首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activation of APC via CD40-CD40 ligand pathway induces up-regulation of costimulatory molecules such as B7 and production of IL-12. Interaction between B7 on APC and CD28 on naive T cells is necessary for priming the T cells. On the other hand, interaction between B7 on APC and CTLA-4 on activated T cells transduces a negative regulatory signal to the activated T cells. In the present study, we attempted to generate tumor-specific CTL by s.c. administration of antigenic peptides encapsulated in multilamellar liposomes (liposomal peptide vaccine) with anti-CD40 mAb and/or anti-CTLA-4 mAb. Liposomal OVA257-264 and anti-CD40 mAb or anti-CTLA-4 mAb were administrated to C57BL/6 mice and the splenocytes were cocultured with OVA257-264 for 4 days. The splenic CD8+ T cells showed a significant cytotoxicity against EL4 cells transfected with cDNA of OVA. In addition, administration of both anti-CD40 and anti-CTLA-4 mAb enhanced the CTL responses. Considerable CTL responses were induced in MHC class II deficient mice by the same procedure. This finding indicated that CTL responses could be generated even in the absence of Th cells. When BALB/c mice were immunized with pRL1a peptide that are tumor-associated Ag of RLmale symbol1 leukemia cells using the same procedure, significant CTL responses were induced and prolonged survival of the BALB/c mice was observed following RLmale symbol1 inoculation. These results demonstrate that anti-CD40 mAb and anti-CTLA-4 mAb function as immunomodulators and may be applicable to specific cancer immunotherapy with antitumor peptide vaccine.  相似文献   

2.
We have previously shown that the murine B7 (mB7) molecule, when expressed in Chinese hamster ovary cells in stable fashion, can costimulate with anti-CD3 mAb or Con A to induce T cell activation. We have now derived, by gene transfection, Chinese hamster ovary cell lines that express the I-Ad molecule, either alone or in context with mB7. We have analyzed these transfectants for their capacity to present Ag to murine CD4+ T lymphocytes. I-Ad/mB7-double transfectants were able to stimulate mixed lymphocyte reactions and to present peptide Ag to specific T cells. Chinese hamster ovary cells that expressed only the I-Ad molecule were not able to stimulate T cell proliferation in these systems. Thus, the mB7 protein is a sufficient costimulatory molecule for the physiologic, Ag-dependent/MHC-restricted activation of murine CD4+ T cells. Stimulation of T cell bulk cultures resulted predominantly in the production of IL-2 and not of IL-4. The costimulatory activity of mB7 is not, however, restricted to the IL-2-secreting subset. We have identified one IL-4-secreting T cell clone, CDC35, which is responsive to mB7 triggering. Finally, we present experiments that suggest that mB7 and peptide/MHC complexes need to be expressed on the same cell for optimal induction of T cell activation.  相似文献   

3.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

4.
CD4+ T cells require two signals to produce maximal amounts of IL-2, i.e., TCR occupancy and an unidentified APC-derived costimulus. Here we show that this costimulatory signal can be delivered by the T cell molecule CD28. An agonistic anti-CD28 mAb, but not IL-1 and/or IL-6, stimulated T cell proliferation by tetanus toxoid-specific T cells cultured with Ag-pulsed, costimulation-deficient APC. Furthermore, the ability of B cell tumor lines to provide costimulatory signals to purified T cells correlated well with expression of the CD28 ligand B7/BB-1. Finally, like anti-CD28 mAb, autologous human APC appeared to stimulate a cyclosporine A-resistant pathway of T cell activation. Together, these results suggest that the two signals required for IL-2 production by CD4+ T cells can be transduced by the TCR and CD28.  相似文献   

