首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Usefulness of adenoviral vectors derived from human adenovirus (HAd) type 5 (HAd5) is mainly limited by wide prevalence of preexisting anti-HAd5 immunity as well as non-specific tissue tropism of these vectors. As an alternative, non-human adenoviral vectors including bovine adenovirus type 3 (BAd3) are currently being investigated. Non-prevalence of BAd3 in humans and its ability to evade preexisting HAd immunity are some of the features that make BAd3 a promising vector for human gene delivery. BAd3 appears to have a tissue tropism distinct from that of HAd5 and also the repertoire of cells efficiently transduced by BAd3 is different. We performed antibody-mediated receptor blocking experiments to show that BAd3 internalization was independent of coxsackievirus-adenovirus receptor, the primary determinant of HAd5 tropism, or integrin alpha(v)beta3, a secondary molecule involved in HAd5 entry. Using homologous and heterologous knob-mediated competition assays with recombinant knobs of HAd5, porcine adenovirus type 3 (PAd3), or BAd3, we observed that BAd3 internalization was independent of the primary receptors of HAd5 and PAd3. These results provide support for further exploration of BAd3 vectors for designing targeted vectors for human gene therapy.  相似文献   

2.
Replication-deficient human adenovirus type 5 (Ad5) can be produced to high titers in complementing cell lines, such as PER.C6, and is widely used as a vaccine and gene therapy vector. However, preexisting immunity against Ad5 hampers consistency of gene transfer, immunological responses, and vector-mediated toxicities. We report the identification of human Ad35 as a virus with low global prevalence and the generation of an Ad35 vector plasmid system for easy insertion of heterologous genes. In addition, we have identified the minimal sequence of the Ad35-E1B region (molecular weight, 55,000 [55K]), pivotal for complementation of fully E1-lacking Ad35 vector on PER.C6 cells. After stable insertion of the 55K sequence into PER.C6 cells a cell line was obtained (PER.C6/55K) that efficiently transcomplements both Ad5 and Ad35 vectors. We further demonstrate that transduction with Ad35 is not hampered by preexisting Ad5 immunity and that Ad35 efficiently infects dendritic cells, smooth muscle cells, and synoviocytes, in contrast to Ad5.  相似文献   

3.
Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses. Here we studied the effects of HAd5V-specific immune responses induced by intranasal infection on the transduction efficiency of recombinant adenovirus vectors. Of interest, when HAd5V immunity was induced in mice by the natural respiratory route, the pre-existing immunity against HAd5V did not significantly interfere with the B and T-cell immune responses against the transgene products induced after a prime/boost inoculation protocol with a recombinant HAd5V-vector, as measured by ELISA and in vivo cytotoxic T-cell assays, respectively. We also correlated the levels of HAd5V-specific neutralizing antibodies (Ad5NAbs) induced in mice with the levels of Ad5NAb titers found in humans. The data indicate that approximately 60% of the human serum samples tested displayed Ad5NAb levels that could be overcome with a prime-boost vaccination protocol. These results suggest that recombinant HAd5V vectors are potentially useful for prime-boost vaccination strategies, at least when pre-existing immunity against HAd5V is at low or medium levels.  相似文献   

