首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Negative regulation of fibroblast motility by Ena/VASP proteins   总被引:23,自引:0,他引:23  
Ena/VASP proteins have been implicated in cell motility through regulation of the actin cytoskeleton and are found at focal adhesions and the leading edge. Using overexpression, loss-of-function, and inhibitory approaches, we find that Ena/VASP proteins negatively regulate fibroblast motility. A dose-dependent decrease in movement is observed when Ena/VASP proteins are overexpressed in fibroblasts. Neutralization or deletion of all Ena/VASP proteins results in increased cell movement. Selective depletion of Ena/VASP proteins from focal adhesions, but not the leading edge, has no effect on motility. Constitutive membrane targeting of Ena/VASP proteins inhibits motility. These results are in marked contrast to current models for Ena/VASP function derived mainly from their role in the actin-driven movement of Listeria monocytogenes.  相似文献   

2.
Enabled/Vasodilator-stimulated phosphoprotein (Ena/VASP) protein family members link actin dynamics and cellular signaling pathways. VASP localizes to regions of dynamic actin reorganization such as the focal adhesion contacts, the leading edge or filopodia, where it contributes to F-actin filament elongation. Here we identify VASP as a novel substrate for protein kinase D1 (PKD1). We show that PKD1 directly phosphorylates VASP at two serine residues, Ser-157 and Ser-322. These phosphorylations occur in response to RhoA activation and mediate VASP re-localization from focal contacts to the leading edge region. The net result of this PKD1-mediated phosphorylation switch in VASP is increased filopodia formation and length at the leading edge. However, such signaling when persistent induced membrane ruffling and decreased cell motility.  相似文献   

3.
Variations in cell migration and morphology are consequences of changes in underlying cytoskeletal organization and dynamics. We investigated how these large-scale cellular events emerge as direct consequences of small-scale cytoskeletal molecular activities. Because the properties of the actin cytoskeleton can be modulated by actin-remodeling proteins, we quantitatively examined how one such family of proteins, enabled/vasodilator-stimulated phosphoprotein (Ena/VASP), affects the migration and morphology of epithelial fish keratocytes. Keratocytes generally migrate persistently while exhibiting a characteristic smooth-edged “canoe” shape, but may also exhibit less regular morphologies and less persistent movement. When we observed that the smooth-edged canoe keratocyte morphology correlated with enrichment of Ena/VASP at the leading edge, we mislocalized and overexpressed Ena/VASP proteins and found that this led to changes in the morphology and movement persistence of cells within a population. Thus, local changes in actin filament dynamics due to Ena/VASP activity directly caused changes in cell morphology, which is coupled to the motile behavior of keratocytes. We also characterized the range of natural cell-to-cell variation within a population by using measurable morphological and behavioral features—cell shape, leading-edge shape, filamentous actin (F-actin) distribution, cell speed, and directional persistence—that we have found to correlate with each other to describe a spectrum of coordinated phenotypes based on Ena/VASP enrichment at the leading edge. This spectrum stretched from smooth-edged, canoe-shaped keratocytes—which had VASP highly enriched at their leading edges and migrated fast with straight trajectories—to more irregular, rounder cells migrating slower with less directional persistence and low levels of VASP at their leading edges. We developed a mathematical model that accounts for these coordinated cell-shape and behavior phenotypes as large-scale consequences of kinetic contributions of VASP to actin filament growth and protection from capping at the leading edge. This work shows that the local effects of actin-remodeling proteins on cytoskeletal dynamics and organization can manifest as global modifications of the shape and behavior of migrating cells and that mathematical modeling can elucidate these large-scale cell behaviors from knowledge of detailed multiscale protein interactions.  相似文献   

4.
Actin polymerization is accompanied by the formation of protein complexes that link extracellular signals to sites of actin assembly such as membrane ruffles and focal adhesions. One candidate recently implicated in these processes is the LIM domain protein zyxin, which can bind both Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the actin filament cross-linking protein alpha-actinin. To characterize the localization and dynamics of zyxin in detail, we generated both monoclonal antibodies and a green fluorescent protein (GFP)-fusion construct. The antibodies colocalized with ectopically expressed GFP-VASP at focal adhesions and along stress fibers, but failed to label lamellipodial and filopodial tips, which also recruit Ena/VASP proteins. Likewise, neither microinjected, fluorescently labeled zyxin antibodies nor ectopically expressed GFP-zyxin were recruited to these latter sites in live cells, whereas both probes incorporated into focal adhesions and stress fibers. Comparing the dynamics of zyxin with that of the focal adhesion protein vinculin revealed that both proteins incorporated simultaneously into newly formed adhesions. However, during spontaneous or induced focal adhesion disassembly, zyxin delocalization preceded that of either vinculin or paxillin. Together, these data identify zyxin as an early target for signals leading to adhesion disassembly, but exclude its role in recruiting Ena/VASP proteins to the tips of lamellipodia and filopodia.  相似文献   

