首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects   总被引:1,自引:0,他引:1  
Aromatic hydrocarbons contaminate many environments worldwide, and their removal often relies on microbial bioremediation. Whereas aerobic biodegradation has been well studied for decades, anaerobic hydrocarbon biodegradation is a nascent field undergoing rapid shifts in concept and scope. This review presents known metabolic pathways used by microbes to degrade aromatic hydrocarbons using various terminal electron acceptors; an outline of the few catabolic genes and enzymes currently characterized; and speculation about current and potential applications for anaerobic degradation of aromatic hydrocarbons.  相似文献   

2.
Four samples of natural ecosystems and one sample from an activated sludge treatment plant were mixed together and progressively adapted to alternating aerobic/anoxic phases in the presence of nitrate in order to enrich the microflora in aerobic denitrifiers. Aerobic denitrifying performances of this mixed ecosystem at various dissolved oxygen concentrations and various carbon–nitrogen loads were evaluated and compared to those obtained with the aerobic denitrifier Microvirgula aerodenitrificans. The consortium and the pure strain exhibited an aerobic denitrifying activity at air saturation conditions (7 mg dissolved oxygen l–1), i.e. there was co-respiration of the two electron acceptors with significant specific nitrate reduction rates. Dissolved oxygen concentrations had no influence on denitrifying performances above a defined threshold: 0.35 mg l–1 for the consortium and 4.5 mg l–1 for M. aerodenitrificans respectively. Under these thresholds, decreasing the dissolved oxygen concentrations enhanced the denitrifying activity of each culture. The higher the carbon and nitrogen loads, the higher the performance of the aerobic denitrifying ecosystem. However, for M. aerodenitrificans, the nitrate reduction percentage was affected more by variations in nitrogen load than in carbon load. Received: 6 December 1999 / Received revision: 8 March 2000 / Accepted: 10 March 2000  相似文献   

3.
Intrinsic bioremediation in a solvent-contaminated alluvial groundwater   总被引:1,自引:0,他引:1  
An industrial site contaminated with a mixture of volatile organic compounds in its subsurface differed from previously reported locations in that the contamination consisted of a mixture of chlorinated, brominated, and non-halogenated aromatic and aliphatic solvents in an alluvial aquifer. The source area was adjacent to a river. Of the contaminants present in the aquifer, benzene, toluene, and chlorobenzene (BTC) were of primary concern. Studies of the physical, chemical, and microbiological characteristics of site groundwater were conducted. The studies concentrated on BTC, but also addressed the fate of the other aquifer VOCs. Gas chromatographic analyses performed on laboratory microcosms demonstrated that subsurface microorganisms were capable of BTC degradation. Mineralization of BTC was demonstrated by the release of 14CO2 from radiolabelled BTC. In the field, distribution patterns of nutrients and electron acceptors were consistent with expression of in situ microbial metabolic activity: methane, conductivity, salinity and o-phosphate concentrations were all positively correlated with contaminant concentration; while oxidation-reduction potential, nitrate, dissolved oxygen and sulfate concentrations were negatively correlated. Total aerobes, aerotolerant anaerobes, BTC-specific degraders, and acridine orange direct microscopic microorganism counts were strongly and positively correlated with field contaminant concentrations. The relative concentrations of benzene and toluene were lower away from the core of the plume compared to the less readily metabolized compound, chlorobenzene. Hydrodynamic modeling of electron-acceptor depletion conservatively estimated that 450 kg of contaminant have been removed from the subsurface yearly. Models lacking a biodegradation term predicted that 360 kg of contaminant would reach the river annually, which would result in measurable contaminant concentrations. River surveillance, however, has only rarely detected these compounds in the sediment and then only at trace concentrations. Thus, the combination of field modeling, laboratory studies, and site surveillance data confirm that significant in situ biodegradation of the contaminants has occurred. These studies establish the presence of intrinsic bioremediation of groundwater contaminants in this unusual industrial site subsurface habitat. Received 01 December 1995/ Accepted in revised form 27 July 1996  相似文献   