4.
The major adenovirus (Ad) capsid proteins hexon, penton, and fiber influence the efficiency and tropism of gene transduction by Ad vectors. Fiber is the high-affinity receptor binding protein that serves to mediate cell attachment in vitro when using coxsackie-adenovirus receptor (CAR)-containing cell lines. This contrasts with transduction efficiency in macrophages or dendritic cells that lack high concentrations of CAR. To determine how fiber influences gene transduction and immune activation in a murine model, we have characterized Ad type 5 (Ad5) vectors with two classes of chimeric fiber, CAR binding and non-CAR binding. In a systemic infection, Ad5 fiber contributes to DNA localization and vector transduction in hepatic tissue. However, the majority of vector localization is due to Ad5 fiber-specific functions distinct from CAR binding. CAR-directed transduction occurs but at a modest level. In contrast to CAR binding vectors, the F7 and F7F41S non-CAR-binding vectors demonstrate a 2-log decrease in hepatic transduction, with a 10-fold decrease in the amount of vector DNA localizing to the hepatic tissue. To characterize the innate response to early infection using fiber chimeric vectors, intrahepatic cytokine and chemokine mRNAs were quantified 5 hours postinfection. Tumor necrosis factor alpha mRNA levels resulting from Ad5 fiber infections were elevated compared to viruses expressing serotype 7 or 41 fiber. Levels of chemokine mRNA (gamma interferon-inducible protein 10, T-cell activation gene 3, and macrophage inflammatory protein 1beta) were 10- to 20-fold higher with CAR binding vectors (Ad5 and F41T) than with non-CAR-binding vectors (F7 and F7F41S). In spite of quantitative differences in vector localization and innate activation, fiber pseudotyping did not significantly change the outcome of anti-Ad adaptive immunity. All vectors were cleared with the same kinetics as wild-type Ad5 vectors, and each induced neutralizing antibody. Although non-CAR-binding vectors were impaired in transduction by nearly 2 orders of magnitude, the level of antitransgene immunity was the same for each of the vectors. Using primary bone marrow-derived macrophages and dendritic cells, we demonstrate that transduction, induction of cytokine/chemokine, and phenotypic maturation of these antigen-presenting cells are independent of fiber content. Our data support a model where fiber-mediated hepatic localization enhances innate responses to virus infection but minimally impacts on adaptive immunity.  相似文献   

5.
Mesenchymal stem cell (MSC) mediated gene therapy research has been conducted predominantly on rodents. Appropriate large animal models may provide additional safety and efficacy information prior to human clinical trials. The objectives of this study were: (a) to optimize adenoviral transduction efficiency of porcine bone marrow MSCs using a commercial polyamine-based transfection reagent (GeneJammer, Stratagene, La Jolla, CA), and (b) to determine whether transduced MSCs retain the ability to differentiate into mesodermal lineages. Porcine MSCs (pMSCs) were infected under varying conditions, with replication-defective adenoviral vectors carrying the GFP gene and GFP expression analyzed. Transduced cells were induced to differentiate in vitro into adipogenic, chondrogenic, and osteogenic lineages. We observed a 5.5-fold increase in the percentage of GFP-expressing pMSCs when adenovirus type 5 carrying the adenovirus type 35 fiber (Ad5F35eGFP) was used in conjunction with GeneJammer. Transduction of pMSCs at 10.3-13.8 MOI (1,500-2,000 vp/cell) in the presence of Gene Jammer yielded the highest percentage of GFP-expressing cells ( approximately 90%) without affecting cell viability. A similar positive effect was detected when pMSCs were infected with an Ad5eGFP vector. Presence of fetal bovine serum (FBS) during adenoviral transduction enhanced vector-encoded transgene expression in both GeneJammer-treated and control groups. pMSCs transduced with adenovirus vector in the presence of GeneJammer underwent lipogenic, chondrogenic, and osteogenic differentiation. Addition of GeneJammer during adenoviral infection of pMSCs can revert the poor transduction efficiency of pMSCs while retaining their pluripotent differentiation capacity. GeneJammer-enhanced transduction will facilitate the use of adenoviral vectors in MSC-mediated gene therapy models and therapies.  相似文献   