5.
OX40 and its ligand (OX40L) have been implicated in T cell-dependent humoral immune responses. To further characterize the role of OX40/OX40L in T-B cell interaction, we newly generated an anti-mouse OX40L mAb (RM134L) that can inhibit the costimulatory activity of OX40L transfectants for anti-CD3-stimulated T cell proliferation. Flow cytometric analyses using RM134L and an anti-mouse OX40 mAb indicated that OX40 was inducible on splenic T cells by stimulation with immobilized anti-CD3 mAb in a CD28-independent manner, while OX40L was not expressed on resting or activated T cells. OX40L was inducible on splenic B cells by stimulation with anti-IgM Ab plus anti-CD40 mAb, but not by either alone. These activated B cells exhibited a potent costimulatory activity for anti-CD3-stimulated T cell proliferation and IL-2 production. Anti-CD80 and anti-CD86 mAbs partially inhibited the costimulatory activity, and further inhibition was obtained by their combination with RM134L and/or anti-CD70 mAb. We also found the anti-IgM Ab- plus anti-CD40 mAb-stimulated B cells exhibited a potent costimulatory activity for proliferation of and IL-2 production by anti-CD3-stimulated CD28- T cells from CD28-deficient mice, which was substantially inhibited by RM134L and/or anti-CD70 mAb. These results indicated that OX40L and CD70 expressed on surface Ig- and CD40-stimulated B cells can provide CD28-independent costimulatory signals to T cells.  相似文献   

6.
Coculture of resting human B cells with T cells stimulated with immobilized mAb to the CD3 molecular complex induces polyclonal activation and the production of Ig of all isotypes. The current experiments were carried out to determine the nature of the signals provided to B cells by the anti-CD3-activated T cells. For these experiments, fresh T cells or T cell clones were activated with immobilized mAb to CD3 and then fixed with 1% paraformaldehyde. Upon coculture, the fixed activated T cells or T cell clones induced B cell RNA synthesis and IL-2R expression, but only minimal DNA synthesis and no Ig production. Induction of B cell RNA synthesis by fixed activated T cells was not inhibited by mAb to the alpha-chain of the IL-2R, and was not enhanced by supplementing cultures with IL-2, IL-4, IL-6, or supernatants of mitogen-activated T cells. Upon the addition of IL-2, but not IL-4 or IL-6, to cultures of B cells and fixed activated T cells, sustained proliferation was noted along with the production of Ig. Control fixed T cells or T cell clones did not induce any of these responses. The presence of cycloheximide or cyclosporin A during the activation with anti-CD3 prevented T cells from developing the capacity to provide help for B cells. The use of mAb to a variety of cell surface molecules indicated that several T cell surface molecules including CD11a/CD18, CD44, CD54, and class I MHC molecules are involved in the induction of B cell responses. Among the mAb that inhibited B cell DNA synthesis and/or Ig production, only mAb to CD11a, CD18, or CD54 inhibited initial B cell activation as assessed by RNA synthesis. Even though mAB to CD11a/CD18 inhibited the capacity of fixed activated T cells to induce B cell responses, the finding that fixed activated CD18 deficit clones provided help for B cells indicated that expression of the beta 2 family of integrins by T cells was not necessary. These results indicate that activated T cells acquire the capacity to stimulate B cells polyclonally and induce cytokine responsiveness, proliferation, and Ig production by utilization of a variety of surface molecules. Moreover, these results indicate that the initial activation of the B cell is independent of the metabolic activity of the T cell and the production of cytokines.  相似文献   

7.
CD30, a member of the TNF receptor family, has been implicated in the activation of T cells and B cells. In the present study, we characterized the expression and function of murine CD30 ligand (mCD153) by utilizing mCD153 transfectants and a novel mAb against mCD153 (RM153), which can inhibit the binding of murine CD30 to mCD153. The mCD153 transfectants did not co-stimulate the proliferation of anti-CD3-stimulated naive T cells but enhanced the proliferation of anti-CD28-co-stimulated T cells. The mCD153 transfectants exhibited a potent co-stimulatory activity for proliferation of pre-activated T cells that expressed CD30 after anti-CD3 and anti-CD28 stimulation. In contrast to the CD30 expression on naive T cells that required anti-CD28 co-stimulation, mCD153 expression was observed on anti-CD3-stimulated T cells without the anti-CD28 co-stimulation, predominantly on CD4(+) T cells with a transient kinetics which peaked at 24 h but disappeared at 48 h. In contrast to the preferential expression of CD30 on Th2 cells, mCD153 was expressed on both Th1 and Th2 cells after anti-CD3 stimulation. These results indicated a differential regulation of CD30 and CD153 expression in T cells, which may be relevant to immuno-regulatory role of the CD30-CD153 interaction.  相似文献   

