首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A survey of soil gases associated with gasoline stations on theSwan Coastal Plain of Western Australia has shown that 20% leak detectable amountsof petroleum. The fates of volatile hydrocarbons in the vadose zone at one contaminatedsite, and dissolved hydrocarbons in groundwater at another site were followed in anumber of studies which are herein reviewed. Geochemical evidence from a plume ofhydrocarbon-contaminated groundwater has shown that sulfate reduction rapidly developedas the terminal electron accepting process. Toluene degradation but not benzene degradationwas linked to sulfate reduction. The sulfate-reducing bacteria isolated from the plumerepresented a new species, Desulfosporosinus meridiei. Strains of the speciesdo not mineralise 14C-toluene in pure culture. The addition of large numbersof cells and sulfate to microcosms did stimulate toluene mineralisation but not benzenemineralisation. Attempts to follow populations of sulfate-reducing bacteria byphospholipid signatures, or Desulfosporosinus meridiei by FISH in the plume were unsuccessful, but fluorescently-labeled polyclonal antibodies were successfully used.In the vadose zone at a different site, volatile hydrocarbons were consumed in thetop 0.5 m of the soil profile. The fastest measured rate of mineralisation of 14C-benzenein soils collected from the most active zone (6.5 mg kg-1 day-1) could accountfor the majority of the flux of hydrocarbon vapour towards the surface. The studiesconcluded that intrinsic remediation by subsurface microbial populations in groundwateron the Swan Coastal Plain can control transport of aromatic hydrocarbon contamination,except for the transport of benzene in groundwater. In the vadose zone, intrinsicremediation by the microbial populations in the soil profile can contain the transportof aromatic hydrocarbons, provided the physical transport of gases, inparticular oxygen from the atmosphere, is not impeded by structures.  相似文献   

2.
Laboratory microcosm studies were conducted to estimate biodegradation rates for a mixture of five polycyclic aromatic hydrocarbon compounds (PAHs). Static microcosms were assembled using soil samples from two locations collected at a No. 2 fuel oil-contaminated site in the Atlantic Coastal Plain of Virginia. In microcosms from one location, five PAHs (acenaphthene, fluorene, phenanthrene, pyrene, and benzo(b)fluoranthene) biodegraded at net first-order rates of 1.08, 1.45, 1.13, 1.11, and 1.12 yr?1, respectively. No observable lag period was noted and degradation in live microcosms ceased with the depletion of oxygen and sulfate after 125 days. In microcosms from a second location, net first-order biodegradation rates after an approximately 2-month lag period were 2.41, 3.28, and 2.98 yr?1 for fluorene, phenanthrene, and pyrene, respectively. Acenaphthene and benzo(b)fluoranthene mass loss rates in the live microcosms were not statistically different from mass loss rates in control microcosms. Stoichiometric mass balance calculations indicate that the dominant PAH mass loss mechanism was aerobic biodegradation, while abiotic losses (attributed to micropore diffusion and oxidative coupling) ranged from 15 to 33% and biotic losses from sulfate-reduction accounted for 7 to 10% of PAH mass loss. Stoichiometric equations that include biomass yield are presented for PAH oxidation under aerobic and sulfate-reducing conditions.  相似文献   

