首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Secretory vesicle exocytosis is a highly regulated process involving vesicle targeting, priming, and membrane fusion. Rabs and SNAREs play a central role in executing these processes. We have shown recently that Rab27a and its effector, granuphilin, are involved in the exocytosis of insulin-containing secretory granules through a direct interaction with the plasma membrane syntaxin 1a in pancreatic beta cells. Here, we demonstrate that fluorescence-labeled insulin granules are peripherally accumulated in cells overexpressing granuphilin. The peripheral location of granules is well overlapped with both localizations of granuphilin and syntaxin 1a. The plasma membrane targeting of secretory granules is promoted by wild-type granuphilin but not by granuphilin mutants that are defective in binding to either Rab27a or syntaxin 1a. Granuphilin directly binds to the H3 domain of syntaxin 1a containing its SNARE motif. Moreover, introduction of the H3 domain into beta cells induces a dissociation of the native granuphilin-syntaxin complex and a marked reduction of newly docked granules. These results indicate that granuphilin plays a role in tethering insulin granules to the plasma membrane by an interaction with both Rab27a and syntaxin 1a. The complex formation of these three proteins may contribute to the specificity of the targeting process during the exocytosis of insulin granules.  相似文献   

2.
Recently, we identified and characterized a novel protein, granuphilin, whose domain structure is similar to that of the Rab3 effector protein rabphilin3 (J. Wang, T. Takeuchi, H. Yokota, and T. Izumi, J. Biol. Chem. 274:28542-28548, 1999). Screening its possible Rab partner by a yeast two-hybrid system revealed that an amino-terminal zinc-finger domain of granuphilin interacts with Rab27a. Granuphilin preferentially bound to the GTP form of Rab27a. Formation of the Rab27a/granuphilin complex was readily detected in the pancreatic beta cell line MIN6. Moreover, the tissue distributions of Rab27a and granuphilin are remarkably similar: both had significant and specific expression in pancreatic islets and in pituitary tissue, but no expression was noted in the brain. Analyses by immunofluorescence, immunoelectron microscopy, and sucrose density gradient subcellular fractionation showed that Rab27a and granuphilin are localized on the membrane of insulin granules. These findings suggest that granuphilin functions as a Rab27a effector protein in beta cells. Overexpression of wild-type Rab27a and its GTPase-deficient mutant significantly enhanced high K(+)-induced insulin secretion without affecting basal insulin release. Although Rab3a, another exocytotic Rab protein, has some similarities with Rab27a in primary sequence, intracellular distribution, and affinity toward granuphilin, overexpression of Rab3a caused different effects on insulin secretion. These results indicate that Rab27a is involved in the regulated exocytosis of conventional dense-core granules possibly through the interaction with granuphilin, in addition to its recently identified role in lysosome-related organelles.  相似文献   

3.
We examined secretory granule dynamics using total internal reflection fluorescence microscopy in normal pancreatic β cells and their mutants devoid of Rab27a and/or its effector, granuphilin, which play critical roles in the docking and recruitment of insulin granules to the plasma membrane. In the early phase of glucose stimulation in wild-type cells, we observed marked fusion of granules recruited from a relatively distant area, in parallel with that from granules located underneath the plasma membrane. Furthermore, despite a lack of granules directly attached to the plasma membrane, both spontaneous and evoked fusion was increased in granuphilin-null cells. In addition to these granuphilin-null phenotypes, Rab27a/granuphilin doubly deficient cells showed the decreases in granules located next to the docked area and in fusion from granules near the plasma membrane in the early phase of glucose-stimulated secretion, similar to Rab27a-mutated cells. Thus, the two proteins play nonoverlapping roles in insulin exocytosis: granuphilin acts on the granules underneath the plasma membrane, whereas Rab27a acts on those in a more distal area. These findings demonstrate that, in contrast to our conventional understanding, stable attachment of secretory granules to the plasma membrane is not prerequisite but temporally inhibitory for both spontaneous and evoked fusion.  相似文献   