6.
The adenovirus fiber protein is responsible for attachment of the virion to unidentified cell surface receptors. There are at least two distinct adenovirus fiber receptors which interact with the group B (Ad3) and group C (Ad5) adenoviruses. We have previously shown by using expressed adenovirus fiber proteins that it is possible to change the specificity of the fiber protein by exchanging the head domain with another serotype which recognizes a different receptor (S. C. Stevenson et al., J. Virol. 69:2850-2857, 1995). A chimeric fiber cDNA containing the Ad3 fiber head domain fused to the Ad5 fiber tail and shaft was incorporated into the genome of an adenovirus vector with E1 and E3 deleted encoding beta-galactosidase to generate Av9LacZ4, an adenovirus particle which contains a chimeric fiber protein. Western blot analysis of the chimeric fiber vector confirmed expression of the chimeric fiber protein and its association with the adenovirus capsid. Transduction experiments with fiber protein competitors demonstrated the altered receptor tropism of the chimeric fiber vector compared to that of the parental Av1LacZ4 vector. Transduction of a panel of human cell lines with the chimeric and parental vectors provided evidence for a different cellular distribution of the Ad5 and Ad3 receptors. Three cell lines (THP-1, MRC-5, and FaDu) were more efficiently transduced by the vector containing the Ad3 fiber head than by the Ad5 fiber vector. In contrast, human coronary artery endothelial cells were transduced more readily with the vector containing the Ad5 fiber than with the chimeric fiber vector. HeLa and human umbilical vein endothelial cells were transduced at equivalent levels compared with human diploid fibroblasts, which were refractory to transduction with both vectors. These results provide evidence for the differential expression of the Ad5 and Ad3 receptors on human cell lines derived from clinically relevant target tissues. Furthermore, we show that exchange of the fiber head domain is a viable approach to the production of adenovirus vectors with cell-type-selective transduction properties. It may be possible to extend this approach to the use of ligands for a range of different cellular receptors in order to target gene transfer to specific cell types at the level of transduction.  相似文献   

7.
BACKGROUND: Adeno-associated viral (AAV) vectors are potent delivery vehicles for gene transfer strategies directed at the central nervous system (CNS), muscle and liver. However, comparatively few studies have described AAV-mediated gene transfer to tumor tissues. We have previously demonstrated that while AAV2 and Adenoviral (Ad) 5 vectors have similar broad host ranges in tumor-derived cell lines, AAV2 was able to penetrate human glioblastoma biopsy spheroids and xenografts more efficiently than Ad 5 vectors. These results suggested that AAV vectors could be suitable for therapeutic gene delivery to solid tumor tissue. In the present work, the transduction efficacy of AAV serotypes 4 and 5 were compared to AAV2, both in vitro and in intracranial GBM xenografts derived from patient biopsies implanted into nude rats. METHODS: AAV vector serotypes 2, 4, and 5 containing either the green fluorescent protein (GFP) or the bacterial beta-galactosidase (lacZ) reporter gene were added to five different human glioma cell lines, to multicellular spheroids generated from glioblastoma patient biopsies, and to spheroids xenografted intracranially in nude rats. Transduction efficiency was assessed by fluorescence imaging, histochemistry, immunohistochemistry and flow cytometry. RESULTS: While all three AAV serotypes were able to transduce the glioma cell lines when added individually or when they were administered in concert, AAV2 transduced the glioma cells most effectively compared to AAV4 or AAV5. Upon infecting glioblastoma spheroids in vitro, all three AAV serotypes efficiently transduced cells located at the surface as well as within deeper layers of the spheroids. In addition, similarly to what was observed for AAV2 16, both AAV4 and AAV5 were able to transduce human glioblastoma xenografts implanted intracranially. CONCLUSIONS: In addition to the widely used AAV2 serotype, AAV4 and AAV5 serotypes may also be used to transduce biologically diverse glioma cell lines. They also penetrate and transduce solid human tumor tissue derived from patient biopsies. Therefore, the data presented here provide a proof of principle for developing AAV4 and AAV5 as treatment vehicles for human malignant gliomas.  相似文献   