3.
Anaerobic degradation of fluorinated aromatic compounds   总被引:1,自引:0,他引:1  
Anaerobic enrichment cultures with sediment from an intertidal strait as inoculum were established under denitrifying, sulfate-reducing, iron-reducing and methanogenic conditions to examine the biodegradation of mono-fluorophenol and mono-fluorobenzoate isomers. Both phenol and benzoate were utilized within 2–6 weeks under all electron-accepting conditions. However, no degradation of the fluorophenols was observed within 1 year under any of the anaerobic conditions tested. Under denitrifying conditions, 2-fluorobenzoate and 4-fluorobenzoate were depleted within 84 days and 28 days, respectively. No loss of 3-fluorobenzoate was observed. All three fluorobenzoate isomers were recalcitrant under sulfate-reducing, iron-reducing, and methanogenic conditions. The degradation of the fluorobenzoate isomers under denitrifying conditions was examined in more detail using soils and sediments from different geographic regions around the world. Stable enrichment cultures were obtained on 2-fluorobenzoate or 4-fluorobenzoate with inoculum from most sites. Fluoride was released stoichiometrically, and nitrate reduction corresponded to the values predicted for oxidation of fluorobenzoate to CO2 coupled to denitrification. The 2-fluorobenzoate-utilizing and 4-fluorobenzoate-utilizing cultures were specific for fluorobenzoates and did not utilize other halogenated (chloro-, bromo-, iodo-) benzoic acids. Two denitrifying strains were isolated that utilized 2-fluorobenzoate and 4-fluorobenzoate as growth substrates. Preliminary characterization indicated that the strains were closely related to Pseudomonas stutzeri. Received: 1 September 1999 / Accepted in revised form: 30 September 1999  相似文献   

4.
The oxidation of benzene under sulfate-reducing conditions was examined in column and batch experiments under close to in situ conditions. Mass balances and degradation rates for benzene oxidation were determined in four sand and four lava granules filled columns percolated with groundwater from an anoxic benzene-contaminated aquifer. The stoichiometry of oxidized benzene, produced hydrogen carbonate and reduced sulfate correlated well with the theoretical equation for mineralization of benzene with sulfate as electron acceptor. Mean retention times of water in four columns were determined using radon (222Rn) as tracer. The retention times were used to calculate average benzene oxidation rates of 8–36 μM benzene day−1. Benzene-degrading, sulfide-producing microcosms were successfully established from sand material of all sand filled columns, strongly indicating that the columns were colonized by anoxic benzene-degrading microorganisms. In general, these data indicate a high potential for Natural Attenuation of benzene under sulfate-reducing conditions at the field site Zeitz. In spite of this existing potential to degrade benzene with sulfate as electron acceptor, the benzene plume at the field site is much longer than expected if benzene would be degraded at the rates observed in the column experiment, indicating that benzene oxidation under sulfate-reducing conditions is limited in situ.  相似文献   

5.

This study concerned the anaerobic treatment of five different industrial wastewaters with a diverse and complex chemical composition. The kinetics of biotransformation of this wastewater at different chemical oxygen demand (COD) were studied in a batch reactor. Wastewater from an amino acid producing industry (Fermex) and from a tank that received several types of wastewaters (collector) contained 0.83 g l−1 and 0.085 g l−1 sulfate, respectively. During the study period of 20 days, methane formation was observed in all types of wastewaters. Studies on COD biodegradation showed the reaction velocity was higher for Fermex wastewater and lower for collector wastewater, with values of 0.0022 h−1 and 0.0011 h−1, respectively. A lower methanogenic activity of 0.163 g CH4 day−1 g−1 volatile suspended solids (VSS) and 0.20 g CH4 day−1 g−1 VSS, respectively, was observed for paper producing and brewery wastewater. Adapted granular sludge showed the best biodegradation of COD during the 20-day period. The sulfate-reducing activity in pharmaceutical and collector wastewater was studied. A positive effect of sulfate-reducing activity on methanogenic activity was noted for both types of wastewaters, both of which contained sulfate ions. All reactions of methane generation for the tested industrial wastewaters were first-order. The results of this study suggest that the tested wastewaters are amenable to anaerobic treatment.