4.
Granuphilin molecularly docks insulin granules to the fusion machinery   总被引:1,自引:0,他引:1  
The Rab27a effector granuphilin is specifically localized on insulin granules and is involved in their exocytosis. Here we show that the number of insulin granules morphologically docked to the plasma membrane is markedly reduced in granuphilin-deficient beta cells. Surprisingly, despite the docking defect, the exocytosis of insulin granules in response to a physiological glucose stimulus is significantly augmented, which results in increased glucose tolerance in granuphilin-null mice. The enhanced secretion in mutant beta cells is correlated with a decrease in the formation of the fusion-incompetent syntaxin-1a-Munc18-1 complex, with which granuphilin normally interacts. Furthermore, in contrast to wild-type granuphilin, its mutant that is defective in binding to syntaxin-1a fails to restore granule docking or the protein level of syntaxin-1a in granuphilin-null beta cells. Thus, granuphilin not only is essential for the docking of insulin granules but simultaneously imposes a fusion constraint on them through an interaction with the syntaxin-1a fusion machinery. These findings provide a novel paradigm for the docking machinery in regulated exocytosis.  相似文献   

5.
Munc 18-1 and granuphilin collaborate during insulin granule exocytosis   总被引:2,自引:1,他引:1  
Munc 18-1 is a member of the Sec/Munc family of syntaxin-binding proteins known to bind to the plasma membrane Q-SNARE syntaxin1 and whose precise role in regulated exocytosis remains controversial. Here, we show that Munc 18-1 plays a positive role in regulated insulin secretion from pancreatic beta cells. Munc 18-1 depletion caused a loss in the secretory capacity of both transiently transfected INS 1E cells and a stable clone with tetracycline-regulated Munc 18-1 RNA interference. In addition, Munc 18-1-depleted cells exhibited defective docking of insulin granules to the plasma membrane and accumulated insulin in the trans Golgi network. Furthermore, glucose stimulation after Munc 18-1 depletion resulted in the rapid formation of autophagosomes. In contrast, overexpression of Munc 18-1 had no effect on insulin secretion. Although there was no detectable interaction between Munc 18-1 and Munc-18-interacting protein 1 or calcium/calmodulin-dependent serine protein kinase, Munc 18-1 associated with the granular protein granuphilin. This association was regulated by glucose and was required for the specific interaction of insulin granules with syntaxin1. We conclude that Munc 18-1 and granuphilin collaborate in the docking of insulin granules to the plasma membrane in an initial fusion-incompetent state, with Munc 18-1 subsequently playing a positive role in a later stage of insulin granule exocytosis.  相似文献   

6.
Rab27a and Rab27b have recently been recognized to play versatile roles in regulating the exocytosis of secretory granules and lysosome-related organelles by using multiple effector proteins. However, the precise roles of these effector proteins in particular cell types largely remain uncharacterized, except for those in pancreatic beta cells and in melanocytes. Here, we showed that one of the Rab27a/b effectors, exophilin4/Slp2-a, is specifically expressed in pancreatic alpha cells, in contrast to another effector, granuphilin, in beta cells. Like granuphilin toward insulin granules, exophilin4 promotes the targeting of glucagon granules to the plasma membrane. Although the interaction of granuphilin with syntaxin-1a is critical for the targeting activity, exophilin4 does this primarily through the affinity of its C2A domain toward the plasma membrane phospholipids phosphatidylserine and phosphatidylinositol-4,5-bisphosphate. Notably, the binding activity to phosphatidylserine is inhibited by a physiological range of the Ca(2+) concentration attained after secretagogue stimulation, which presents a striking contrast to the Ca(2+)-stimulatory activity of the C2A domain of synaptotagmin I. Analyses of the mutant suggested that this novel Ca(2+)-inhibitory phospholipid-binding activity not only mediates docking but also modulates the subsequent fusion of the secretory granules.  相似文献   