5.
Mesenchymal cell motility is characterized by a polarized distribution of actin filaments, with a network of short branched actin filaments at the leading edge, and polymers of actin filaments arranged into distinct classes of actin stress fibres behind the leading edge. Importantly, the distinct actin filaments are characteristically associated with discrete adhesion structures and both the adhesions and the actin filaments are co-ordinately regulated during cell migration. While it has long been known that these macromolecular structures are intimately linked in cells, precisely how they are co-ordinately regulated is presently unknown. Live imaging data now suggests that the focal adhesions may act as sites of actin polymerization resulting in the generation of tension-bearing actin bundles of actin filaments (stress fibres). Moreover, a picture is emerging to suggest that the tropomyosin family of proteins that can determine actin filament dynamics may also play a key role in determining the transition between adhesion states. Molecules such as the tropomyosins are therefore tantalizing candidates to orchestrate the coordination of actin and adhesion dynamics during mesenchymal cell migration.  相似文献   

6.
How can Ena/VASP proteins promote actin-based movement of the intracellular pathogen Listeria or rapid protrusion of lamellipodia but at the same time inhibit cell translocation? A report in the May 17(th) issue of Cell now offers a possible explanation for this conundrum. Bear et al. report that Ena/VASP proteins regulate cell motility by competing with capping proteins to control actin filament length and geometry at the leading edge of cells.  相似文献   

7.
For cells, the growth of a dense array of branched actin filaments organized by the actin-related proteins 2 and 3 (Arp2/3) complex at the plasma membrane offers an explanation as to how movement is produced, and this arrangement is considered to be optimal for motility. Here, we challenged this assumption by using an in vitro system of polystyrene beads in cell extracts that contained a complex mix of actin polymerization proteins as in vivo. We employed the surface of the bead as a reactor where we mixed two different actin polymerization-activating factors, the Arp2/3 complex and the vasodilator-stimulated phosphoprotein (VASP), to examine their contribution to actin-based movement and filament organization. We varied the coating of the bead surface but left the extracts identical for all assays. We found that the degree of filament alignment in the actin comet tails depended on the surface ratio of VASP to Arp2/3. Alignment of actin filaments parallel to the direction of bead movement in the presence of VASP was accompanied by an abrupt 7-fold increase in velocity that was independent of bead size and by hollowing out of the comets. The actin filament-bundling proteins fimbrin and fascin did not appear to play a role in this transformation. Together with the idea that VASP enhances filament detachment and with the presence of pulling forces at the rear of the bead, a mesoscopic analysis of movement provides a possible explanation for our results.  相似文献   

8.
Ena/VASP proteins capture actin filament barbed ends   总被引:1,自引:0,他引:1  
Ena/VASP (vasodialator-stimulated protein) proteins regulate many actin-dependent events, including formation of protrusive structures, fibroblast migration, neurite extension, cell-cell adhesion, and Listeria pathogenesis. In vitro, Ena/VASP activities on actin are complex and varied. They promote actin assembly, protect filaments from cappers, bundle filaments, and inhibit filament branching. To determine the mechanisms by which Ena/VASP proteins regulate actin dynamics at barbed ends, we monitored individual actin filaments growing in the presence of VASP and profilin using total internal reflection fluorescence microscopy. Filament growth was unchanged by VASP, but filaments grew faster in profilin-actin and VASP than with profilin-actin alone. Actin filaments were captured directly by VASP-coated surfaces via interactions with growing barbed ends. End-attached filaments transiently paused but resumed growth after becoming bound to the surface via a filament side attachment. Thus, Ena/VASP proteins promote actin assembly by interacting directly with actin filament barbed ends, recruiting profilin-actin, and blocking capping.  相似文献   