8.
Antipathogen immune responses create a balance between immunity, tolerance, and immune evasion. However, during gene therapy most viral vectors are delivered in substantial doses and are incapable of expressing gene products that reduce the host's ability to detect transduced cells. Gene transfer efficacy is also modified by the in vivo transduction of dendritic cells (DC), which notably increases the immunogenicity of virions and vector-encoded genes. In this study, we evaluated parameters that are relevant to the use of canine adenovirus serotype 2 (CAV-2) vectors in the clinical setting by assaying their effect on human monocyte-derived DC (hMoDC). We compared CAV-2 to human adenovirus (HAd) vectors containing the wild-type virion, functional deletions in the penton base RGD motif, and the CAV-2 fiber knob. In contrast to the HAd type 5 (HAd5)-based vectors, CAV-2 poorly transduced hMoDC, provoked minimal upregulation of major histocompatibility complex class I/II and costimulatory molecules (CD40, CD80, and CD86), and induced negligible morphological changes indicative of DC maturation. Functional maturation assay results (e.g., reduced antigen uptake; tumor necrosis factor alpha, interleukin-1beta [IL-1beta], gamma interferon [IFN-gamma], IL-10, IL-12, and IFN-alpha/beta secretion; and stimulation of heterologous T-cell proliferation) were also significantly lower for CAV-2. Our data suggested that this was due, in part, to the use of an alternative receptor and a block in vesicular escape. Additionally, HAd5 vector-induced hMoDC maturation was independent of the aforementioned cytokines. Paradoxically, an HAd5/CAV-2 hybrid vector induced the greatest phenotypical and functional maturation of hMoDC. Our data suggest that CAV-2 and the HAd5/CAV-2 vector may be the antithesis of Adenoviridae immunogenicity and that each may have specific clinical advantages.  相似文献   

9.
Adenovirus type 5 (Ad5)-based vectors have been used in clinical trials for glioblastoma treatment, but the capacity of Ad5 to infect human glioma cells was questioned. Seeking to improve the adenovirus transduction, we tested four Ad5-based vectors differing only in their fiber gene on permanent and short-term cultures of glioblastoma cells. A wild-type fiber Ad5 vector (Ad5.Luc) was compared to an RGD integrin-binding motif-containing fiber adenovirus (AdlucRGD) and the two fiber chimeras Ad5/3 and Ad5/35, with vector binding redirected to the Ad3 or Ad35 receptor, respectively. Compared to Ad5, the transduction of the tested short-term glioblastoma cultures with the vector Ad5/35.Luc, AdlucRGD and Ad5/3.Luc was enhanced by approximately 72%, approximately 13% and approximately 2%, respectively. To limit adenovirus spread, we aimed to develop conditionally replicative Ad5/35 vectors by targeting the expression of the essential E1 and E4 genes; in addition, some vectors had the E1Delta24 deletion. We analyzed eleven promoters for their activity in glioblastoma cells and determined the specificity of eight replicative adenovirus vectors in vitro. We evaluated the most promising vectors with E1/E4 under the control of the GFAP/Ki67 or E2F-1/COX-2 promoters, and the native Ad5 or the chimeric Ad5/35 fiber for their antineoplastic activity in a subcutaneous and intracranial glioblastoma xenograft model. Animals treated with the Ad5/35-based vectors showed significantly smaller tumors and longer survival than those treated with the homologous Ad5 vectors; no significant toxicity was observed in the intracranial model. Our data suggest that Ad5/35-based vectors are promising tools for glioblastoma treatment.  相似文献   

10.
The deployment of adenovirus serotype 5 (Ad5)-based vectors is hampered by preexisting immunity. When such vectors are delivered intravenously, hepatocyte transduction is mediated by the hexon-coagulation factor X (FX) interaction. Here, we demonstrate that human sera efficiently block FX-mediated cellular binding and transduction of Ad5-based vectors in vitro. Neutralizing activity correlated well with the ability to inhibit Ad5-mediated liver transduction, suggesting that prescreening patient sera in this manner accurately predicts the efficacy of Ad5-based gene therapies. Neutralization in vitro can be partially bypassed by pseudotyping with Ad45 fiber protein, indicating that a proportion of neutralizing antibodies are directed against the Ad5 fiber.  相似文献   