  相似文献   

6.
The degradation of diesel fuel, B20 blend and biodiesel in liquid cultures by a seven-member bacterial consortium was compared under conditions with full aeration or with limited aeration with nitrate added as main electron acceptor. Community dynamics was assessed employing real-time PCR and the ddCt method for relative quantification. Biodegradation rates increased with increasing biodiesel content, but were significantly reduced under conditions with nitrate. Despite large variations in biodegradation rates, magnitude changes in population numbers were typically observed only from zero to one order, regardless the type of fuel and electron acceptor. Only Comamonadaceae and Variovorax sp. distinctly preferred aerobic conditions, and during aerobic growth showed suppression as fuel contained more biodiesel. Thus, the consortium is relatively stable and most of the degraders can shift their metabolism from hydrocarbons to biodiesel. The stability of the consortium is of interest in the context of biodiesel-mediated biodegradation of petroleum hydrocarbons.  相似文献   

7.
Microbial communities of two bituminous constructions at the bottom of Lake Baikal in the region of natural oil seeps at a depth of 900 m have been investigated. Construction 8 contained biodegraded hydrocarbons, and construction 3, through which oil seeped, contained material that experienced biodegradation to a lesser degree. The composition of the microbial communities was studied by means of pyrosequencing of 16S rRNA gene fragments. Most of the bacterial 16S rRNA gene sequences identified in both bituminous constructions were attributed to proteobacteria, along with which Actinobacteria, Acidobacteria, Bacteroidetes, and TM7 were revealed. About 40% of the bacterial sequences in bituminous construction 3 belonged to representatives of uncultured groups within the classes Alphaproteobacteria and Betaproteobacteria and the phylum Bacteroidetes. The 16S rRNA gene sequences of archaea belonged to aceticlastic and hydrogenotrophic methanogens of the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales. The 16S rRNA genes of various groups of bacteria carrying out aerobic biodegradation of aromatic compounds and n-alkanes were found; their compositions differed between the constructions. Neither known groups of denitrifying betaproteobacteria nor known groups of sulfate-reducing deltaproteobacteria capable of carrying out anaerobic degradation of n-alkanes were found, which agrees with the low content of nitrate and sulfate in the water. In the anaerobic zone of bituminous constructions, the processes of biodegradation of hydrocarbons are probably carried out in the absence of alternative electron acceptors by the syntrophic community, including deltaproteobacteria of the genus Syntrophus and methanogenic archaea.  相似文献   

8.
Soil and sediments are contaminated with petroleum hydrocarbons in many parts of the world. Anaerobic degradation of petroleum hydrocarbon is very relevant in removing oil spills in the anaerobic zones of soil and sediments. This research investigates the possibility of degrading no. diesel fuel under anaerobic conditions. Anaerobic packed soil columns were used to simulate and study in situ bioremediation of soil contaminated with diesel fuel. Several anaerobic conditions were evaluated in soil columns, including sulfate reducing, nitrate reducing, methanogenic, and mixed electron acceptor conditions. The objectives were to determine the extent of diesel fuel degradation in soil columns under various anaerobic conditions and identify the best conditions for efficient removal of diesel fuel. Diesel fuels were degraded significantly under all conditions compared to no electron supplemented soil column (natural attenuation). However, the rate of diesel degradation was the highest under mixed electron acceptor conditions followed in order by sulfate reducing, nitrate reducing, and methanogenic conditions. Under mixed electron acceptor condition 81% of diesel fuel was degraded within 310 days. While under sulfate reducing condition 54.5% degradation of diesel fuel was observed for the same period. This study showed evidence for diesel fuel metabolism in a mixed microbial population system similar to any contaminated field sites, where heterogeneous microbial population exists.  相似文献   