9.
Filopodia explore the environment, sensing soluble and mechanical cues during directional motility and tissue morphogenesis. How filopodia are initiated and spatially restricted to specific sites on the plasma membrane is still unclear. Here, we show that the membrane deforming and curvature sensing IRSp53 (Insulin Receptor Substrate of 53 kDa) protein slows down actin filament barbed end growth. This inhibition is relieved by CDC42 and counteracted by VASP, which also binds to IRSp53. The VASP:IRSp53 interaction is regulated by activated CDC42 and promotes high‐density clustering of VASP, which is required for processive actin filament elongation. The interaction also mediates VASP recruitment to liposomes. In cells, IRSp53 and VASP accumulate at discrete foci at the leading edge, where filopodia are initiated. Genetic removal of IRSp53 impairs the formation of VASP foci, filopodia and chemotactic motility, while IRSp53 null mice display defective wound healing. Thus, IRSp53 dampens barbed end growth. CDC42 activation inhibits this activity and promotes IRSp53‐dependent recruitment and clustering of VASP to drive actin assembly. These events result in spatial restriction of VASP filament elongation for initiation of filopodia during cell migration, invasion, and tissue repair.  相似文献   

10.
Vasodilator-stimulated phosphoprotein (VASP) is an actin regulatory protein that functions in adhesion and migration. In epithelial cells, VASP participates in cell–cell adhesion. At the molecular level, VASP drives actin bundling and polymerization. VASP activity is primarily regulated by phosphorylation. Three physiologically relevant phosphorylation sites significantly reduce actin regulatory activity and are targeted by several kinases, most notable Abl and protein kinases A and G (PKA and PKG). AMP-dependent kinase (AMPK) is best characterized as a cellular sensor of ATP depletion, but also alters actin dynamics in epithelial cells and participates in cell polarity pathways downstream of LKB1. While little is known about how AMPK direct changes in actin dynamics, AMPK has been shown to phosphorylate VASP at one of these three well-characterized PKA/PKG phosphorylation sites. Here we show that phosphorylation of VASP by AMPK occurs at a novel site, serine 322, and that phosphorylation at this site alters actin filament binding. We also show that inhibition of AMPK activity results in the accumulation of VASP at cell–cell adhesions and a concomitant increase in cell–cell adhesion.  相似文献   

11.
Cell migration requires integration of cellular processes resulting in cell polarization and actin dynamics. Previous work using tools of Drosophila genetics suggested that protocadherin fat serves in a pathway necessary for determining cell polarity in the plane of a tissue. Here we identify mammalian FAT1 as a proximal element of a signaling pathway that determines both cellular polarity in the plane of the monolayer and directed actin-dependent cell motility. FAT1 is localized to the leading edge of lamellipodia, filopodia, and microspike tips where FAT1 directly interacts with Ena/VASP proteins that regulate the actin polymerization complex. When targeted to mitochondrial outer leaflets, FAT1 cytoplasmic domain recruits components of the actin polymerization machinery sufficient to induce ectopic actin polymerization. In an epithelial cell wound model, FAT1 knockdown decreased recruitment of endogenous VASP to the leading edge and resulted in impairment of lamellipodial dynamics, failure of polarization, and an attenuation of cell migration. FAT1 may play an integrative role regulating cell migration by participating in Ena/VASP-dependent regulation of cytoskeletal dynamics at the leading edge and by transducing an Ena/VASP-independent polarity cue.  相似文献   

12.
Ena/VASP proteins influence the organization of actin filament networks within lamellipodia and filopodia of migrating cells and in actin comet tails. The molecular mechanisms by which Ena/VASP proteins control actin dynamics are unknown. We investigated how Ena/VASP proteins regulate actin polymerization at actin filament barbed ends in vitro in the presence and absence of barbed end capping proteins. Recombinant His-tagged VASP increased the rate of actin polymerization in the presence of the barbed end cappers, heterodimeric capping protein (CP), CapG, and gelsolin-actin complex. Profilin enhanced the ability of VASP to protect barbed ends from capping by CP, and this required interactions of profilin with G-actin and VASP. The VASP EVH2 domain was sufficient to protect barbed ends from capping, and the F-actin and G-actin binding motifs within EVH2 were required. Phosphorylation by protein kinase A at sites within the VASP EVH2 domain regulated anti-capping and F-actin bundling by VASP. We propose that Ena/VASP proteins associate at or near actin filament barbed ends, promote actin assembly, and restrict the access of barbed end capping proteins.  相似文献   