11.
BACKGROUND: Malignant gliomas remain refractory to Ad5-mediated gene therapy due to deficiency of the coxsackie adenovirus receptor on tumor cells. The purpose of this study was to evaluate whether changes in adenoviral tropism can enhance gene transfer in the context of malignant glioma. METHODS: We have identified several receptors that are over-expressed on tumor cells and created a series of pseudotyped Ad5 vectors that recognize these receptors: Ad5-RGD which binds alpha(v)beta3/alpha(v)beta5 integrins; Ad5/3 which contains adenovirus serotype 3 knob and binds to CD46; Ad5-Sigma which incorporates the reovirus sigma knob and binds to junctional adhesion molecule-1; and Ad5-pk7 which contains the polylysine motif and binds heparan sulfate proteoglycans. We also investigated the Ad5-CAV1 vector, which contains the knob of canine adenovirus type 1, a virus previously shown to infect glioma via an unknown mechanism. In this study, we compared these modified vectors for their ability to promote the expression of luciferase transgene both in vitro and in vivo. RESULTS: Our results indicate that all five modified vectors attained higher mean luciferase activity vs. control. Among them, Ad5-CAV1 and Ad5-pk7 attained the highest transduction efficiency independent of different tumor lines or infection time. Ad5-Sigma and Ad5-pk7 also demonstrated the least nonspecific infection in normal human astrocytes. Most importantly, Ad5-pk7 achieved 1000-fold increased transgene expression in human glioma xenografts in vivo. CONCLUSIONS: These results indicate that modifications of adenoviral tropism can enhance gene transfer in tumors that are poorly susceptible to adenoviral vectors and warrant further development of Ad5-pk7 for glioma gene therapy.  相似文献   

12.
Recombinant adenovirus serotype 5 (Ad5) vectors have been studied extensively in preclinical gene therapy models and in a range of clinical trials. However, innate immune responses to adenovirus vectors limit effectiveness of Ad5 based therapies. Moreover, extensive pre‐existing Ad5 immunity in human populations will likely limit the clinical utility of adenovirus vectors, unless methods to circumvent neutralizing antibodies that bind virus and block target cell transduction can be developed. Furthermore, memory T cell and humoral responses to Ad5 are associated with increased toxicity, raising safety concerns for therapeutic adenovirus vectors in immunized hosts. Most preclinical studies have been performed in naïve animals; although pre‐existing immunity is among the greatest hurdles for adenovirus therapies, it is also one of the most neglected experimentally. Here we summarize findings using adenovirus vectors in naïve animals, in Ad‐immunized animals and in clinical trials, and review strategies proposed to overcome innate immune responses and pre‐existing immunity. J. Cell. Biochem. 108: 778–790, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Common human adenovirus (Ad) vectors are derived from serotype 2 or 5, which use the coxsackie-adenovirus receptor (CAR) as their primary cell receptor. We investigated the receptor usage of mouse adenovirus type 1 (MAV-1), which in vivo is characterized by a pronounced endothelial cell tropism. Alignment of the fiber knob sequences of MAV-1 and those of CAR-using adenoviruses, revealed that amino acid residues, critical for interaction with CAR, are not conserved in the MAV-1 fiber knob. Attachment of MAV-1 to Chinese hamster ovary (CHO) cells was not increased by stable transfection with mouse CAR, whereas the binding efficiency of Ad2 was 20-fold higher in the mouse CAR-transfectant compared to the wild type cells. Also, purified fiber knob of Ad5, which is interchangeable with the Ad2 fiber knob, did not compete with MAV-1 for receptor binding, indicating that MAV-1 binds to a receptor different from CAR. These results support further exploration of an MAV-1-derived vector as a potential vehicle for gene delivery to cell types which are not efficiently transduced by human adenovirus vectors.  相似文献   

14.
为了探索通过血液系统利用重组腺病毒载体的方法,以中国猕猴为动物模型,以复制缺陷型人5型腺病毒(human adenovirus serotype 5,HAd5)为载体携带报告基因在体外直接感染外周血单个核细胞(peripheral bloodmononuclear cells,PBMC).首先对HAd5在体外感染PBMC的条件进行优化,证实离心力可提高HAd5的感染效率;细胞分群结果表明HAd5特异感染PBMC中的CD14 单核细胞,仅感染小部分自然杀伤细胞,但几乎不感染T淋巴细胞和B淋巴细胞.首次发现:猕猴体内预先存在的抗HAd5中和抗体滴度越高,其单核细胞在体外对HAd5的易感性越强.这种现象将拓宽基于腺病毒载体的基因治疗和疫苗的临床应用范围,尤其是对预先存在腺病毒中和抗体的人群更具意义,为探索更方便有效的基因治疗和疫苗研究带来新的思考.  相似文献   