8.
Evidence exists which indicates that the T cell differentiation molecule CD4 may interact with nonpolymorphic determinants of major histocompatibility complex (MHC) class II antigens on accessory cells to stabilize the formation of a ternary complex formed by the T cell receptor (CD3-TcR), antigen, and MHC class II restriction element. However, there is also evidence which suggests alternative or additional functional roles of CD4 in the delivery of signals to T cells independent of MHC class II recognition. In the present study, we examined different anti-CD4 monoclonal antibodies (mAbs) for their ability to influence lymphocyte proliferation induced by phorbol 12-myristate, 13-acetate (PMA). We found that the response of human peripheral blood mononuclear cells to PMA could be enhanced by some anti-CD4 mAbs (OKT4, OKT4A) but not by others (G17-2). This enhancement was due neither to a direct action of the mAbs on the monocytes nor to intercellular crosslinking through an Fc-Fc receptor interaction. We also found that the binding of anti-CD did not influence the down-regulation of CD4 expression induced by PMA, ruling out any correlation between increased stimulation and CD4 modulation. Our results, taken together with those recently published on the ability of a soluble anti-CD4 mAb (B66) to induce lymphocyte activation by itself, provide evidence that CD4 antigen plays a positive functional role in T cell stimulation in addition to stabilizing the antigen-antigen receptor interaction.  相似文献   

9.
Cross-linking class I MHC molecules on human T cell clones by reacting them with various mAb directed at either monomorphic or polymorphic determinants on class I MHC molecules followed by cross-linking with GaMIg stimulated a rise in intracellular free calcium concentration ([Ca2+]i), and induced proliferation and IL-2 production. T cell clones varied in the mean density of class I MHC molecules and the capacity to respond to mAb to class I MHC molecules. However, the functional responses of the clones did not correlate with class I MHC density or the CD4/CD8 phenotype. mAb to polymorphic class I MHC determinants were less able to induce an increase in [Ca2+]i and a functional response in the T cell clones. Additive stimulatory effects were noted when mAb against both HLA-A and HLA-B determinants were employed. Cross-linking class I MHC molecules on Jurkat cells induced a rise by [Ca2+]i and induced IL-2 production upon co-stimulation with PMA. Cross-linking class I MHC molecules on mutant Jurkat cells that expressed diminished levels of CD3 and were unable to produce IL-2 in response to anti-CD3 stimulation triggered both a rise in [Ca2+]i and IL-2 production with PMA co-stimulation. In contrast, cross-linking class I MHC molecules on mutant Jurkat cells that were CD3- stimulated neither a rise in [Ca2+]i nor IL-2 production. The combination of mAb to CD28 or ionomycin and PMA, however, was able to induce IL-2 production by CD3- Jurkat cells. The data demonstrate that cross-linking class I MHC molecules delivers a functionally important signal to T cell clones and Jurkat cells and indicate that class I MHC molecules may function to transduce activation signals to T cells. In addition, the data demonstrate that transmission of an activation signal via class I MHC molecules requires CD3 expression. The data, therefore, support a central role for CD3 in the transduction of activation signals to T cells via class I MHC molecules.  相似文献   

10.
We treated PBMC with anti-MHC class II mAb known to inhibit T lymphocyte proliferation. Adherent cells from mAb-treated PBMC showed increased metabolic activity by the MTS assay that was not due to cell proliferation. PBMC cultured with solid-phase anti-class II mAb in chamber inserts inhibited, across a membrane, the proliferation of PBMC cultured with soluble anti-CD3 mAb. PBMC treated with both soluble mAb underwent apoptosis as shown by nucleosomal DNA fragmentation. The monocytes formed multinucleated giant cells as shown by fluorescent microscopy, and contained apoptotic bodies as shown by the TUNEL method and by electron microscopy. The apoptotic cells were identified as T cells by double-staining with anti-CD4/CD8-PE and annexin-V-FITC. Thus, MHC class II ligation stimulates monocytes to increase their metabolic activity, induce apoptosis of activated T lymphocytes, and phagocytize the apoptotic cells. TCR-mediated ligation of MHC class II may play a role in the downregulation of immune responses.  相似文献   