13.
Mechanical forces, actin filament turnover, and adhesion to the extracellular environment regulate lamellipodial protrusions. Computational and mathematical models at the continuum level have been used to investigate the molecular clutch mechanism, calculating the stress profile through the lamellipodium and around focal adhesions. However, the forces and deformations of individual actin filaments have not been considered while interactions between actin networks and actin bundles is not easily accounted with such methods. We develop a filament-level model of a lamellipodial actin network undergoing retrograde flow using 3D Brownian dynamics. Retrograde flow is promoted in simulations by pushing forces from the leading edge (due to actin polymerization), pulling forces (due to molecular motors), and opposed by viscous drag in cytoplasm and focal adhesions. Simulated networks have densities similar to measurements in prior electron micrographs. Connectivity between individual actin segments is maintained by permanent and dynamic crosslinkers. Remodeling of the network occurs via the addition of single actin filaments near the leading edge and via filament bond severing. We investigated how several parameters affect the stress distribution, network deformation and retrograde flow speed. The model captures the decrease in retrograde flow upon increase of focal adhesion strength. The stress profile changes from compression to extension across the leading edge, with regions of filament bending around focal adhesions. The model reproduces the observed reduction in retrograde flow speed upon exposure to cytochalasin D, which halts actin polymerization. Changes in crosslinker concentration and dynamics, as well as in the orientation pattern of newly added filaments demonstrate the model’s ability to generate bundles of filaments perpendicular (actin arcs) or parallel (microspikes) to the protruding direction.  相似文献   

14.
Proteins of the Wiskott-Aldrich syndrome and Ena/VASP families both play essential functions in the regulation of actin dynamics at the cell leading edge. However, possibilities of functional interplay between members of these two families have not been addressed. Here we show that, in hemopoietic cells, recruitment of the C-terminal VCA (Verprolin homology, Cofilin homology, Acidic) domain of WASp at the plasma membrane by a ligand technique using rapamycin as an intermediate is not sufficient to elicit efficient Arp2/3 complex-mediated actin polymerization. Other domains of WASp, in particular the proline-rich domain, are required for the formation of actin-rich structures. An in vitro analysis demonstrates that the proline-rich domain of WASp binds VASP with an affinity of approximately 10(6) M(-1). In addition, WASp and VASP both accumulate in actin-rich phagocytic cups. Finally, in a reconstituted motility medium, VASP enhances actin-based propulsion of WASp-coated beads in a fashion reminiscent of its effect on Listeria movement. We propose that VASP and WASp cooperation is essential in stimulating actin assembly and membrane protrusion at the leading edge.  相似文献   

15.
The dendritic nucleation model was devised to explain the cycle of actin dynamics resulting in actin filament network assembly and disassembly in two contexts--at the leading edge of motile cells and in the actin comet tails of intracellular pathogenic bacteria and viruses. Due to the detailed nature of its biochemical predictions, the model has provided an excellent focus for subsequent experimentation. This review summarizes recent work on actin dynamics in the context of the dendritic nucleation model. One outcome of this research is the possibility that additional proteins, as well as the six proteins included in the original model, might increase the efficiency of dendritic nucleation or modify the resulting actin network. In addition, actin dynamics at the leading edge might be influenced by a second actin filament network, independent of dendritic nucleation.  相似文献   

16.
Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are established regulators of actin-based motility, platelet aggregation, and growth cone guidance. However, the molecular mechanisms involved essentially remain elusive. Here we report on a novel mechanism of VASP action, namely the regulation of tensile strength, contractility, and rigidity of the actin cytoskeleton. Compared to wild-type cells fibroblasts derived from VASP-deficient mice have thicker and more stable actin stress fibres. Furthermore focal adhesions are enlarged, myosin light chain phosphorylation is increased, and the rigidity of the filament-supported plasma membrane is elevated about three- to fourfold, as is evident from atomic force microscopy. Moreover, fibronectin-coated beads adhere stronger to the surface of VASP-deficient cells. The resistance of these beads to mechanical displacement by laser tweezers is dramatically increased in an F-actin-dependent mode. Cytoskeletal stabilization coincides with slower cell adhesion and detachment, while overall adhesion is increased. Interestingly, many of these effects observed in VASP (−/−) cells are recapitulated in VASP-overexpressing cells, hinting towards a balanced stoichiometry necessary for appropriate VASP function. Taken together, our results suggest that VASP regulates surface protrusion formation and cell adhesion through modulation of the mechanical properties of the actin cytoskeleton.Annette B. Galler, Maísa I. García Arguinzonis these authors contributed equally to this work  相似文献   