7.
Regulated secretory pathways are highly developed in multicellular organisms as a means of intercellular communication. Each of these pathways harbors unique store organelles, such as granules in endocrine and exocrine tissues and melanosomes in melanocytes. It has recently been shown that the monomeric GTPase Rab27 subfamily regulates the exocytosis of these cell-specific store organelles. Furthermore, genetic alterations of Rab27a cause Griscelli syndrome in humans that manifests as pigmentary dilution of the skin and the hair and variable immunodeficiency due to defects in the transport of melanosomes in melanocytes and lytic granules in cytotoxic T-lymphocytes. Rab27 acts through organelle-specific effector proteins, such as granuphilin in pancreatic beta cells and melanophilin in melanocytes. The Rab27 and effector complex then interacts with proteins that are essential for membrane transport and fusion, such as syntaxin 1a and Munc18-1 for granuphilin and myosin Va for melanophilin. Genome information suggests that other putative Rab27 effector proteins, tentatively termed as exophilins or Slp/Slac2, are predicted to exist because these proteins share the conserved N-terminal Rab27-binding domain and show Rab27-binding activity in vitro or when overexpressed in cell lines. These findings suggest that the Rab27 subfamily regulates various exocytotic pathways using multiple organelle-specific effector proteins.  相似文献   

8.
Exophilin8/MyRIP/Slac2-c is an effector protein of the small GTPase Rab27a and is specifically localized on retinal melanosomes and secretory granules. We investigated the role of exophilin8 in insulin granule trafficking. Exogenous expression of exophilin8 in pancreatic β cells or their cell line, MIN6, polarized (exophilin8-positive) insulin granules at the cell corners, where both cortical actin and the microtubule plus-end-binding protein, EB1, were present. Mutation analyses indicated that the ability of exophilin8 to act as a linker between Rab27a and myosin Va is essential for its granule-clustering activity. Moreover, exophilin8 and exophilin8-associated insulin granules were markedly stable and immobile. Total internal reflection fluorescence microscopy indicated that exophilin8 restricts the motion of insulin granules at a region deeper than that where another Rab27a effector, granuphilin, accumulates docked granules directly attached to the plasma membrane. However, the exophilin8-induced immobility of insulin granules was eliminated upon secretagogue stimulation and did not inhibit evoked exocytosis. Furthermore, exophilin8 depletion prevents insulin granules from being transported close to the plasma membrane and inhibits their fusion. These findings indicate that exophilin8 transiently traps insulin granules into the cortical actin network close to the microtubule plus-ends and supplies them for release during the stimulation.  相似文献   

9.
In the present study, we examined the possible interaction between Rab4 and syntaxin 4, both having been implicated in insulin-induced GLUT4 translocation. Rab4 and syntaxin 4 were coimmunoprecipitated from the lysates of electrically permeabilized rat adipocytes. The interaction between the two proteins was reduced by insulin treatment and increased by the addition of guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). An in vitro binding assay revealed that the bacterially expressed Rab4 was bound to a glutathione S-transferase fusion protein containing the cytoplasmic domain of syntaxin 4 (GST-syntaxin 4-(1-273)) but not to syntaxin 1A or vesicle-associated membrane protein-2. The interaction between Rab4 and syntaxin 4 seemed to be regulated by the guanine nucleotide status of Rab4, because 1) GTPgammaS treatment of the cells significantly increased, but guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS) treatment decreased the amount of Rab4 pulled down with GST-syntaxin 4-(1-273) from the cell lysates; 2) GTPgammaS loading on Rab4 caused a marked increase in the affinity of Rab4 to syntaxin 4 whereas GDPbetaS loading had little effect; and 3) a GTPase-deficient mutant of Rab4 (Rab4(Q67L)), but not a GTP-binding-defective mutant (Rab4(S22N)), was bound to GST-syntaxin 4-(1-273). Although insulin stimulated [gamma-(32)P]GTP binding to Rab4 in a time-dependent fashion, its effect on the Rab4 interaction with syntaxin 4 was apparently biphasic; an initial increase in Rab4 associated with syntaxin 4 was followed by a gradual dissociation of the GTPase from syntaxin 4. Finally, the binding of Rab4(Q67L) to GST-syntaxin 4-(1-273) was inhibited by munc-18c in a dose-dependent manner, indicating that GTP-loaded Rab4 binds to syntaxin 4 in the open conformation. These results suggest that 1) Rab4 interacts with syntaxin 4 in a direct and specific manner, and 2) the interaction is regulated by the guanine nucleotide status of Rab4 as well as by the conformational status of syntaxin 4.  相似文献   