4.
Nitrate reduction by Citrobacter diversus under aerobic environment   总被引:17,自引:0,他引:17  
A new aerobic denitrifier, Citrobacter diversus, was isolated from both nitrification and denitrification sludge. To monitor the variation in the concentration of nitrogen oxides, aerobic denitrification by C. diversus was carried out in a batch reactor. When the nitrate concentration was greater than 180 mg N l−1, the nitrate reduction rate became stable. The effect of the C/N ratio on the denitrification activity was also investigated. The results showed that the optimum denitrification activity was obtained when the C/N ratio was 4–5. The range of the C/N ratio was higher than that for traditional anoxic denitrification. The effect of the dissolved oxygen concentration was further studied; and it was found that the range of dissolved oxygen concentrations, both for specific growth rates and for specific denitrification rates, was 2–6 mg−1. From these results, it can be concluded that both the concentration of dissolved oxygen and the C/N ratio are key factors in the aerobic denitrification by C. diversus. Received: 23 November 1999 / Received revision: 4 February 2000 / Accepted: 13 February 2000  相似文献   

5.
Petroleum contamination of soils and sediments is a national concern due to the toxicity and recalcitrance of the aromatic components in the absence of oxygen. Oxygen can be introduced into the anaerobic zone of a contaminated environment by injection of gaseous O2 to stimulate biodegradation, but this process is costly and inefficient. Other more soluble electron acceptors, such as nitrate or sulfate, may alternatively be used, but the rates of oxidation are slow and not all hydrocarbons are degraded. Here we report that chlorite dismutation by (per)chlorate-reducing bacteria may offer an alternative source of oxygen for contaminant degradation. The dismutation of chlorite is an intermediate step in the microbial reduction of chlorate. Chlorite dismutation can stimulate the rapid oxidation of aromatic hydrocarbons such as benzene or naphthalene in anoxic environments by supplying oxygen to the aerobic hydrocarbon-oxidizing population. Benzene, which is extremely recalcitrant under anaerobic conditions, is rapidly degraded to CO2 even in pristine soils with no prior exposure to hydrocarbons. The (per)chlorate-reducing bacteria grew rapidly in a broad diversity of environmental conditions and survived in significant numbers over the long term in inoculated sediments. In addition, the (per)chlorate-reducer Dechlorimonas agitatus strain CKB could survive starvation, forming a stable ultramicrobacterium with a cell size less than one-tenth that of the vegetative cells. Such ultramicrobacterial cells can readily pass through small pore sizes of subsurface environments preventing near-well plugging in bioaugmentation strategies. The ultramicrobacterial cells formed could readily be recovered as vegetative cells and could be used to stimulate hydrocarbon oxidation after only 68 hours recovery. Our results suggest that chlorite in the presence of (per)chlorate-reducing bacteria may be used as an effective in situ remediation strategy for petroleum contamination.  相似文献   

6.
Microbial (per)chlorate reduction is a unique process in which molecular oxygen is formed during the dismutation of chlorite. The oxygen thus formed may be used to degrade hydrocarbons by means of oxygenases under seemingly anoxic conditions. Up to now, no bacterium has been described that grows on aliphatic hydrocarbons with chlorate. Here, we report that Pseudomonas chloritidismutans AW-1T grows on n-alkanes (ranging from C7 until C12) with chlorate as electron acceptor. Strain AW-1T also grows on the intermediates of the presumed n-alkane degradation pathway. The specific growth rates on n-decane and chlorate and n-decane and oxygen were 0.5 ± 0.1 and 0.4 ± 0.02 day−1, respectively. The key enzymes chlorate reductase and chlorite dismutase were assayed and found to be present. The oxygen-dependent alkane oxidation was demonstrated in whole-cell suspensions. The strain degrades n-alkanes with oxygen and chlorate but not with nitrate, thus suggesting that the strain employs oxygenase-dependent pathways for the breakdown of n-alkanes.  相似文献   