15.
Success in resolving hepatitis C virus (HCV) infection has been correlated to vigorous, multispecific, and sustained CD8(+) T-cell response in humans and chimpanzees. The efficacy of inducing T-cell-mediated immunity by recombinant serotype 5 adenovirus vector has been proven in many animal models of infectious diseases, but its immunogenicity can be negatively influenced by preexisting immunity against the vector itself. To evaluate the less prevalent adenovirus serotype 6 (Ad6) as an alternative vector for and HCV vaccine development, we have generated serotype 5 and 6 adenoviral vectors directing expression of the nonstructural region of HCV (MRKAd5-NSmut and MRKAd6-NSmut). Immunogenicity studies in mice showed that the two vectors induced comparable T-cell responses but that only MRKAd6-NSmut was not suppressed in the presence of anti-Ad5 immunity. In contrast, preexisting anti-Ad5 immunity dramatically blunted the immunogenicity of the serotype 5-based HCV vector. Furthermore, MRKAd6-NSmut showed equivalent potency, breadth, and longevity of HCV-specific T-cell responses in rhesus macaques as the corresponding Ad5-based vector over a wide range of doses and was capable of boosting DNA-primed animals even if administered at low doses. These data support the use of the MRKAd6-NSmut for anti-HCV immunotherapy and, more generally, for the Ad6 serotype as a better genetic vaccine vehicle than Ad5.  相似文献   

16.
Gene transfer vectors containing adenovirus (Ad) serotype 35 (Ad35) fibers have shown promise for cancer and stem cell gene therapy. In this study, we attempted to improve the in vitro and in vivo infection properties of these vectors by increasing their affinity to the Ad35 fiber receptor CD46. We constructed Ad vectors containing either the wild-type Ad35 fiber knob (Ad5/35) or Ad35 knob mutants with 4-fold- and 60-fold-higher affinity to CD46 (Ad5/35+ and Ad5/35++, respectively). In in vitro studies with cell lines, the higher affinities of Ad5/35+ and Ad5/35++ to CD46 did not translate into correspondingly higher transduction efficiencies, regardless of the CD46 receptor density present on cells. However, in vivo, in a mouse model with preestablished CD46(high) liver metastases, intravenous injection of Ad5/35++ resulted in more-efficient tumor cell transduction. We conclude that Ad5/35 vectors with increased affinity to CD46 have an advantage in competing with non-CD46-mediated sequestration of vector particles after intravenous injection.  相似文献   

17.
The gene therapy field is currently limited by the lack of vehicles that permit efficient gene delivery to specific cell or tissue subsets. Native viral vector tropisms offer a powerful platform for transgene delivery but remain nonspecific, requiring elevated viral doses to achieve efficacy. In order to improve upon these strategies, our group has focused on genetically engineering targeting domains into viral capsid proteins, particularly those based on adenovirus serotype 5 (Ad5). Our primary strategy is based on deletion of the fiber knob domain, to eliminate broad tissue specificity through the human coxsackie-and-adenovirus receptor (hCAR), with seamless incorporation of ligands to re-direct Ad tropism to cell types that express the cognate receptors. Previously, our group and others have demonstrated successful implementation of this strategy in order to specifically target Ad to a number of surface molecules expressed on immortalized cell lines. Here, we utilized phage biopanning to identify a myeloid cell-binding peptide (MBP), with the sequence WTLDRGY, and demonstrated that MBP can be successfully incorporated into a knob-deleted Ad5. The resulting virus, Ad.MBP, results in specific binding to primary myeloid cell types, as well as significantly higher transduction of these target populations ex vivo, compared to unmodified Ad5. These data are the first step in demonstrating Ad targeting to cell types associated with inflammatory disease.  相似文献   