11.
This study focuses on the specific CD4+ T cell requirement for optimal induction of cytotoxicity against MHC class II negative autologous tumors (AuTu) collected from patients with various types of cancer at advanced stages. CD4+ T cells were induced in cultures of cancer patients' malignant effusion-associated mononuclear cells with irradiated AuTu (mixed lymphocyte tumor cultures (MLTC)) in the presence of recombinant IL-2 and recombinant IL-7. Tumor-specific CD4+ T cells did not directly recognize the AuTu cells, but there was an MHC class II-restricted cross-priming by autologous dendritic cells (DCs), used as APC. CD8+ CTL, also induced during the MLTC, lysed specifically AuTu cells or DCs pulsed with AuTu peptide extracts (acid wash extracts (AWE)) in an MHC class I-restricted manner. Removal of CD4+ T cells or DCs from the MLTC drastically reduced the CD8+ CTL-mediated cytotoxic response against the AuTu. AWE-pulsed DCs preincubated with autologous CD4+ T cells were able, in the absence of CD4+ T cells, to stimulate CD8+ T cells to lyse autologous tumor targets. Such activated CD8+ T cells produced IL-2, IFN-gamma, TNF-alpha, and GM-CSF. The process of the activation of AWE-pulsed DCs by CD4+ T cells could be inhibited with anti-CD40 ligand mAb. Moreover, the role of CD4+ T cells in activating AWE-pulsed DCs was undertaken by anti-CD40 mAb. Our data demonstrate for the first time in patients with metastatic cancer the essential role of CD4+ Th cell-activated DCs for optimal CD8+ T cell-mediated killing of autologous tumors and provide the basis for the design of novel protocols in cellular adoptive immunotherapy of cancer, utilizing synthetic peptides capable of inducing T cell help in vivo.  相似文献   

12.
Murine T lymphocytes recognize nominal Ag presented by class I or class II MHC molecules. Most CD8+ T cells recognize Ag presented in the context of class I molecules, whereas most CD4+ cells recognize Ag associated with class II molecules. However, it has been shown that a proportion of T cells recognizing class I alloantigens express CD4 surface molecules. Furthermore, CD4+ T cells are sufficient for the rejection of H-2Kbm10 and H-2Kbm11 class I disparate skin grafts. It has been suggested that the CD4 component of an anti-class I response can be ascribed to T cells recognizing class I determinants in the context of class II MHC products. To examine the specificity and effector functions of class I-specific HTL, CD4+ T cells were stimulated with APC that differed from them at a class I locus. Specifically, a MLC was prepared involving an allogeneic difference only at the Ld region. CD4+ clones were derived by limiting dilution of bulk MLC cells. Two clones have been studied in detail. The CD4+ clone 46.2 produced IL-2, IL-3, and IFN-gamma when stimulated with anti-CD3 mAb, whereas the CD4+ clone 93.1 secreted IL-4 in addition to IL-2, IL-3, and IFN-gamma. Cloned 46.2 cells recognized H-2Ld directly, whereas recognition of Ld by 93.1 apparently was restricted by class II MHC molecules. Furthermore, cytolysis by both clones 46.2 and 93.1 was inhibited by the anti-CD4 mAb GK1.5. These results demonstrate that CD4+ T cells can respond to a class I difference and that a proportion of CD4+ T cells can recognize class I MHC determinants directly as well as in the context of class II MHC molecules.  相似文献   