10.
Rab proteins regulate multiple, complex processes of membrane traffic. Among these proteins, Rab27a has been shown to function specifically in regulated exocytic pathways. However, the roles of Rab27b, another Rab27 subfamily member, have not been well characterized. We disrupted the Rab27b gene in mice. The targeting vector was designed to insert LacZ downstream of the initiation codon of the Rab27b gene so that the authentic promoter should drive this reporter gene. A comprehensive analysis of Rab27b expression using this mouse strain indicated that it is widely expressed not only in canonical secretory cells, but also in neurons and cells involved in surface protection and mechanical extension. To evaluate the function in pituitary endocrine cells where the isoform Rab27a is coexpressed, we generated Rab27a/Rab27b double knockout mice by crossing Rab27b knockout mice with Rab27a-mutated ashen mice. The polarized distribution of secretory granules close to the plasma membrane was markedly impaired in the pituitary of double knockout mice, indicating that the Rab27 subfamily is involved in the delivery of granules near the exocytic site. In conjunction with a phenotype having a pituitary devoid of the Rab27 effector granuphilin, we discuss the relationship between the residence and the releasable pool of granules.  相似文献   

11.
The Rab27 effector granuphilin/Slp4 is essential for the stable attachment (docking) of secretory granules to the plasma membrane, and it also inhibits subsequent fusion. Granuphilin is thought to mediate these processes through interactions with Rab27 on the granule membrane and with syntaxin-1a on the plasma membrane and its binding partner Munc18-1. Consistent with this hypothesis, both syntaxin-1a- and Munc18-1-deficient secretory cells, as well as granuphilin null cells, have been observed to have a deficit of docked granules. However, to date there has been no direct comparative analysis of the docking defects in those mutant cells. In this study, we morphometrically compared granule-docking states between granuphilin null and syntaxin-1a null pancreatic β cells derived from mice having the same genetic background. We found that loss of syntaxin-1a does not cause a significant granule-docking defect, in contrast to granuphilin deficiency. Furthermore, we newly generated granuphilin/syntaxin-1a double knock-out mice, characterized their phenotypes, and found that the double mutant mice represent a phenocopy of granuphilin null mice and do not represent phenotypes of syntaxin-1a null mice, including their granule-docking behavior. Because granuphilin binds to syntaxin-2 and syntaxin-3 as well as syntaxin-1a, it likely mediates granule docking through interactions with those multiple syntaxins on the plasma membrane.  相似文献   

12.
Fine-tuning of insulin secretion from pancreatic beta-cells participates in blood glucose homeostasis. Defects in this process can lead to chronic hyperglycemia and diabetes mellitus. Several proteins controlling insulin exocytosis have been identified, but the mechanisms regulating their expression remain poorly understood. Here, we show that two non-coding microRNAs, miR124a and miR96, modulate the expression of proteins involved in insulin exocytosis and affect secretion of the beta-cell line MIN6B1. miR124a increases the levels of SNAP25, Rab3A and synapsin-1A and decreases those of Rab27A and Noc2. Inhibition of Rab27A expression is mediated by direct binding to the 3'-untranslated region of Rab27A mRNA. The effect on the other genes is indirect and linked to changes in mRNA levels. Over-expression of miR124a leads to exaggerated hormone release under basal conditions and a reduction in glucose-induced secretion. miR96 increases mRNA and protein levels of granuphilin, a negative modulator of insulin exocytosis, and decreases the expression of Noc2, resulting in lower capacity of MIN6B1 cells to respond to secretagogues. Our data identify miR124a and miR96 as novel regulators of the expression of proteins playing a critical role in insulin exocytosis and in the release of other hormones and neurotransmitters.  相似文献   