17.
Lateral tension in cell plasma membranes plays an essential role in regulation of a number of membrane-related intracellular processes and cell motion. Understanding the physical factors generating the lateral tension and quantitative determination of the tension distribution along the cell membrane is an emerging topic of cell biophysics. Although experimental data are accumulating on membrane tension values in several cell types, the tension distribution along the membranes of moving cells remains largely unexplored. Here we suggest and analyze a theoretical model predicting the tension distribution along the membrane of a cell crawling on a flat substrate. We consider the tension to be generated by the force of actin network polymerization against the membrane at the cell leading edge. The three major factors determining the tension distribution are the membrane interaction with anchors connecting the actin network to the lipid bilayer, the membrane interaction with cell adhesions, and the force developing at the rear boundary due to the detachment of the remaining cell adhesion from the substrate in the course of cell crawling. Our model recovers the experimentally measured values of the tension in fish keratocytes and their dependence on the number of adhesions. The model predicts, quantitatively, the tension distribution between the leading and rear membrane edges as a function of the area fractions of the anchors and the adhesions.  相似文献   

18.
Lateral tension in cell plasma membranes plays an essential role in regulation of a number of membrane-related intracellular processes and cell motion. Understanding the physical factors generating the lateral tension and quantitative determination of the tension distribution along the cell membrane is an emerging topic of cell biophysics. Although experimental data are accumulating on membrane tension values in several cell types, the tension distribution along the membranes of moving cells remains largely unexplored. Here we suggest and analyze a theoretical model predicting the tension distribution along the membrane of a cell crawling on a flat substrate. We consider the tension to be generated by the force of actin network polymerization against the membrane at the cell leading edge. The three major factors determining the tension distribution are the membrane interaction with anchors connecting the actin network to the lipid bilayer, the membrane interaction with cell adhesions, and the force developing at the rear boundary due to the detachment of the remaining cell adhesion from the substrate in the course of cell crawling. Our model recovers the experimentally measured values of the tension in fish keratocytes and their dependence on the number of adhesions. The model predicts, quantitatively, the tension distribution between the leading and rear membrane edges as a function of the area fractions of the anchors and the adhesions.  相似文献   

19.
Lamellipodium extension, incorporating actin filament dynamics and the cell membrane, is simulated in three dimensions. The actin filament network topology and the role of actin-associated proteins such as Arp2/3 are examined. We find that the orientational pattern of the filaments is in accord with the experimental data only if the spatial orientation of the Arp2/3 complex is restricted during each branching event. We hypothesize that branching occurs when Arp2/3 is bound to Wiskott-Aldrich syndrome protein (WASP), which is in turn bound to Cdc42 signaling complex; Arp2/3 binding geometry is restricted by the membrane-bound complex. Using mechanical and energetic arguments, we show that any membrane protein that is conical or trapezoidal in shape preferentially resides at the curved regions of the plasma membrane. We hypothesize that the transmembrane receptors involved in the recruitment of Cdc42/WASP complex has this property and concentrate at the leading edge. These features, combined with the mechanical properties of the cell membrane, explain why lamellipodium is a flat organelle.  相似文献   

20.
Functional interactions between classical cadherins and the actin cytoskeleton involve diverse actin activities, including filament nucleation, cross-linking, and bundling. In this report, we explored the capacity of Ena/VASP proteins to regulate the actin cytoskeleton at cadherin-adhesive contacts. We extended the observation that Ena/vasodilator-stimulated phosphoprotein (VASP) proteins localize at cell-cell contacts to demonstrate that E-cadherin homophilic ligation is sufficient to recruit Mena to adhesion sites. Ena/VASP activity was necessary both for F-actin accumulation and assembly at cell-cell contacts. Moreover, we identified two distinct pools of Mena within individual homophilic adhesions that cells made when they adhered to cadherin-coated substrata. These Mena pools localized with Arp2/3-driven cellular protrusions as well as at the tips of cadherin-based actin bundles. Importantly, Ena/VASP activity was necessary for both modes of actin activity to be expressed. Moreover, selective depletion of Ena/VASP proteins from the tips of cadherin-based bundles perturbed the bundles without affecting the protrusive F-actin pool. We propose that Ena/VASP proteins may serve as higher order regulators of the cytoskeleton at cadherin contacts through their ability to modulate distinct modes of actin organization at those contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号