13.
CD4 Foxp3 regulatory T (T(R)) cells are well-defined regulator T cells known to develop in the thymus through positive selection by medium-to-high affinity TCR-MHC interactions. We asked whether Foxp3 T(R) cells can be generated in the complete absence of MHC class II molecules. CD4 Foxp3 T(R) cells are found in secondary lymphoid tissues (spleen and lymph nodes) and peripheral tissues (liver) but not the thymus of severely MHC class II-deficient (Aalpha(-/-) B6) mice. These T(R) cells preferentially express CD103 (but not CD25) but up-regulate CD25 surface expression to high levels in response to TCR-mediated activation. MHC class II-independent Foxp3 T(R) cells down modulate vaccine-induced, specific antiviral CD8 T cell responses of Aalpha(-/-) B6 mice in vivo. Furthermore, these T(R) cells suppress IL-2 release and proliferative responses in vitro of naive CD25(-) (CD4 or CD8) T cells from normal B6 mice primed by bead-coupled anti-CD3/anti-CD28 Ab as efficiently as CD4CD25(high) T(R) cells from congenic, normal B6 mice. MHC class II-independent CD4 Foxp3(+) T(R) cells thus preferentially express the (TGF-beta-induced) integrin molecule alpha(E) (CD103), are generated mainly in the periphery and efficiently mediate immunosuppressive effects.  相似文献   

14.
The expression of human histocompatibility class II Ag was measured on activated T cells and monocytes by quantitative mAb binding in direct two-color immunofluorescence. Monocytes activated by IFN-gamma bound an average of 2 x 10(6) DR-specific mAb, 3 x 10(5) DQ-specific mAb, and 7 x 10(5) DP-specific mAb per cell. For T cells activated by anti-CD3, a subpopulation bound 1 x 10(5) DR-specific mAb, 5 x 10(4) DQ-specific mAb and 5 x 10(4) DP-specific mAb per cell. These measurements were obtained after establishing a base line of class II Ag expression on resting B cells and monocytes. Resting B cells and those monocytes that were positive for class II Ag bound identical amounts of mAb; 3 x 10(4) DR-specific mAb, 3 x 10(3) DQ-specific mAb and 2 x 10(4) DP-specific mAb. However, most resting monocytes (75%) expressed only DR Ag. In the process of studying the expression of class II Ag on T cells, it was necessary to define and analyze the activated T cell state. Cell cultures activated with 0.3 ng/ml anti-CD3 had the highest expression of class II Ag on T cells, whereas those activated with 3.0 ng/ml anti-CD3 had the highest expression of IL-2R on T cells. Addition of IL-2 had no further effect on DR Ag expression on T cells but did up-regulate IL-2R expression. Reducing the initial monocyte concentration before activating T cells increased class II Ag expression on T cells without affecting IL-2R expression. The results obtained on T cell activation suggest that perhaps a lymphokine may be made by CD3-activated T cells which induces class II Ag expression on T cells.  相似文献   

15.
We examined the role of MHC class II molecules in transducing signals to activated human T cells. Cross-linking of MHC class II molecules synergized with submitogenic amounts of anti-CD3 mAb in causing proliferation and secretion of the cytokines IL-2, IL-3, IFN-gamma, and TNF-alpha by MHC class II-alloreactive T cell lines. Signaling via MHC class II molecules in T cells resulted in activation of tyrosine kinases, in generation of inositol phosphates, and in Ca2+ mobilization that was abrogated by the tyrosine kinase inhibitor herbimycin A. Thus, like signaling via TCR/CD3, signaling via MHC class II molecules involved tyrosine kinase-dependent activation of phospholipase C, resulting in phosphoinositol turnover and Ca2+ flux. However the signaling pathways coupled to MHC class II molecules and to TCR/CD3 differed, because engagement of the transmembrane phosphatase CD45 inhibited Ca2+ fluxes triggered via TCR/CD3 but not Ca2+ fluxes triggered via MHC class II molecules.  相似文献   