13.
Abstract

Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells target infected or transformed cells with perforin-containing cytotoxic granules through immune synapses, while platelets secrete several types of granules which contents are essential for thrombosis and hemostasis. Recent work has culminated in the notion that an exocytic SNARE complex, based on a very similar set of components, is primarily responsible for exocytosis of the diverse granules in these different cell types. Granule exocytosis is, in particular, uniquely dependent on the atypical Q-SNARE syntaxin 11, its interacting partners of the Sec/Munc (SM) family, and is regulated by Rab27a. Mutations in these exocytic components underlie disease manifestations of familial hemophagocytic lymphohistiocytosis (FHL) subtypes, characterized by hyperactivation of the immune system, as well as platelet granule secretion defects. Here we discuss the key discoveries that led to the converging notion of the syntaxin 11-based exocytosis machinery for cytotoxic granules and platelet-derived granules.  相似文献   

14.
The small GTPases Rab3 and Rab27 are associated with secretory granules of pancreatic beta-cells and regulate insulin exocytosis. In this study, we investigated the role of Noc2, a potential partner of these two GTPases, in insulin secretion. In the beta-cell line INS-1E wild-type Noc2, Noc265E, and Noc258A, a mutant capable of interacting with Rab27 but not Rab3, colocalized with insulin-containing vesicles. In contrast, two mutants (Noc2138S,141S and Noc2154A,155A,156A) that bind neither Rab3 nor Rab27 did not associate with secretory granules and were uniformly distributed throughout the cell cytoplasm. Overexpression of wild-type Noc2, Noc265E, or Noc258A inhibited hormone secretion elicited by insulin secretagogues. In contrast, overexpression of the mutants not targeted to secretory granules was without effect. Silencing of the Noc2 gene by RNA interference led to a strong impairment in the capacity of INS-1E cells to respond to insulin secretagogues, indicating that appropriate levels of Noc2 are essential for pancreatic beta-cell exocytosis. The defect was already detectable in the early secretory phase (0-10 min) but was particularly evident during the sustained release phase (10-45 min). Protein-protein binding studies revealed that Noc2 is a potential partner of Munc13, a component of the machinery that controls vesicle priming and insulin exocytosis. These data suggest that Noc2 is involved in the recruitment of secretory granules at the plasma membrane possibly via the interaction with Munc13.  相似文献   

15.
Platelets store self-agonists such as ADP and serotonin in dense core granules. Although exocytosis of these granules is crucial for hemostasis and thrombosis, the underlying mechanism is not fully understood. Here, we show that incubation of permeabilized platelets with unprenylated active mutant Rab27A-Q78L, wild type Rab27A, and Rab27B inhibited the secretion, whereas inactive mutant Rab27A-T23N and other GTPases had no effects. Furthermore, we affinity-purified a GTP-Rab27A-binding protein in platelets and identified it as Munc13-4, a homologue of Munc13-1 known as a priming factor for neurotransmitter release. Recombinant Munc13-4 directly bound to GTP-Rab27A and -Rab27B in vitro, but not other GTPases, and enhanced secretion in an in vitro assay. The inhibition of secretion by unprenylated Rab27A was rescued by the addition of Munc13-4, suggesting that Munc13-4 mediates the function of GTP-Rab27. Thus, Rab27 regulates the dense core granule secretion in platelets by employing its binding protein, Munc13-4.  相似文献   