18.
The immunogenicity of adenovirus serotype 5 (Ad5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against the hexon hypervariable regions (HVRs). We previously reported that replacing all seven HVRs with those from the rare serotype virus Ad48 resulted in a chimeric Ad5HVR48(1-7) vector that largely evaded preexisting Ad5 immunity in mice and rhesus monkeys. In this study, we evaluated the extent to which Ad5-specific NAbs are directed against various HVRs. We constructed partial HVR-chimeric Ad5 vectors with only a subset of HVRs exchanged, and we utilized these vectors in both NAb assays and murine immunogenicity studies with and without baseline Ad5 immunity. Our results demonstrate that Ad5-specific NAbs target multiple HVRs, suggesting that replacing all HVRs is required to optimize evasion of anti-Ad5 immunity. These data have important implications for the development of novel vectors for both vaccines and gene therapy.  相似文献   

19.
Adenovirus vectors based on human serotype 5 (Ad5) have successfully been used as gene transfer vectors in many gene therapy-based approaches to treat disease. Despite their widespread application, many potential therapeutic applications are limited by the widespread prevalence of vector-neutralizing antibodies within the human population and the inability of Ad5-based vectors to transduce important therapeutic target cell types. In an attempt to circumvent these problems, we have developed Ad vectors based on human Ad serotype 11 (Ad11), since the prevalence of neutralizing antibodies to Ad11 in humans is low. E1-deleted Ad11 vector genomes were generated by homologous recombination in 293 cells expressing the Ad11-E1B55K protein or by recombination in Escherichia coli. E1-deleted Ad11 genomes did not display transforming activity in rodent cells. Transduction of primary human CD34+ hematopoietic progenitor cells and immature dendritic cells was more efficient with Ad11 vectors than with Ad5 vectors. Thirty minutes after intravenous injection into mice that express one of the Ad11 receptors (CD46), we found, in a pattern and at a level comparable to what is found in humans, Ad11 vector genomes in all analyzed organs, with the highest amounts in liver, lung, kidney, and spleen. Neither Ad11 genomes nor Ad11 vector-mediated transgene expression were, however, detected at 72 h postinfusion. A large number of Ad11 particles were also found to be associated with circulating blood cells. We also discovered differences in in vitro transduction efficiencies and in vivo biodistributions between Ad11 vectors and chimeric Ad5 vectors possessing Ad11 fibers, indicating that Ad11 capsid proteins other than fibers influence viral infectivity and tropism. Overall, our study provides a basis for the application of Ad11 vectors for in vitro and in vivo gene transfer and for gaining an understanding of the factors that determine Ad tropism.  相似文献   

20.
One of the objectives in adenovirus (Ad) vector development is to target gene delivery to specific cell types. Major attention has been given to modification of the Ad fiber knob, which is thought to determine virus tropism. However, among the human Ad serotypes with different tissue tropisms, not only the knob but also the length of the fiber shaft domain varies significantly. In this study we attempted to delineate the role of fiber length in coxsackievirus-adenovirus receptor (CAR)- and non-CAR-mediated infection. A series of Ad serotype 5 (Ad5) capsid-based vectors containing long or short fibers with knob domains derived from Ad5, Ad9, or Ad35 was constructed and tested in adsorption, internalization, and transduction studies. For Ad5 or Ad9 knob-possessing vectors, a long-shafted fiber was critical for efficient adsorption/internalization and transduction of CAR/alphav integrin-expressing cells. Ad5 capids containing short CAR-recognizing fibers were affected in cell adsorption and infection. In contrast, for the chimeric vectors possessing Ad35 knobs, which enter cells by a CAR/alphav integrin-independent pathway, fiber shaft length had no significant influence on binding or infectibility on tested cells. The weak attachment of short-shafted Ad5 or Ad9 knob-possessing vectors seems to be causally associated with a charge-dependent repulsion between Ad5 capsid and acidic cell surface proteins. The differences between short- and long-shafted vectors in attachment or infection were abrogated by preincubation of cells with polycations. This study demonstrates that the fiber-CAR interaction is not the sole determinant for tropism of Ad vectors containing chimeric fibers. CAR- and alphav integrin-mediated infections are influenced by other factors, including the length of the fiber shaft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号