and is widely studied as a model for cereal ge-nomics because of its small genome size (about 430 Mbp), and its colinearity at the sequence level with limited regions of other cereal genomes. In addition, there are a large number of rice databases document-ing molecular markers, genome sequences, EST se-quences and trait mutants[1—4]. Functional genomic studies of rice are increasing with the availability of the complete genome sequence. …  相似文献   

10.
Whereas genomics describes the study of genome, mainly represented by its gene expression on the DNA or RNA level, the term proteomics denotes the study of the proteome, which is the protein complement encoded by the genome. In recent years, the number of proteomic experiments increased tremendously. While all fields of proteomics have made major technological advances, the biggest step was seen in bioinformatics. Biological information management relies on sequence and structure databases and powerful software tools to translate experimental results into meaningful biological hypotheses and answers. In this resource article, I provide a collection of databases and software available on the Internet that are useful to interpret genomic and proteomic data. The article is a toolbox for researchers who have genomic or proteomic datasets and need to put their findings into a biological context.  相似文献   

11.
The importance of databases as a research tool in molecular biology is growing steadily, and a wide range of databases relevant to genome research is currently available. However, the design of current databases is inadequate for accurate representation and analysis of the results of large-scale genome mapping and sequencing projects. A new generation of databases is required to master the challenges of the future.  相似文献   

12.
Plant genome databases play an important role in the archiving and dissemination of data arising from the international genome projects. Recent developments in bioinformatics, such as new software tools, programming languages and standards, have produced better access across the Internet to the data held within them.An increasing emphasis is placed on data analysis and indeed many resources now provide tools allied to the databases, to aid in the analysis and interpretation of the data. However, a considerable wealth of information lies untapped by considering the databases as single entities and will only be exploited by linking them with a wide range of data sources. Data from research programs such as comparative mapping and germplasm studies may be used as tools, to gain additional knowledge but without additional experimentation. To date, the current plant genome databases are not yet linked comprehensively with each other or with these additional resources, although they are clearly moving toward this. Here, the current wealth of public plant genome databases is reviewed, together with an overview of initiatives underway to bind them to form a single plant genome infrastructure.  相似文献   

13.
As the genome sequences of multiple strains of a given bacterial species are obtained, more generalized bacterial genome databases may be complemented by databases that are focused on providing more information geared for a distinct bacterial phylogenetic group and its associated research community. The Burkholderia Genome Database represents a model for such a database, providing a powerful, user-friendly search and comparative analysis interface that contains features not found in other genome databases. It contains continually updated, curated and tracked information about Burkholderia cepacia complex genome annotations, plus other Burkholderia species genomes for comparison, providing a high-quality resource for its targeted cystic fibrosis research community. AVAILABILITY: http://www.burkholderia.com. Source code: GNU GPL.  相似文献   

14.
The introduction of the genome database to the human gene mapping community in September 1990 heralded the advent of a new generation of databases to serve the needs of the human genome initiative over the coming years. The databases will act as a fulcrum around which the activities of the human genome initiative can be coordinated at an international level.  相似文献   

15.
Comprehensive, computerized databases of cellular protein information derived from the analysis of two-dimensional gels, together with recently developed techniques to microsequence proteins offer a new dimension to the study of genome organization and function. In particular, human protein databases provide an ideal framework in which to focus the human genome sequencing effort.  相似文献   

16.
The requirements for bioinformatics resources to support genome research in farm animals is reviewed.The resources developed to meet these needs are described. Resource databases and associated tools have been developed to handle experimental data. Several of these systems serve the needs of multinational collaborations. Genome databases have been established to provide contemporary summaries of the status of genome maps in a range of farm and domestic animals along with experimental details and citations. New resources and tools will be required to address the informatics needs of emerging technologies such as microarrays. However, continued investment is also required to maintain the currency and utility of the current systems, especially the genome databases.  相似文献   

17.
The large number of ESTs generated for Arabidopsis and rice in recent years now act as an important complement to whole genome sequencing projects. The Arabidopsis Genome Initiative has begun a coordinated effort to sequence the entire genome and, as a result, increasing numbers of large sequence entries can be found in the public databases. In addition, the mitochondrial genome of Arabidopsis has been completely sequenced. Genome sequencing studies and the public sequence databases have begun to influence the direction of diverse areas of research from physiology to evolution.  相似文献   

18.
19.
MOTIVATION: Databases of protein families often exhibit drastically different properties of the protein family space. RESULTS: We compared the properties of protein family space as reflected by exhaustive protein family databases and databases with predefined families. We used TRIBES, Protomap, ProDom and COGs as representatives of the exhaustive databases, and Pfam-A and Superfamily as databases that predefine families. We observe a power-law distribution of family sizes in all these databases, albeit in predefined databases the power-law line collapses before reaching smaller sized families. We discuss the future trends of this power-law distribution and suggest that saturation in the sampling of protein family space will result in a distortion of the power law in small family sizes. For larger genome sizes, predefined databases show logarithmic growth of the number of families per genome, whereas exhaustive databases exhibit a virtually linear relationship. All databases consistently differ in the proportion of protein families shared between taxa. Predefined databases have a larger number of protein families shared between the three domains of life, while exhaustive databases show a much more fragmented distribution. We argue that these discrepancies reflect alternative approaches to the trade-off issue of sensitivity versus specificity in the detection of homologous proteins. We conclude that these properties are complementary rather than contradictory, while describing the protein universe from different perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号