16.
Although syntaxin 1 is generally thought to function as the primary target-N-ethylmaleimide-sensitive factor attachment protein receptor required for pancreatic beta cell insulin secretion, we have observed that overexpression of a dominant-interfering syntaxin 4 mutant (syntaxin 4/DeltaTM) attenuated glucose-stimulated insulin secretion in betaHC-9 cells. Furthermore, these cells express the selective syntaxin 4-binding protein Synip (syntaxin 4 interacting protein), and Synip was specifically co-immunoprecipitated with syntaxin 4 but not syntaxin 1. Overexpression of the full-length Synip protein (Synip/wild type) inhibited VAMP2 association with syntaxin 4 and decreased glucose-stimulated insulin secretion. This did not occur with a Synip mutant (Synip/ DeltaEF) that was incapable of binding syntaxin 4. Consistent with a functional role of syntaxin 4 in this process, expression of syntaxin 4/DeltaTM also inhibited glucose-stimulated insulin secretion. Furthermore, analysis of first and second phase insulin secretion demonstrated that syntaxin 4/DeltaTM mainly suppressed the second phase of insulin secretion. In contrast, overexpression of Synip resulted in an inhibition of both the first and second phase of glucose-stimulated insulin secretion. These data demonstrate that syntaxin 4 plays a functional role on insulin release and granule fusion in beta cells and that this process is regulated by the syntaxin 4-specific binding protein Synip.  相似文献   

17.
Neutrophils kill micro-organisms using microbicidal products that they release into the phagosome or into the extracellular space. The secretory machinery utilized by neutrophils is poorly characterized. We show that the small GTPase Rab27a is an essential component of the secretory machinery of azurophilic granules in granulocytes. Rab27a-deficient mice have impaired secretion of MPO (myeloperoxidase) into the plasma in response to lipopolysaccharide. Cell fractionation analysis revealed that Rab27a and the Rab27a effector protein JFC1/Slp1 (synaptotagmin-like protein 1) are distributed principally in the low-density fraction containing a minor population of MPO-containing granules. By immunofluorescence microscopy, we detected Rab27a and JFC1/Slp1 in a minor subpopulation of MPO-containing granules. Interference with the JFC1/Slp1-Rab27a secretory machinery impaired secretion of MPO in permeabilized neutrophils. The expression of Rab27a was dramatically increased when promyelocytic HL-60 cells were differentiated into granulocytes but not when they were differentiated into monocytes. Down-regulation of Rab27a in HL-60 cells by RNA interference did not affect JFC1/Slp1 expression but significantly decreased the secretion of MPO. Neither Rab27a nor JFC1/Slp1 was integrated into the phagolysosome membrane during phagocytosis. Neutrophils from Rab27a-deficient mice efficiently phagocytose zymosan opsonized particles and deliver MPO to the phagosome. We conclude that Rab27a and JFC1/Slp1 permit MPO release into the surrounding milieu and constitute key components of the secretory machinery of azurophilic granules in granulocytes. Our results suggest that the granules implicated in cargo release towards the surrounding milieu are molecularly and mechanistically different from those involved in their release towards the phagolysosome.  相似文献   

