首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been recently proposed that AMP-activated protein kinase (AMPK) might indirectly promote the phosphorylation of MRLC (myosin II regulatory light chain) at Ser19 to regulate the transition from metaphase to anaphase and the completion of cytokinesis. Although these findings provide biochemical support for our earlier observations showing that the active form of the α catalytic AMPK subunit associates dynamically with essential mitotic regulators, several important issues remained unexplored. Does glucose starvation alter the ability of AMPK to bind to the mitotic apparatus and travel from centrosomes to the spindle midzone during mitosis and cytokinesis? Does AMPK activate MRLC exclusively at the cleavage furrow during cytokinesis? What is the mitosis-specific stimulus that activates the mito-cytokinetic AMPK/MRLC axis regardless of energy deprivation? First, we confirm that exogenous glucose deprivation fails to alter the previously described distribution of phospho-AMPKαThr172 in all of the mitotic phases and does not disrupt its apparent association with the mitotic spindle and other structures involved in cell division. Second, we establish for the first time that phospho-AMPKαThr172 colocalizes exclusively with Ser19-phosphorylated MRLC at the cleavage furrow of dividing cells, a previously unvisualized interaction between phospho-AMPKαThr172 and phospho-MRLCSer19 that occurs in cleavage furrows, intercellular bridges and the midbody during cell division that appears to occur irrespective of glucose availability. Third, we reveal for the first time that the inhibition of AMPK mitotic activity in response to PLK1 inhibition completely prevents the co-localization of phospho-AMPKαThr172 and phospho-MRLCSer19 during the final stages of cytokinesis and midbody ring formation. Because PLK1 inhibition efficiently suppresses the AMPK-mediated activation of MRLC at the cytokinetic cleavage furrow, we propose a previously unrecognized role for AMPK in ensuring that cytokinesis occurs at the proper place and time by establishing a molecular dialog between PLK1 and MRLC in an energy-independent manner.  相似文献   

2.
Mitosis is a highly coordinated process that assures the fidelity of chromosome segregation. Errors in this process result in aneuploidy which can lead to cell death or oncogenesis. In this paper we describe a putative mammalian protein kinase, AIM-1 (Aurora and Ipl1-like midbody-associated protein), related to Drosophila Aurora and Saccharomyces cerevisiae Ipl1, both of which are required for chromosome segregation. AIM-1 message and protein accumulate at G2/M phase. The protein localizes at the equator of central spindles during late anaphase and at the midbody during telophase and cytokinesis. Overexpression of kinase-inactive AIM-1 disrupts cleavage furrow formation without affecting nuclear division. Furthermore, cytokinesis frequently fails, resulting in cell polyploidy and subsequent cell death. These results strongly suggest that AIM-1 is required for proper progression of cytokinesis in mammalian cells.  相似文献   

3.
Myosin II ATPase activity is enhanced by the phosphorylation of MRLC (myosin II regulatory light chain) in non-muscle cells. It is well known that pMRLC (phosphorylated MRLC) co-localizes with F-actin (filamentous actin) in the CR (contractile ring) of dividing cells. Recently, we reported that HeLa cells expressing non-phosphorylatable MRLC show a delay in the speed of furrow ingression, suggesting that pMRLC plays an important role in the control of furrow ingression. However, it is still unclear how pMRLC regulates myosin II and F-actin at the CR to control furrow ingression during cytokinesis. In the present study, to clarify the roles of pMRLC, we measured the turnover of myosin II and actin at the CR in dividing HeLa cells expressing fluorescent-tagged MRLCs and actin by FRAP (fluorescence recovery after photobleaching). A myosin II inhibitor, blebbistatin, caused an enhancement of the turnover of MRLC and actin at the CR, which induced a delay in furrow ingression. Furthermore, only non-phosphorylatable MRLC and a Rho-kinase inhibitor, Y-27632, accelerated the turnover of MRLC and actin at the CR. Interestingly, the effect of Y-27632 was cancelled in the cell expressing phosphomimic MRLCs. Taken together, these results reveal that pMRLC reduces the turnover of myosin II and also actin at the CR. In conclusion, we show that the enhancement of myosin II and actin turnover at the CR induced slower furrowing in dividing HeLa cells.  相似文献   