9.
A strategy for sequential hydrocarbon bioremediation is proposed. The initial O2-requiring transformation is effected by aerobic resting cells, thus avoiding a high oxygen demand. The oxygenated metabolites can then be degraded even under anaerobic conditions when supplemented with a highly water-soluble alternative electron acceptor, such as nitrate. To develop the new strategy, some phenomena were studied by examining Pseudomonas aeruginosa fermentation. The effects of dissolved oxygen (DO) concentration on n-hexadecane biodegradation were investigated first. Under microaerobic conditions, the denitrification rate decreased as the DO concentration decreased, implying that the O2-requiring reactions were rate limiting. The effects of different nitrate and nitrite concentrations were examined next. When cultivated aerobically in tryptic soy broth supplemented with 0 to 0.35 g of NO2-N per liter, cells grew in all systems, but the lag phase was longer in the presence of higher nitrite concentrations. However, under anaerobic denitrifying conditions, even 0.1 g of NO2-N per liter totally inhibited cell growth. Growth was also inhibited by high nitrate concentrations (>1 g of NO3-N per liter). Cells were found to be more sensitive to nitrate or nitrite inhibition under denitrifying conditions than under aerobic conditions. Sequential hexadecane biodegradation by P. aeruginosa was then investigated. The initial fermentation was aerobic for cell growth and hydrocarbon oxidation to oxygenated metabolites, as confirmed by increasing dissolved total organic carbon (TOC) concentrations. The culture was then supplemented with nitrate and purged with nitrogen (N2). Nitrate was consumed rapidly initially. The live cell concentration, however, also decreased. The aqueous-phase TOC level decreased by about 40% during the initial active period but remained high after this period. Additional experiments confirmed that only about one-half of the derived TOC was readily consumable under anaerobic denitrifying conditions.  相似文献   

10.
Summary The mineralization of 14C-labelled naphthalene was studied in pristine and oil-contaminated soil slurry (30% solids) under denitrifying conditions using a range of concentrations from below to above the aqueous phase saturation level. Results from sorption-desorption experiments indicated that naphthalene desorption was highly irreversible and decreased with an increase in the soil organic content, thus influencing the availability for microbial consumption. Under denitrifying conditions, the mineralization of naphthalene to CO2 occurred in parallel with the consumption of nitrate and an increase in pH from 7.0 to 8.6. When the initial substrate concentration was 50 ppm (i.e. close to the aqueous phase saturation level), about 90% of the total naphthalene was mineralized within 50 days, and a maximum mineralization rate of 1.3 ppm day–1 was achieved after a lag period of approx. 18 days. When added at concentrations higher than the aqueous phase saturation level (200 and 500 ppm), similar mineralization rates (1.8 ppm day–1) occurred until about 50 ppm of the naphthalene was mineralized. After that the mineralization rates decreased logarithmically to a minimum of 0.24 ppm day–1 for the rest of the 160 days of the experiments. For both of these higher concentrations, the reaction kinetics were independent of the concentration, indicating that desorption of the substrate governs the mineralization rate. Other results indicated that pre-exposure of soil to oil contamination did not improve the degradation rates nor reduce the lag periods. This study clearly shows the potential of denitrifying conditions for the biodegradation of low molecular weight PAHs. Offprint requests to: R. Samson  相似文献   

11.
Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen, and denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials. Providing both nitrate and microaerophilic levels of oxygen may result in oxidation of the stable benzene rings in aromatic contaminants and allow for the intermediates of this oxidation to degrade via denitrification. The effects of using mixed electron acceptors on biodegradation of subsurface contaminants is unclear. Below some critical oxygen threshold, aerobic biodegradation is inhibited, however high levels of oxygen inhibit denitrification. The mechanisms which regulate electron transfer to oxygen and nitrate are complex. This review: 1) describes the factors which may affect the utilization of oxygen and nitrate as dual electron acceptors during biodegradation; 2) summarizes the incidence of dual use of nitrate and oxygen (aerobic denitrification); and 3) presents evidence of the effectiveness of bioremediation under mixed oxygen/nitrate conditions. Received 08 November 1995/ Accepted in revised form 09 June 1996  相似文献   