7.
好氧反硝化微生物学机理与应用研究进展   总被引:3,自引:0,他引:3  
郭焱  张召基  陈少华 《微生物学通报》2016,43(11):2480-2487
近年来,关于好氧反硝化过程的研究主要集中在三个方面:分别是好氧反硝化菌株的分离和脱氮性能表征,好氧反硝化微生物的应用潜力分析,以及好氧反硝化过程的机理研究。好氧反硝化菌株分布范围广泛,可从多种环境中分离得到,种属以Pseudomonas sp.、Alcaligenes sp.和Paracoccus sp.为主。好氧反硝化菌株及菌群在实验室条件下表现出优良的耐冷、耐盐特性,并具有可降解毒性有机物及N_2O减排的潜力。关于好氧反硝化过程的机理研究表明,虽然硝酸盐作为电子受体的竞争力比氧气弱,但反硝化作为辅助电子传递途径,可提高产能效率,防止NAD(P)H的过量积累。因此,硝酸盐可与氧气同时参与微生物的新陈代谢,即发生好氧反硝化现象。未来除了继续分离更新更好的好氧反硝化菌株外,应加强对好氧反硝化机理及实际生物强化方面的研究。  相似文献   

8.
A prerequisite for the mineralization (complete biodegradation) of many azo dyes is a combination of reductive and oxidative steps. In this study, the biodegradation of two azo dyes, 4-phenylazophenol (4-PAP) and Mordant Yellow 10 (4-sulfophenylazo-salicylic acid; MY10), was evaluated in batch experiments where anaerobic and aerobic conditions were integrated by exposing anaerobic granular sludge to oxygen. Under these conditions, the azo dyes were reduced, resulting in a temporal accumulation of aromatic amines. 4-Aminophenol (4-AP) and aniline were detected from the reduction of 4-PAP. 5-Aminosalicylic acid (5-ASA) and sulfanilic acid (SA) were detected from the reduction of MY10. Subsequently, aniline was degraded further in the presence of oxygen by the facultative aerobic bacteria present in the anaerobic granular sludge. 5-ASA and SA were also degraded, if inocula from aerobic enrichment cultures were added to the batch experiments. Due to rapid autoxidation of 4-AP, no enrichment culture could be established for this compound. The results of this study indicate that aerobic enrichment cultures developed on aromatic amines combined with oxygen-tolerant anaerobic granular sludge can potentially be used to completely biodegrade azo dyes under integrated anaerobic/aerobic conditions. Received: 16 September 1998 / Received revision: 14 December 1998 / Accepted: 21 December 1998  相似文献   

9.
Anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor has been reported for various environments, including freshwater habitats, and also, nitrate and nitrite were recently shown to act as electron acceptors for methane oxidation in eutrophic freshwater habitats. Radiotracer experiments with sediment material of Lake Constance, an oligotrophic freshwater lake, were performed to follow 14CO2 formation from 14CH4 in sediment incubations in the presence of different electron acceptors, namely, nitrate, nitrite, sulfate, or oxygen. Whereas 14CO2 formation without and with sulfate addition was negligible, addition of nitrate increased 14CO2 formation significantly, suggesting that AOM could be coupled to denitrification. Nonetheless, denitrification-dependent AOM rates remained at least 1 order of magnitude lower than rates of aerobic methane oxidation. Using molecular techniques, putative denitrifying methanotrophs belonging to the NC10 phylum were detected on the basis of the pmoA and 16S rRNA gene sequences. These findings show that sulfate-dependent AOM was insignificant in Lake constant sediments. However, AOM can also be coupled to denitrification in this oligotrophic freshwater habitat, providing first indications that this might be a widespread process that plays an important role in mitigating methane emissions.  相似文献   

10.
We used geochemical analyses of groundwater and laboratory-incubated microcosms to investigate the physiological responses of naturally occurring microorganisms to coal-tar-waste constituents in a contaminated aquifer. Waters were sampled from wells along a natural hydrologic gradient extending from uncontaminated (1 well) into contaminated (3 wells) zones. Groundwater analyses determined the concentrations of carbon and energy sources (pollutants or total organic carbon), final electron acceptors (oxygen, nitrate, sulfate), and metabolic byproducts (dissolved inorganic carbon [DIC], alkalinity, methane, ferrous iron, sulfide, Mn2+). In the contaminated zone of the study site, concentrations of methane, hydrogen, alkalinity, and DIC were enhanced, while dissolved oxygen and nitrate were depleted. Field-initiated biodegradation assays using headspace-free serum bottle microcosms filled with groundwater examined metabolism of the ambient organic contaminants (naphthalene, 2-methylnaphthalene, benzothiophene, and indene) by the native microbial communities. Unamended microcosms from the contaminated zone demonstrated the simultaneous degradation of several coal-tar-waste constituents at the in situ temperature (10°C). Lag phases prior to the onset of biodegradation indicated the prevalence of both aerobic and anaerobic conditions in situ. Electron acceptor-amended microcosms from the most contaminated well waters demonstrated only aerobic naphthalene degradation. Collectively, the geochemical and microbial evidence show that biodegradation of coal-tar-waste constituents occurs via both aerobic and anaerobic terminal electron accepting processes at this site.  相似文献   