4.
To elucidate whether phosphorylation of myosin II regulatory light chain (MRLC) is essential for myosin II recruitment to the furrow during cytokinesis, HeLa cells transfected with three types of GFP-tagged recombinant MRLCs, wild-type MRLC, non-phosphorylated form of MRLC, and phosphorylated form of MRLC, were examined. Living cell-imaging showed that both phosphorylated and non-phosphorylated form of MRLCs were recruited to the equator at the same time after anaphase onset, suggesting that phosphorylation of MRLC is not responsible for recruitment of myosin II to the equator. Moreover, the treatment with an inhibitor of myosin II activity, blebbistatin, induced no effect on recruitment of those three recombinant MRLCs. During cytokinesis, phosphorylated but not non-phosphorylated form of MRLC was retained in the equator. These results suggest that phosphorylation of MRLC is essential for retainment of myosin II in the furrow but not for initial recruitment of myosin II to the furrow in dividing HeLa cells.  相似文献   

5.
It has recently been demonstrated that phosphatidylinositol 4,5-bisphosphate (PIP2) is localized at the cleavage furrow in dividing cells and its hydrolysis is required for complete cytokinesis, suggesting a pivotal role of PIP2 in cytokinesis. Here, we report that at least three mammalian isoforms of phosphoinositide-specific phospholipase C (PLC), PLCdelta1, PLCdelta3 and PLCbeta1, are localized to the cleavage furrow during cytokinesis. Targeting of the delta1 isoform to the furrow depends on the specific interaction between the PH domain and PIP2 in the plasma membrane. The necessity of active PLC in animal cell cytokinesis was confirmed using the specific inhibitors for PIP2 hydrolysis. These results support the model that activation of selected PLC isoforms at the cleavage furrow controls progression of cytokinesis through regulation of PIP2 levels: induction of the cleavage furrow by a contractile ring consisting of actomyosin is regulated by PIP2-dependent actin-binding proteins and formation of specific lipid domains required for membrane separation is affected by alterations in the lipid composition of the furrow.  相似文献   

6.
Non-muscle myosin II is stimulated by monophosphorylation of its regulatory light chain (MRLC) at Ser19 (1P-MRLC). MRLC diphosphorylation at Thr18/Ser19 (2P-MRLC) further enhances the ATPase activity of myosin II. Phosphorylated MRLCs localize to the contractile ring and regulate cytokinesis as subunits of activated myosin II. Recently, we reported that 2P-MRLC, but not 1P-MRLC, localizes to the midzone independently of myosin II heavy chain during cytokinesis in cultured mammalian cells. However, the mechanism underlying the distinct localization of 1P- and 2P-MRLC during cytokinesis is unknown. Here, we showed that depletion of the Rho signaling proteins MKLP1, MgcRacGAP, or ECT2 inhibited the localization of 1P-MRLC to the contractile ring but not the localization of 2P-MRLC to the midzone. In contrast, depleting or inhibiting a midzone-localizing kinase, Aurora B, perturbed the localization of 2P-MRLC to the midzone but not the localization of 1P-MRLC to the contractile ring. We did not observe any change in the localization of phosphorylated MRLC in myosin light-chain kinase (MLCK)-inhibited cells. Furrow regression was observed in Aurora B- and 2P-MRLC-inhibited cells but not in 1P-MRLC-perturbed dividing cells. Furthermore, Aurora B bound to 2P-MRLC in vitro and in vivo. These results suggest that Aurora B, but not Rho/MLCK signaling, is essential for the localization of 2P-MRLC to the midzone in dividing HeLa cells.  相似文献   

7.
Although Aurora B is important in cleavage furrow ingression and completion during cytokinesis, the mechanism by which kinase activity is targeted to the cleavage furrow and the molecule(s) responsible for this process have remained elusive. Here, we demonstrate that an essential mitotic kinesin MKlp2 requires myosin-II for its localization to the equatorial cortex, and this event is required to recruit Aurora B to the equatorial cortex in mammalian cells. This recruitment event is also required to promote the highly focused accumulation of active RhoA at the equatorial cortex and stable ingression of the cleavage furrow in bipolar cytokinesis. Specifically, in drug-induced monopolar cytokinesis, targeting Aurora B to the cell cortex by MKlp2 is essential for cell polarization and furrow formation. Once the furrow has formed, MKlp2 further recruits Aurora B to the growing furrow. This process together with continuous Aurora B kinase activity at the growing furrow is essential for stable furrow propagation and completion. In contrast, a MKlp2 mutant defective in binding myosin-II does not recruit Aurora B to the cell cortex and does not promote furrow formation during monopolar cytokinesis. This mutant is also defective in maintaining the ingressing furrow during bipolar cytokinesis. Together, these findings reveal that targeting Aurora B to the cell cortex (or the equatorial cortex) by MKlp2 is essential for the maintenance of the ingressing furrow for successful cytokinesis.  相似文献   