12.
The biodegradation of No. 2 diesel fuel under anaerobic conditions was investigated using sediments collected from wetlands of Barataria-Terrebonne estuary in Louisiana. The results indicated enhanced biodegradation of diesel fuel under sulfate-reducing, nitrate-reducing, methanogenic, and mixed electron acceptor conditions. However, the rate of diesel degradation was the highest under mixed electron acceptor conditions followed in order by sulfate-reducing, methanogenic, and nitrate-reducing conditions. Under mixed electron acceptor condition, 99% removal of diesel fuel was achieved within 510 days, while under sulfate-reducing condition 62% degradation of diesel fuel was observed for the same period. Diesel fuel was also degraded to a smaller extent in the culture condition where electron acceptors were not supplemented (natural attenuation condition). This study showed evidence for enhanced diesel fuel metabolism in a mixed microbial population system similar to any contaminated field site, where a heterogeneous microbial population exists.  相似文献   

13.
Flow-through aquifer columns were used to investigate the feasibility of adding sulfate, EDTA–Fe(III) or nitrate to enhance the biodegradation of BTEX and ethanol mixtures. The rapid biodegradation of ethanol near the inlet depleted the influent dissolved oxygen (8 mg l-1), stimulated methanogenesis, and decreased BTEX biodegradation efficiencies from >99% in the absence of ethanol to an average of 32% for benzene, 49% for toluene, 77% for ethylbenzene, and about 30% for xylenes. The addition of sulfate, EDTA–Fe(III) or nitrate suppressed methanogenesis and significantly increased BTEX biodegradation efficiencies. Nevertheless, occasional clogging was experienced by the column augmented with EDTA–Fe(III) due to iron precipitation. Enhanced benzene biodegradation (>70% in all biostimulated columns) is noteworthy because benzene is often recalcitrant under anaerobic conditions. Influent dissolved oxygen apparently played a critical role because no significant benzene biotransformation was observed after oxygen was purged out of the influent media. The addition of anaerobic electron acceptors could enhance BTEX biodegradation not only by facilitating their anaerobic biodegradation but also by accelerating the mineralization of ethanol or other substrates that are labile under anaerobic conditions. This would alleviate the biochemical oxygen demand (BOD) and increase the likelihood that entraining oxygen would be used for the biotransformation of residual BTEX.  相似文献   

14.
The potential for degradation of four nitrogen-heterocyclic compounds was investigated in fresh-water sediment slurries maintained under denitrifying, sulfate-reducing, and methanogenic conditions. Pyridine (10 mg/l) was rapidly transformed within 4 weeks under denitrifying conditions but persisted for up to 3 months under sulfate-reducing and methanogenic conditions. No intermediate biotransformation products of pyridine metabolism were detected under denitrifying conditions. Quinoline (10 mg/l) was completely transformed without a lag phase under methanogenic and sulfate-reducing conditions after incubation for 23 and 45 days, respectively. 2-Hydroxyquinoline was produced concomitantly with quinoline transformation under methanogenic and sulfate-reducing conditions. Under denitrifying conditions, less than 23% of the initial concentration of quinoline was transformed after anaerobic incubation for 83 days. Indole, however, was completely removed from sediment slurries under denitrifying, sulfate-reducing, and methanogenic conditions after anaerobic incubation for 18, 27, and 17 days, respectively. Only low amounts of oxindole (2–4 mg/l) accumulated during indole metabolism under methanogenic and denitrifying conditions, but under sulfate-reducing conditions, oxindole accumulation was stoichiometric with indole transformation. No evidence for biotransformation of carbazole was noted for all anaerobic conditions tested.  相似文献   