11.
We conducted a laboratory study at 10 °C on the biological decontamination of the waste water from a garage and car-wash that was contaminated with anionic surfactants (57 mg l−1) and fuel oil (184 mg hydrocarbons l−1). The indigenous microorganisms degraded both contaminants efficiently after biostimu- lation by an inorganic nutrient supply. After 7 days at 10 °C, the residual contaminations were 11 mg anionic surfactants l−1 and 26 mg hydrocarbons l−1. After 35 days, only the anionic surfactants had been further reduced to 3 mg l−1. Bioaugmentation of the unfertilized waste water with a cold-adapted inoculum, able to degrade both hydrocarbons (diesel oil) and anionic surfactants (sodium dodecyl sulphate), resulted in a significant increase of the hydrocarbon biodegradation during the first 3 days of decontamination, whereas biodegradation of anionic surfactants was inhibited during the first 21 days following inoculation. Bioaugmentation of the nutrient-amended waste water was without any effect. Received: 14 November 1997 / Accepted: 29 November 1997  相似文献   

12.
A novel hollow-fiber membrane remediation technology developed in our laboratory for hydrogen delivery to the subsurface was shown to support the dechlorination of perchloroethene (PCE) to cis-dichloroethene. In previous research, the presence of nitrate or sulfate has been observed to inhibit biological reductive dechlorination. In this study hollow-fiber membranes were used to supply hydrogen to a mixed culture to investigate whether adequate hydrogen could be added to support dechlorination in the presence of alternative electron acceptors. By continuously supplying hydrogen through the membrane, the hydrogen concentrations within the reactor were maintained well above the hydrogen thresholds reported to sustain reductive dechlorination. It was hypothesized that by preventing nitrate and sulfate reducers from decreasing hydrogen concentrations to below the dehalorespirer threshold, the inhibition of PCE dechlorination by nitrate and sulfate might be avoided and dechlorination could be stimulated more effectively. Enough membrane-fed hydrogen was supplied to completely degrade the alternative electron acceptors present and initiate dechlorination. Nevertheless, nitrate and sulfate inhibited dechlorinating activity even when hydrogen was not limiting. This suggests that competition for hydrogen was not responsible for the observed inhibition. Subsequent microcosm experiments demonstrated that the denitrification intermediate nitrous oxide was inhibitory at 13 µM.  相似文献   

13.
Aerobic denitrification: a controversy revived   总被引:37,自引:0,他引:37  
During studies on the denitrifying mixotroph, Thiosphaera pantotropha, it has been found that this organism is capable of simultaneously utilizing nitrate and oxygen as terminal electron acceptors in respiration. This phenomenon, termed aerobic denitrification, has been found in cultures maintained at dissolved oxygen concentrations up to 90% of air saturation.The evidence for aerobic denitrification was obtained from a number of independant experiments. Denitrifying enzymes were present even in organisms growing aerobically without nitrate. Aerobic yields on acetate were higher (8.1 g protein/mol) without than with (6.0 g protein/mol) nitrate, while the anaerobic yield with nitrate was even lower (4 g protein/mol). The maximum specific growth rate of Tsa. pantotropha was higher (0.34 h-1) in the presence of both oxygen (>80% air saturation) and nitrate than in similar cultures not supplied with nitrate (0.27 h-1), indicating that the rate of electron transport to oxygen was limiting. This was confirmed by oxygen uptake experiments which showed that although the rate of respiration on acetate was not affected by nitrate, the total oxygen uptake was reduced in its presence. The original oxygen uptake could be restored by the addition of denitrification inhibitors.Dedicated to Professor Dr. H.-G. Schlegel on the occasion of his 60th birthday  相似文献   