18.
Rab3A is a small G-protein of the Rab family that is involved in the late steps of exocytosis. Here, we studied the role of Rab3A and its relationship with Munc13-1 and Munc18-1 during vesicle priming. Phorbol 12-myristate 13-acetate (PMA) is known to enhance the percentage of fusion-competent vesicles and this is mediated by protein kinase C (PKC)-independent Munc13-1 activation and PKC-dependent dissociation of Munc18-1 from syntaxin 1a. Our results show that the effects of PMA varied in cells overexpressing Rab3A or mutants of Rab3A and in cells with Rab3A knockdown. When Munc13-1 was overexpressed in Rab3A knockdown cells, secretion was completely inhibited. In cells overexpressing a Rab-interacting molecule (RIM)-binding deficient Munc13-1 mutant, 128-Munc13-1, the effects of Rab3A on PMA-induced secretion was abolished. The effect of PMA, which disappeared in cells overexpressing GTP-Rab3A (Q81L), could be reversed by co-expressing Munc18-1 but not its mutant R39C, which is unable to bind to syntaxin 1a. In cells overexpressing Munc18-1, manipulation of Rab3A activity had no effect on secretion. Finally, Munc18-1 enhanced the dissociation of Rab3A, and such enhancement correlated with exocytosis. In summary, our results support the hypothesis that the Rab3A cycle is coupled with the activation of Munc13-1 via RIM, which accounts for the regulation of secretion by Rab3A. Munc18-1 acts downstream of Munc13-1/RIM/Rab3A and interacts with syntaxin 1a allowing vesicle priming. Furthermore, Munc18-1 promotes Rab3A dissociation from vesicles, which then results in fusion.  相似文献   

19.
Slp4-a (synaptotagmin-like protein 4-a)/granuphilin-a is specifically localized on dense-core vesicles in PC12 cells and negatively controls dense-core vesicle exocytosis through specific interaction with Rab27A via the N-terminal Slp homology domain (SHD) (Fukuda, M., Kanno, E., Saegusa, C., Ogata, Y., and Kuroda, T. S. (2002) J. Biol. Chem. 277, 39673-39678). However, the mechanism of the inhibition by Slp4-a has never been elucidated at the molecular level and is still a matter of controversy. In this study, I discovered an unexpected biochemical property of Slp4-a, that Slp4-a, but not other Rab27 effectors reported thus far, is capable of interacting with both Rab27A(T23N), a dominant negative form that mimics the GDP-bound form, and Rab27A(Q78L), a dominant active form that mimics the GTP-bound form, whereas Slp4-a specifically recognizes the GTP-bound form of Rab3A and Rab8A and does not recognize their GDP-bound form. I show by deletion and mutation analyses that the TGDWFY sequence in SHD2 is essential for Rab27A(T23N) binding, whereas SHD1 is involved in Rab27A(Q78L) binding. I further show by immunoprecipitation and cotransfection assays that Munc18-1, but not syntaxin IA, directly interacts with the C-terminal domain of Slp4-a in a Rab27A-independent manner. Expression of Slp4-a mutants that lack Rab27A(T23N) binding activity (i.e. specific binding to Rab27A(Q78L)) completely reverses the inhibitory effect of the wild-type Slp4-a on high KCl-dependent neuropeptide Y secretion in PC12 cells. The results strongly indicate that interaction of Slp4-a with the GDP-bound form of Rab27A, not with syntaxin IA or Munc18-1, is the primary reason that Slp4-a expression inhibits dense core vesicle exocytosis in PC12 cells.  相似文献   

20.
Rab27a in pancreatic beta-cells, a busy protein in membrane trafficking   总被引:1,自引:0,他引:1  
The small GTPases have the ‘active’ GTP-bound and ‘inactive’ GDP-bound states, and thereby act as a molecular switch in cells. Rab27a is a member of this family and exists in T-lymphocytes, melanocytes and pancreatic beta-cells. Rab27a regulates secretion of cytolytic granules from cytotoxic T-lymphocytes and intracellular transport of melanosomes in melanocytes. In pancreatic beta-cells, Rab27a controls pre-exocytotic stages of insulin secretion. A few GTP-dependent Rab27a effectors are known to mediate these cellular functions. We recently found that Rab27a also possesses the GDP-dependent effector coronin 3. Coronin 3 regulates endocytosis in pancreatic beta-cells through its interaction with GDP-Rab27a. These results imply that GTP- and GDP-Rab27a actively regulate distinct stages in the insulin secretory pathway. In this review, we provide an overview of the roles of both GTP- and GDP-Rab27a in pancreatic beta-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号