首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phytochelatin synthases (PCS) catalyze phytochelatin (PC) synthesis from glutathione (GSH) in the presence of certain metals. The resulting PC-metal complexes are transported into the vacuole, avoiding toxic effects on metabolism. Legumes have the unique capacity to partially or completely replace GSH by homoglutathione (hGSH) and PCs by homophytochelatins (hPCs). However, the synthesis of hPCs has received little attention. A search for PCS genes in the model legume Lotus (Lotus japonicus) resulted in the isolation of a cDNA clone encoding a protein (LjPCS1) highly homologous to a previously reported homophytochelatin synthase (hPCS) of Glycine max (GmhPCS1). Recombinant LjPCS1 and Arabidopsis (Arabidopsis thaliana) PCS1 (AtPCS1) were affinity purified and their polyhistidine-tags removed. AtPCS1 catalyzed hPC synthesis from hGSH alone at even higher rates than did LjPCS1, indicating that GmhPCS1 is not a genuine hPCS and that a low ratio of hPC to PC synthesis is an inherent feature of PCS1 enzymes. For both enzymes, hGSH is a good acceptor, but a poor donor, of gamma-glutamylcysteine units. Purified AtPCS1 and LjPCS1 were activated (in decreasing order) by Cd2+, Zn2+, Cu2+, and Fe3+, but not by Co2+ or Ni2+, in the presence of 5 mm GSH and 50 microm metal ions. Activation of both enzymes by Fe3+ was proven by the complete inhibition of PC synthesis by the iron-specific chelator desferrioxamine. Plants of Arabidopsis and Lotus accumulated (h)PCs only in response to a large excess of Cu2+ and Zn2+, but to a much lower extent than did with Cd2+, indicating that (h)PC synthesis does not significantly contribute in vivo to copper, zinc, and iron detoxification.  相似文献   

3.
S Clemens  E J Kim  D Neumann    J I Schroeder 《The EMBO journal》1999,18(12):3325-3333
Phytochelatins play major roles in metal detoxification in plants and fungi. However, genes encoding phytochelatin synthases have not yet been identified. By screening for plant genes mediating metal tolerance we identified a wheat cDNA, TaPCS1, whose expression in Saccharomyces cerevisiae results in a dramatic increase in cadmium tolerance. TaPCS1 encodes a protein of approximately 55 kDa with no similarity to proteins of known function. We identified homologs of this new gene family from Arabidopsis thaliana, Schizosaccharomyces pombe, and interestingly also Caenorhabditis elegans. The Arabidopsis and S.pombe genes were also demonstrated to confer substantial increases in metal tolerance in yeast. PCS-expressing cells accumulate more Cd2+ than controls. PCS expression mediates Cd2+ tolerance even in yeast mutants that are either deficient in vacuolar acidification or impaired in vacuolar biogenesis. PCS-induced metal resistance is lost upon exposure to an inhibitor of glutathione biosynthesis, a process necessary for phytochelatin formation. Schizosaccharomyces pombe cells disrupted in the PCS gene exhibit hypersensitivity to Cd2+ and Cu2+ and are unable to synthesize phytochelatins upon Cd2+ exposure as determined by HPLC analysis. Saccharomyces cerevisiae cells expressing PCS produce phytochelatins. Moreover, the recombinant purified S.pombe PCS protein displays phytochelatin synthase activity. These data demonstrate that PCS genes encode phytochelatin synthases and mediate metal detoxification in eukaryotes.  相似文献   