14.
微生物降解石油烃的功能基因研究进展   总被引:4,自引:3,他引:1  
微生物对石油烃的降解在自然衰减去除土壤和地下水石油烃污染的过程中发挥了重要作用。微生物通过其产生的一系列酶来利用和降解这类有机污染物,其中,编码关键降解酶的基因称为功能基因。功能基因可作为生物标志物用于分析环境中石油烃降解基因的多样性。因此,研究石油降解功能基因是分析土著微生物群落多样性、评价自然衰减潜力与构建基因工程菌的重要基础。本文主要介绍了烷烃和芳香烃在有氧和无氧条件下的微生物降解途径,重点总结了烷烃和芳香烃降解的主要功能基因及其作用,包括参与羟化作用的单加氧酶和双加氧酶基因、延胡索酸加成反应的琥珀酸合酶基因以及中心中间产物的降解酶基因等。  相似文献   

15.
The aim of this work was to remove nitrate-N and organic pollutants from wastewater of the dairy industry by denitrification. An artificially prepared wastewater, containing 250 mg/l nitrate-N and 1.5 g/l whey powder, was completely denitrified with removal of 90%–93% of the chemical oxygen demand (COD) of the whey powder by suspended or immobilized mixed cultures and by a suspended or immobilized pure culture that was isolated from the mixed culture inoculum. For the above COD/nitrate-N ratio of 6:1, the results indicated that the organic compounds of the wastewater served as electron donors for complete denitrification and that there was no need to add an external carbon source. In batch denitrification assays the suspended or immobilized mixed cultures proved to be more active and reacted faster than the isolated pure cultures. In continuous denitrification processes with immobilized pure or mixed cultures, the alginate beads, used for immobilization, were not stable for more than 12 days of incubation. The mixed free cultures removed the nitrate-N and COD continuously with no change of their activity for at least 15 days at an optimum hydraulic retention time of 0.27 days with a loading rate of 900 mg nitrate-N l−1 day−1. Received: 13 October 1997 /  Received revision: 16 December 1997 / Accepted: 19 December 1997  相似文献   

16.
Although aerobic degradation of ethylene glycol is well documented, only anaerobic biodegradation via methanogenesis or fermentation has been clearly shown. Enhanced ethylene glycol degradation has been demonstrated by microorganisms in the rhizosphere of shallow-rooted plants such as alfalfa and grasses where conditions may be aerobic, but has not been demonstrated in the deeper rhizosphere of poplar or willow trees where conditions are more likely to be anaerobic. This study evaluated ethylene glycol degradation under nitrate-, and sulphate-reducing conditions by microorganisms from the rhizosphere of poplar and willow trees planted in the path of a groundwater plume containing up to 1.9 mol l−1 (120 g l−1) ethylene glycol and, the effect of fertilizer addition when nitrate or sulphate was provided as a terminal electron acceptor (TEA). Microorganisms in these rhizosphere soils degraded ethylene glycol using nitrate or sulphate as TEAs at close to the theoretical stoichiometric amounts required for mineralization. Although the added nitrate or sulphate was primarily used as TEA, TEAs naturally present in the soil or CO2 produced from ethylene glycol degradation were also used, demonstrating multiple TEA usage. Anaerobic degradation produced acetaldehyde, less acetic acid, and more ethanol than under aerobic conditions. Although aerobic degradation rates were faster, close to 100% disappearance was eventually achieved anaerobically. Degradation rates under nitrate-reducing conditions were enhanced upon fertilizer addition to achieve rates similar to aerobic degradation with up to 19.3 mmol (1.20 g) of ethylene glycol degradation l−1 day−1 in poplar soils. This is the first study to demonstrate that microorganisms in the rhizosphere of deep rooted trees like willow and poplar can anaerobically degrade ethylene glycol. Since anaerobic biodegradation may significantly contribute to the phytoremediation of ethylene glycol in the deeper subsurface, the need for “pump and treat” or an aerobic treatment would be eliminated, hence reducing the cost of treatment.  相似文献   