16.
The ability of NK cells to kill tumor cells is controlled by a balance between activating and inhibitory signals transduced by distinct receptors. In murine tumor models, the costimulatory molecule B7.1 not only acts as a positive trigger for NK-mediated cytotoxicity but can also overcome negative signaling transduced by MHC class I molecules. In this study, we have evaluated the potential of human B7.1-CD28 interaction as an activating trigger for human blood NK cells. Using multiparameter flow cytometric analysis and a panel of different CD28 mAbs, we show that human peripheral blood NK cells (defined by CD56+, CD16+, and CD3- surface expression) express the CD28 costimulatory receptor, with its detection totally dependent on the mAb used. In addition, the level of CD28 varies among individuals and on different NK cell lines, irrespective of CD28 steady-state mRNA levels. By performing Ab binding studies on T cells, our data strongly suggest that binding of two of the anti-CD28 Abs (clones 9.3 and CD28.2) is to a different epitope to that recognized by clones L293 and YTH913.12, which is perhaps modified in the CD28 molecule expressed by the NK cells. We also show that B7.1 enhances the NK-mediated lysis of NK-sensitive but not of NK-resistant tumor cells and that this increased lysis is dependent on CD28-B7 interactions as shown by the ability of Abs to block this lysis. Coculture of the B7.1-positive NK-sensitive cells also led to the activation of the NK cells, as determined by the expression of CD69, CD25, and HLA class II.  相似文献   

17.
Activation of human T4 cells by cross-linking class I MHC molecules   总被引:2,自引:0,他引:2  
These studies examined whether cross-linking class I MHC molecules results in functional or biochemical responses in human T4 cells. The initial studies demonstrated that cross-linking class I MHC molecules either by culturing highly purified T4 cells with immobilized mAb to class I MHC Ag or reacting the T4 cells with mAb to class I MHC Ag and then cross-linking the mAb with goat antimouse Ig (GaMIg) enhanced T4 cell proliferation induced by an immobilized mAb to CD3, OKT3. More-over, immobilized but not soluble mAb to class I MHC Ag enhanced T4 cell proliferation induced by the combination of two mAb to CD2, OKT11, and D66.2. Finally, T4 cells reacted with mAb to CD3 and class I MHC Ag proliferated in the presence of IL-2 when cross-linked with GaMIg more vigorously than T4 cells reacted with either mAb alone. Cross-linking class I MHC molecules was also found to stimulate T4 cells directly. T4 cells reacted with mAb to class I MHC Ag or beta 2 microglobulin and cross-linked with GaMIg proliferated vigorously in the presence of IL-2 or PMA. In addition, it was demonstrated that cross-linking class I MHC molecules by culturing T4 cells with immobilized mAb to class I MHC Ag induced T4 cell proliferation in the presence of IL-2. T4 cell proliferation in the presence of IL-2 and PMA could also be induced by reacting the cells with specific mAb to polymorphic determinants on class I MHC molecules and cross-linking with GaMIg. Cross-linking mAb to CD4 or CD11a did not have a similar functional effect on T4 cells. Finally it was demonstrated that adding GaMIg to T4 cells reacted with mAb to class I MHC Ag but not CD11a resulted in an increase in intracellular calcium concentration. The data demonstrate that cross-linking class I MHC molecules results in the generation of at least one activation signal, a rise in intracellular calcium concentration, and, thereby, stimulates human T4 cells.  相似文献   

18.
Mixed chimerism and donor-specific tolerance are achieved in mice receiving 3 Gy of total body irradiation and anti-CD154 mAb followed by allogeneic bone marrow (BM) transplantation. In this model, recipient CD4 cells are critically important for CD8 tolerance. To evaluate the role of CD4 cells recognizing donor MHC class II directly, we used class II-deficient donor marrow and were not able to achieve chimerism unless recipient CD8 cells were depleted, indicating that directly alloreactive CD4 cells were necessary for CD8 tolerance. To identify the MHC class II(+) donor cells promoting this tolerance, we used donor BM lacking certain cell populations or used positively selected cell populations. Neither donor CD11c(+) dendritic cells, B cells, T cells, nor donor-derived IL-10 were critical for chimerism induction. Purified donor B cells induced early chimerism and donor-specific cell-mediated lympholysis tolerance in both strain combinations tested. In contrast, positively selected CD11b(+) monocytes/myeloid cells did not induce early chimerism in either strain combination. Donor cell preparations containing B cells were able to induce early deletion of donor-reactive TCR-transgenic 2C CD8 T cells, whereas those devoid of B cells had reduced activity. Thus, induction of stable mixed chimerism depends on the expression of MHC class II on the donor marrow, but no requisite donor cell lineage was identified. Donor BM-derived B cells induced early chimerism, donor-specific cell-mediated lympholysis tolerance, and deletion of donor-reactive CD8 T cells, whereas CD11b(+) cells did not. Thus, BM-derived B cells are potent tolerogenic APCs for alloreactive CD8 cells.  相似文献   