4.
Glutathione (gamma-glu-cys-gly; GSH) is usually present at high concentrations in most living cells, being the major reservoir of non-protein reduced sulfur. Because of its unique redox and nucleophilic properties, GSH serves in bio-reductive reactions as an important line of defense against reactive oxygen species, xenobiotics and heavy metals. GSH is synthesized from its constituent amino acids by two ATP-dependent reactions catalyzed by gamma-glutamylcysteine synthetase and glutathione synthetase. In yeast, these enzymes are found in the cytosol, whereas in plants they are located in the cytosol and chloroplast. In protists, their location is not well established. In turn, the sulfur assimilation pathway, which leads to cysteine biosynthesis, involves high and low affinity sulfate transporters, and the enzymes ATP sulfurylase, APS kinase, PAPS reductase or APS reductase, sulfite reductase, serine acetyl transferase, O-acetylserine/O-acetylhomoserine sulfhydrylase and, in some organisms, also cystathionine beta-synthase and cystathionine gamma-lyase. The biochemical and genetic regulation of these pathways is affected by oxidative stress, sulfur deficiency and heavy metal exposure. Cells cope with heavy metal stress using different mechanisms, such as complexation and compartmentation. One of these mechanisms in some yeast, plants and protists is the enhanced synthesis of the heavy metal-chelating molecules GSH and phytochelatins, which are formed from GSH by phytochelatin synthase (PCS) in a heavy metal-dependent reaction; Cd(2+) is the most potent activator of PCS. In this work, we review the biochemical and genetic mechanisms involved in the regulation of sulfate assimilation-reduction and GSH metabolism when yeast, plants and protists are challenged by Cd(2+).  相似文献   

5.
Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.  相似文献   

6.
7.
8.
植物的硫同化及其相关酶活性在镉胁迫下的调节   总被引:11,自引:0,他引:11  
植物对土壤中硫的利用包括根系对硫酸盐的吸收、转运、同化、分配等过程,也是由一系列酶和蛋白质参与和调节的代谢过程。近年来的研究表明,在植物体内,硫同化与植物对镉等重金属元素的胁迫反应机制有着密切关系。镉胁迫能调节植物对硫酸盐的吸收、转运、同化,以及半胱氨酸、谷胱甘肽(glutathione,GSH)和植物螯合肽(Dhytochelatins,pc)的合成。植物在镉胁迫下通过多种调节机制,增强对硫酸盐的吸收和还原,迅速合成半胱氨酸和谷胱甘肽等代谢物,从而合成足够的PC,以满足植物生理的需要。  相似文献   

9.
Maier T  Yu C  Küllertz G  Clemens S 《Planta》2003,218(2):300-308
Metal-binding domains consisting of short, contiguous stretches of amino acids are found in many proteins mediating the transport, buffering, trafficking or detoxification of metal ions. Phytochelatin synthases are metal-activated enzymes that function in the detoxification of Cd2+ and other toxic metal and metalloid ions. In order to localize Cd2+-binding sites, peptide libraries of two diverse phytochelatin synthases were synthesized and incubated with 109Cd2+. Distinct binding sites and binding motifs could be localized based on the patterns of Cd2+-binding. The number of binding sites was consistent with previous findings for recombinant protein. Positions of binding sites appeared to be conserved even among diverse phytochelatin synthases. Mutant peptide analysis was used to assess the contribution of exemplary amino acids to binding. Several binding motifs contain cysteines or glutamates. For cysteines a strong correlation was found between binding activity and degree of conservation among known phytochelatin synthases. These findings indicate the suitability of peptide scanning for the identification of metal-binding sites. The functional role of several cysteines was investigated by expression of hemagglutinin-tagged phytochelatin synthases in phytochelatin synthase-deficient, Cd2+-hypersensitive Schizosaccharomyces pombe cells. The data are consistent with a model suggesting functionally essential metal-binding activation sites in the N-terminal catalytic part of phytochelatin synthases and additional binding sites at the C-terminus not essential for activity.Abbreviations EMM Edinburgh's minimal medium - GSH glutathione - HA hemagglutinin - PC phytochelatin - PCS phytochelatin synthase  相似文献   