17.
Enhanced anaerobic biodegradation of groundwater contaminated by fuel hydrocarbons has been evaluated at a field experiment conducted at the Naval Weapons Station, Seal Beach, California. This experiment included the establishment of three different remediation zones in situ: one zone was augmented with sulfate, one was augmented with sulfate and nitrate, and the third was unaugmented. This enables a comparison of hydrocarbon biodegradation under sulfate-reducing, sequential denitrifying/sulfate-reducing, and methanogenic conditions, respectively. In general, the results from the field experiment are: (1) Certain fuel hydrocarbons were removed preferentially over others, but the order of preference is dependent upon the geochemical conditions; and (2) In the zones that were augmented with sulfate and/or nitrate, the added electron acceptors were consumed quickly, indicating that enhancement via electron acceptor injection accelerates the biodegradation process. More specifically, in the sulfate-reducing zone, sulfate was utilized with an apparent first-order rate coefficient of approximately 0.1 day-1. In the combined denitrifying/sulfate-reducing zone, nitrate was utilized preferentially over sulfate, with an apparent first-order rate coefficient of 0.1–0.6 day-1. However, the data suggest that slow sulfate utilization does occur in the presence of nitrate, i.e., the two processes are not strictly sequential. With regard to the aromatic BTEX hydrocarbons, toluene was preferentially removed under intrinsic conditions; biodegradation of benzene was slow if it occurred at all; augmentation with sulfate preferentially stimulated biodegradation of o-xylene; and ethylbenzene appeared recalcitrant under sulfate-reducing conditions but readily degradable under denitrifying conditions.  相似文献   

18.
Shim H  Hwang B  Lee SS  Kong SH 《Biodegradation》2005,16(4):319-327
Pseudomonas putida and Pseudomonas fluorescens present as a coculture were studied for their abilities to degrade benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX) under various growth conditions. The coculture effectively degraded various concentrations of BTEX as sole carbon sources. However, all BTEX compounds showed substrate inhibition to the bacteria, in terms of specific growth, degradation rate, and cell net yield. Cell growth was completely inhibited at 500mgl–1 of benzene, 600mgl–1 of o-xylene, and 1000mgl–1 of toluene. Without aeration, aerobic biodegradation of BTEX required additional oxygen provided as hydrogen peroxide in the medium. Under hypoxic conditions, however, nitrate could be used as an alternative electron acceptor for BTEX biodegradation when oxygen was limited and denitrification took place in the culture. The carbon mass balance study confirmed that benzene and toluene were completely mineralized to CO2 and H2O without producing any identifiable intermediate metabolites.  相似文献   

19.
Biodegradation can achieve complete and cost-effective elimination of aromatic pollutants through harnessing diverse microbial metabolic processes. Aromatics biodegradation plays an important role in environmental cleanup and has been extensively studied since the inception of biodegradation. These studies, however, are diverse and scattered; there is an imperative need to consolidate, summarize, and review the current status of aromatics biodegradation. The first part of this review briefly discusses the catabolic mechanisms and describes the current status of aromatics biodegradation. Emphasis is placed on monocyclic, polycyclic, and chlorinated aromatic hydrocarbons because they are the most prevalent aromatic contaminants in the environment. Among monocyclic aromatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene; phenylacetic acid; and structurally related aromatic compounds are highlighted. In addition, biofilms and their applications in biodegradation of aromatic compounds are briefly discussed. In recent years, various biomolecular approaches have been applied to design and understand microorganisms for enhanced biodegradation. In the second part of this review, biomolecular approaches, their applications in aromatics biodegradation, and associated biosafety issues are discussed. Particular attention is given to the applications of metabolic engineering, protein engineering, and “omics” technologies in aromatics biodegradation.  相似文献   

20.
Biotreatment experiments with solutions of autoxidized phenolic compounds as well as coal-conversion wastewater stored for 30 years and rich in humic matter were performed under nitrate-reducing, sulphate-reducing and methanogenic conditions. The removal of total organic carbon in fractions of different molecular mass and of monomeric phenolic compounds in the wastewater was determined. A comparison of biotransformation potentials and rates indicated a relationship between these aspects and the availability of electron acceptors in the system. The capacities of the microbial consortia increased significantly with the energy microorganisms could gain from their respective respiration process and can be expressed by the order: aerobic process – nitrate reduction – sulphate reduction – methanogenesis. Received: 25 April 1996 / Received revision: 23 July 1996 / Accepted: 5 August 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号