19.
The mAb 131 to a determinant preferentially expressed on the gene products of the HLA-A locus, the mAb Q6/64 and 4E to determinants preferentially expressed on the gene products of the HLA-B locus, the anti-HLA-A2,A28 mAb CR11-351, HO-2, HO-3, HO-4, and KS1, and the anti-HLA-B7 cross-reacting group mAb KS4 enhanced proliferation of T cells in most, if not all, the PBMC preparations stimulated with the anti-CD2 mAb 9-1 + 9.6. The mAb CR10-215, W6/32, and 6/31 to distinct monomorphic determinants of HLA class I antigens enhanced CD2-induced T cell proliferation in at most 30% of the PBMC preparations tested. The anti human beta 2-microglobulin (beta 2-mu) mAb NAMB-1 displayed no detectable effect on the proliferation of T cells stimulated with the mAb 9-1 + 9.6. The enhancing effect of anti-HLA class I mAb is specific, is dose dependent, is not abrogated by the addition of exogenous IL-1 and IL-2 to the cultures, and reflects the interaction of anti-HLA class I mAb with T cells. Enhancement of CD2 mediated proliferation of T cells is not a unique property of anti-HLA class I mAb, since the anti-HLA class II mAb Q5/6 and Q5/13 also had a similar effect. Analysis of the kinetics of the enhancing effect of anti-HLA class I mAb suggests that they modulate an early event of T cell activation and may affect the interaction of T cells with mAb 9-1. Phenotyping of T lymphocytes activated by mAb 9-1 + 9.6 in the presence of anti-HLA class I mAb suggests that the enhancing effect of anti-HLA class I mAb may reflect the recruitment of a higher percentage of T cells. The present study has shown for the first time that certain, but not all, the determinants of the HLA class I molecular complex are involved in the proliferation of T cells stimulated with the anti-CD2 mAb 9-1 + 9.6. Furthermore, the inhibitory effect of mAb CR11-351, KS1, Q6/64, and W6/32 on the proliferation of T cells stimulated with mAb OKT3 or with mAb BMA 031 indicates that the same determinants of HLA class I antigens play a differential regulatory role in T cell proliferation induced via the CD2 and CD3 pathway.  相似文献   

20.
Transforming growth factor (TGF)-beta added to cultures of highly purified human splenic B cells induced high levels of IgA synthesis in the presence of PWM and activated cloned CD4+ T cells. TGF-beta had no effect on IgM or IgG production. The induction of IgA synthesis by TGF-beta reflected IgA switching, because a strong induction of IgA production was also observed, when sIgA- B cells were cocultured with cloned activated CD4+ T cells in the presence of pokeweed mitogen. Resting CD4+ T cell clones or activated CD8+, TCR-gamma delta + CD4-,CD8- T cell clones failed to provide the co-stimulatory signal that in addition to TGF-beta and pokeweed mitogen was required for induction of IgA switching and IgA synthesis. mAb against CD4 or class II MHC molecules inhibited TGF-beta induced IgA synthesis, indicating that CD4-class II MHC interactions are required for productive T-B cell contacts resulting in IgA production. In contrast, anti-LFA-1, anti-CD2, and anti-class I MHC mAb were ineffective. TGF-beta failed to induce IgA synthesis by sIgA+ B cells under these culture conditions. Interestingly, induction of IgA production by sIgA- B cells required neutralization of TGF-beta activity by addition of the anti-TGF-beta mAb 1D11.1G 24 h after onset of the cultures. IgA production was prevented when the anti-TGF-beta mAb was added at the start of the cultures, indicating the specificity of the reaction. IgA synthesis was completely suppressed when TGF-beta was present during the total culture period of 11 days. These findings indicate that TGF-beta can act as a specific switch factor for IgA, provided it is only present at early stages of the cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号