10.
Phytochelatin synthase (PCS) is a major determinant of heavy metal tolerance in plants and other organisms. No structural information on this enzyme is as yet available. It is generally believed, however, that the active site region is located in the more conserved N-terminal portion of PCS, whereas various, as yet unidentified (but supposedly less critical) roles have been proposed for the C-terminal region. To gain insight into the structural/functional organization of PCS, we have conducted a limited proteolysis analysis of the enzyme from Arabidopsis (AtPCS1), followed by functional characterization of the resulting polypeptide fragments. Two N-terminal fragments ending at positions 372 (PCS_Nt1) and 283 (PCS_Nt2) were produced sequentially upon V8 protease digestion, without any detectable accumulation of the corresponding C-terminal fragments. As revealed by the results of in vivo and in vitro functional assays, the core PCS_Nt2 fragment is biosynthetically active in the presence of cadmium ions and supports phytochelatin formation at a rate that is only approximately 5-fold lower than that of full-length AtPCS1. The loss of the C-terminal region, however, substantially decreases the thermal stability of the enzyme and impairs phytochelatin formation in the presence of certain heavy metals (e.g. mercury and zinc, but not cadmium or copper). The latter phenotype was shared by PCS_Nt2 and by its precursor fragment PCS_Nt1, which, on the other hand, was almost as stable and biosynthetically active (in the presence of cadmium) as the full-length enzyme. AtPCS1 thus appears to be composed of a protease-resistant (and hence presumably highly structured) N-terminal domain, flanked by an intrinsically unstable C-terminal region. The most upstream part of such a region (positions 284-372) is important for enzyme stabilization, whereas its most terminal part (positions 373-485) appears to be required to determine enzyme responsiveness to a broader range of heavy metals.  相似文献   

11.
The fission yeast Schizosaccharomyces pombe detoxifies cadmium by synthesizing phytochelatins, peptides of the structure (gamma-GluCys)nGly, which bind cadmium and mediate its sequestration into the vacuole. The fission yeast protein HMT2, a mitochondrial enzyme that can oxidize sulphide, appears to be essential for tolerance to multiple forms of stress, including exposure to cadmium. We found that the hmt2- mutant is unable to accumulate normal levels of phytochelatins in response to cadmium, although the cells possess a phytochelatin synthase that is active in vitro. Radioactive pulse-chase experiments demonstrated that the defect lies in two steps: the synthesis of phytochelations and the upregulation of glutathione production. Phytochelatins, once formed, are stable. hmt2- cells accumulate high levels of sulphide and, when exposed to cadmium, display bright fluorescent bodies consistent with cadmium sulphide. We propose that the precipitation of free cadmium blocks phytochelatin synthesis in vivo, by preventing upregulation of glutathione production and formation of the cadmium-glutathione thiolate required as a substrate by phytochelatin synthase. Thus, although sulphide is required for phytochelatin-mediated metal tolerance, aberrantly high sulphide levels can inhibit this pathway. Precise regulation of sulphur metabolism, mediated in part by HMT2, is essential for metal tolerance in fission yeast.  相似文献   

12.
13.
We have previously described a strategy for detecting protein protein interactions based on protein interaction assisted folding of rationally designed fragments of enzymes. We call this strategy the protein fragment complementation assay (PCA). Here we describe PCAs based on the enzyme TEM-1 beta-lactamase (EC: 3.5.2.6), which include simple colorimetric in vitro assays using the cephalosporin nitrocefin and assays in intact cells using the fluorescent substrate CCF2/AM (ref. 6). Constitutive protein protein interactions of the GCN4 leucine zippers and of apoptotic proteins Bcl2 and Bad, and the homodimerization of Smad3, were tested in an in vitro assay using cell lysates. With the same in vitro assay, we also demonstrate interactions of protein kinase PKB with substrate Bad. The in vitro assay is facile and amenable to high-throughput modes of screening with signal-to-background ratios in the range of 10:1 to 250:1, which is superior to other PCAs developed to date. Furthermore, we show that the in vitro assay can be used for quantitative analysis of a small molecule induced protein interaction, the rapamycin-induced interaction of FKBP and yeast FRB (the FKBP-rapamycin binding domain of TOR (target of rapamycin)). The assay reproduces the known dissociation constant and number of sites for this interaction. The combination of in vitro colorimetric and in vivo fluorescence assays of beta-lactamase in mammalian cells suggests a wide variety of sensitive and high-throughput large-scale applications, including in vitro protein array analysis of protein protein or enzyme protein interactions and in vivo applications such as clonal selection for cells expressing interacting protein partners.  相似文献   