15.
A strategy for sequential hydrocarbon bioremediation is proposed. The initial O(2)-requiring transformation is effected by aerobic resting cells, thus avoiding a high oxygen demand. The oxygenated metabolites can then be degraded even under anaerobic conditions when supplemented with a highly water-soluble alternative electron acceptor, such as nitrate. To develop the new strategy, some phenomena were studied by examining Pseudomonas aeruginosa fermentation. The effects of dissolved oxygen (DO) concentration on n-hexadecane biodegradation were investigated first. Under microaerobic conditions, the denitrification rate decreased as the DO concentration decreased, implying that the O(2)-requiring reactions were rate limiting. The effects of different nitrate and nitrite concentrations were examined next. When cultivated aerobically in tryptic soy broth supplemented with 0 to 0.35 g of NO(2)(-)-N per liter, cells grew in all systems, but the lag phase was longer in the presence of higher nitrite concentrations. However, under anaerobic denitrifying conditions, even 0.1 g of NO(2)(-)-N per liter totally inhibited cell growth. Growth was also inhibited by high nitrate concentrations (>1 g of NO(3)(-)-N per liter). Cells were found to be more sensitive to nitrate or nitrite inhibition under denitrifying conditions than under aerobic conditions. Sequential hexadecane biodegradation by P. aeruginosa was then investigated. The initial fermentation was aerobic for cell growth and hydrocarbon oxidation to oxygenated metabolites, as confirmed by increasing dissolved total organic carbon (TOC) concentrations. The culture was then supplemented with nitrate and purged with nitrogen (N(2)). Nitrate was consumed rapidly initially. The live cell concentration, however, also decreased. The aqueous-phase TOC level decreased by about 40% during the initial active period but remained high after this period. Additional experiments confirmed that only about one-half of the derived TOC was readily consumable under anaerobic denitrifying conditions.  相似文献   

16.
The transport and fate of pollutants is often governed by both their tendency to sorb as well as their susceptibility to biodegradation. We have evaluated these parameters for 2,4,6-trinitrotoluene (TNT) and several biodegradation products. Slurries of aquifer sediment and groundwater depleted TNT at rates of 27, 7.7 and 5.9 μM day−1 under methanogenic, sulfate-reducing and nitrate-reducing conditions, respectively. Abiotic losses of TNT were determined in autoclaved controls. Abiotic TNT loss and subsequent transformation of the products was also observed. These transformations were especially important during the first step in the reduction of TNT. Subsequent abiotic reactions could account for all of the transformations observed in bottles which were initially nitrate-reducing. Other controls removed TNT reduction products at much slower rates than slurries containing live organisms. 2-Amino-4,6-dinitrotoluene was produced in all slurries but disappeared in methanogenic and in sulfate-reducing slurries within several weeks. This compound was converted to 2,4-diamino-6-nitrotoluene in all slurries with subsequent removal of the latter from methanogenic and sulfate-reducing slurries, while it persisted in autoclaved controls and in the nitrate-reducing slurries. Aquifer slurries incubated with either 2,4- or 2,6-diaminotoluene showed losses of these compounds relative to autoclaved controls under nitrate-reducing conditions but not under sulfate-reducing or methanogenic conditions. These latter compounds are important as reduced intermediates in the biodegradation of dinitrotoluenes and as industrial chemicals. In experiments to examine sorption, exposure to landfill sediment resulted in losses of approximately 15% of diaminotoluene isomers and 25% of aminodinitrotoluene isomers from initial solution concentrations within 24 h. Isotherms confirmed that the diaminotoluenes were least strongly sorbed and the amino-dinitrotoluenes most strongly sorbed to this sediment, while TNT sorption capacity was intermediate. In our studies, 2,4,6-triaminotoluene sorption capacity was indeterminate due to its chemical instability. Coupled with biodegradation information, isotherms help describe the likelihood of contaminant removal, persistence, and movement at impacted sites. Received 11 March 1996/ Accepted in revised form 24 July 1996  相似文献   