14.
Phytochelatin synthase (PCS), the key enzyme involved in heavy metal detoxification and accumulation has been used from various sources to develop transgenic plants for the purpose of phytoremediation. However, some of the earlier studies provided contradictory results. Most of the PCS genes were isolated from plants that are not potential metal accumulators. In this study, we have isolated PCS gene from Ceratophyllum demersum cv. L. (CdPCS1), a submerged rootless aquatic macrophyte, which is considered as potential accumulator of heavy metals. The CdPCS1 cDNA of 1,757?bp encodes a polypeptide of 501 amino acid residues and differs from other known PCS with respect to the presence of a number of cysteine residues known for their interaction with heavy metals. Complementation of cad1-3 mutant of Arabidopsis deficient in PC (phytochelatin) biosynthesis by CdPCS1 suggests its role in the synthesis of PCs. Transgenic tobacco plants expressing CdPCS1 showed several-fold increased PC content and precursor non-protein thiols with enhanced accumulation of cadmium (Cd) and arsenic (As) without significant decrease in plant growth. We conclude that CdPCS1 encodes functional PCS and may be part of metal detoxification mechanism of the heavy metal accumulating plant C. demersum. KEY MESSAGE: Heterologous expression of PCS gene from C. demersum complements Arabidopsis cad1-3 mutant and leads to enhanced accumulation of Cd and As in transgenic tobacco.  相似文献   

15.
Ubiquitin-protein ligases (E3s) are implicated in various human disorders and are attractive targets for therapeutic intervention. Although most cellular proteins are ubiquitinated, ubiquitination cannot be linked directly to a specific E3 for a large fraction of these proteins, and the substrates of most E3 enzymes are unknown. We have developed a luminescent assay to detect ubiquitination in vitro, which is more quantitative, effective, and sensitive than conventional ubiquitination assays. By taking advantage of the abundance of purified proteins made available by genomic efforts, we screened hundreds of purified yeast proteins for ubiquitination, and we identified previously reported and novel substrates of the yeast E3 ligase Rsp5. The relevance of these substrates was confirmed in vivo by showing that a number of them interact genetically with Rsp5, and some were ubiquitinated by Rsp5 in vivo. The combination of this sensitive assay and the availability of purified substrates will enable the identification of substrates for any purified E3 enzyme.  相似文献   

16.
17.
In Escherichia coli, heterologous production of Schizosaccharomyces pombe phytochelatin synthase (PCS) along with overproduction of E. coli serine acetyltransferase (SAT) and gamma-glutamylcysteine synthase (gammaECS) was achieved and resulted in the accumulation of phytochelatins in bacterial cells. Overproduction of either gammaECS alone or simultaneous production of all three proteins in bacterial cells were accompanied by reduced growth rate in liquid cultures. Interestingly, bacteria overproducing either gammaECS or both SAT and gammaECS (with elevated level of gamma-glutamylcysteine but not of phytochelatins) were able to accumulate more cadmium per dry weight than the control. However, the most efficient cadmium accumulation was observed in bacteria with elevated levels of all three proteins: SAT, gammaECS and PCS. Therefore, "pushing" the entire pathway might be the most promising approach in modification of bacteria for potential bioremediation purposes because the level of intermediates, cysteine and glutathione, can limit the rate of production of phytochelatins. However, in such bacteria other metabolic process might become limiting for efficient growth.  相似文献   

18.
19.
20.
Phytochelatins are essential for cadmium and arsenic detoxification in plants, some fungi, and animals. It is mysterious, that the responsible enzymes, phytochelatin synthases (PCS), are constitutively expressed and so widespread in nature. Phylogenetic analysis indicates multiple horizontal transfers of PCS genes, but a bacterial origin appears unlikely. Differences between bacterial and eukaryotic PCS proteins in structure and activity had indicated bi-functionality of phytochelatin synthases as peptidases and transpeptidases. Recent observations indicate that PCS indeed serve physiological functions that most likely are much more prevalent than cadmium or arsenic detoxification. First, PCS-deficient Arabidopsis thaliana mutants are hypersensitive to zinc suggesting a role of phytochelatin synthesis, i.e. the formation of metal-binding peptides from glutathione in a transpeptidase reaction, in Zn homeostasis. Second, these mutants are also impaired in defense responses conferring resistance to incompatible pathogens (= nonhost resistance). The latter is hypothesized to be attributable to an involvement of PCS as a peptidase in indole glucosinolate metabolism. Possibly, micronutrient homeostasis and nonhost resistance are closely connected as PCS are not the only proteins involved in both processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号