17.
The anaerobic biodegradation of m-cresol was observed in anoxic aquifer slurries kept under both sulfate-reducing and nitrate-reducing but not methanogenic conditions. More than 85% of the parent substrate (300 microM) was consumed in less than 6 days in slurries kept under the former two conditions. No appreciable loss of the compound from the corresponding autoclaved controls was measurable. A bacterial consortium was enriched from the slurries for its ability to metabolize m-cresol under sulfate-reducing conditions. Metabolism in this enrichment culture was inhibited in the presence of oxygen or molybdate (500 microM) and in the absence of sulfate but was unaffected by bromoethanesulfonic acid. The consortium consumed 3.63 mol of sulfate per mol of m-cresol degraded. This stoichiometry is about 87% of that theoretically expected and suggests that m-cresol was largely mineralized. Resting-cell experiments demonstrated that the degradation of m-cresol proceeded only in the presence of bicarbonate. 4-Hydroxy-2-methylbenzoic acid and acetate were detected as transient intermediates. Thus, the parent substrate was initially carboxylated as the primary degradative event. The sulfate-reducing consortium could also decarboxylate p- but not m-hydroxybenzoate to near stoichiometric amounts of phenol, but this reaction was not sulfate dependent. The presence of p-hydroxybenzoate in the medium temporarily inhibited m-cresol metabolism such that the former compound was metabolized prior to the latter and phenol was degraded in a sequential manner. These findings help clarify the fate of a common groundwater contaminant under sulfate-reducing conditions.  相似文献   

18.
The anaerobic biodegradation of m-cresol was observed in anoxic aquifer slurries kept under both sulfate-reducing and nitrate-reducing but not methanogenic conditions. More than 85% of the parent substrate (300 microM) was consumed in less than 6 days in slurries kept under the former two conditions. No appreciable loss of the compound from the corresponding autoclaved controls was measurable. A bacterial consortium was enriched from the slurries for its ability to metabolize m-cresol under sulfate-reducing conditions. Metabolism in this enrichment culture was inhibited in the presence of oxygen or molybdate (500 microM) and in the absence of sulfate but was unaffected by bromoethanesulfonic acid. The consortium consumed 3.63 mol of sulfate per mol of m-cresol degraded. This stoichiometry is about 87% of that theoretically expected and suggests that m-cresol was largely mineralized. Resting-cell experiments demonstrated that the degradation of m-cresol proceeded only in the presence of bicarbonate. 4-Hydroxy-2-methylbenzoic acid and acetate were detected as transient intermediates. Thus, the parent substrate was initially carboxylated as the primary degradative event. The sulfate-reducing consortium could also decarboxylate p- but not m-hydroxybenzoate to near stoichiometric amounts of phenol, but this reaction was not sulfate dependent. The presence of p-hydroxybenzoate in the medium temporarily inhibited m-cresol metabolism such that the former compound was metabolized prior to the latter and phenol was degraded in a sequential manner. These findings help clarify the fate of a common groundwater contaminant under sulfate-reducing conditions.  相似文献   

19.
Addition of acetylene to microcosms simultaneously amended with nitrate and alkylbenzenes resulted in inhibition of the rate of alkylbenzene biodegradation under denitrifying conditions. Toluene, xylenes, and 1,2,4-trimethylbenzene were recalcitrant, whereas ethylbenzene was degraded at a slower rate than usual. Benzene was not degraded in either case. Addition of acetylene to microcosms preexposed to nitrate and alkylbenzenes produced similar inhibition. These data indicate that the activities of microorganisms that degrade alkylbenzenes under denitrifying conditions may be suppressed if the standard acetylene block technique is used to verify denitrifying activity.  相似文献   

20.
Addition of acetylene to microcosms simultaneously amended with nitrate and alkylbenzenes resulted in inhibition of the rate of alkylbenzene biodegradation under denitrifying conditions. Toluene, xylenes, and 1,2,4-trimethylbenzene were recalcitrant, whereas ethylbenzene was degraded at a slower rate than usual. Benzene was not degraded in either case. Addition of acetylene to microcosms preexposed to nitrate and alkylbenzenes produced similar inhibition. These data indicate that the activities of microorganisms that degrade alkylbenzenes under denitrifying conditions may be suppressed if the standard acetylene block technique is used to verify denitrifying activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号