8.
TD-60 and INCENP are two members of the chromosome passenger protein family, and each has been suggested to play a role in the control of cytokinesis. Here we demonstrate by confocal immunofluorescence microscopy that TD-60 and INCENP distribute identically throughout the cell cycle. Both appear coordinately in G2-phase nuclei and become concentrated at centromeres during prophase. TD-60 and INCENP both then leave the chromosome together during anaphase and redistribute to the spindle midzone, as do other chromosome passenger proteins, and traverse the entire equatorial diameter from cortex to cortex. By image overlay and pixel count analysis we show that TD-60 and INCENP are distinct among known chromosome passenger proteins in extending beyond the spindle to the cortex. Further, we show that the cytokinesis-associated protein kinase AIM-1 also shares this distribution property. We suggest that this redistribution is required to signal cytokinesis. TD-60 and INCENP also show identical localization in cells that exit mitosis in the presence of dihydrocytochalasin B (DCB), an inhibitor of actin assembly. Such cells can resume cleavage upon removal of DCB and in a recovery subpopulation that cleaves only on one side, these proteins both colocalize to the cortex only where a cleavage furrow forms. Given the coincident distribution of TD-60 and INCENP during both interphase and mitosis, we suggest that these proteins may cooperate, perhaps within a protein complex, in signalling cytokinesis. Such a mechanism, using chromosome passenger proteins, may ensure that cytokinesis occurs only between the separated chromatids, and only after they have segregated. Received: 12 August 1998; in revised form: 1 September 1998 / Accepted: 2 September 1998  相似文献   

9.
Cytokinesis involves the concerted efforts of the microtubule and actin cytoskeletons as well as vesicle trafficking and membrane remodeling to form the cleavage furrow and complete daughter cell separation. The exact mechanisms that support membrane remodeling during cytokinesis remain largely undefined. In this study, we report that the large GTPase dynamin, a protein involved in membrane tubulation and vesiculation, is essential for successful cytokinesis. Using biochemical and morphological methods, we demonstrate that dynamin localizes to the spindle midzone and the subsequent intercellular bridge in mammalian cells and is also enriched in spindle midbody extracts. In Caenorhabditis elegans, dynamin localized to newly formed cleavage furrow membranes and accumulated at the midbody of dividing embryos in a manner similar to dynamin localization in mammalian cells. Further, dynamin function appears necessary for cytokinesis, as C. elegans embryos from a dyn-1 ts strain, as well as dynamin RNAi-treated embryos, showed a marked defect in the late stages of cytokinesis. These findings indicate that, during mitosis, conventional dynamin is recruited to the spindle midzone and the subsequent intercellular bridge, where it plays an essential role in the final separation of dividing cells.  相似文献   

10.
S de Petris 《The EMBO journal》1984,3(8):1849-1855
The 'unperturbed' distribution of plasma membrane glycoproteins during cytokinesis has been examined by immunofluorescence and electron microscopy on dividing mouse and rat lymphoid cells fixed before being labelled with the appropriate reagents. Two groups of molecules which cap 'spontaneously' to the uropod of non-dividing cells, i.e., the common receptors for Helix pomatia (HPA) and peanut agglutinin (PNA) (and in particular the thymocyte glycophorin-like glycoprotein) and membrane immunoglobulins, redistribute spontaneously to the cleavage furrow during cytokinesis. By electron microscopy, the redistributed molecules (HPA receptors) appear to be aggregated in clusters. Other glycoproteins, such as Concanavalin A receptors and Thy.1 antigens, which do not cap spontaneously on interphase cells, remain uniformly distributed or are somewhat depleted over the cleavage furrow. The results suggest that a spontaneous 'transport' of certain membrane molecules from the nuclear pole to the cleavage furrow occurs normally during cytokinesis by a mechanism analogous to that of uropod formation and spontaneous capping in interphase cells. The existence of redistribution phenomena in dividing cells imposes some restrictions on the possible mechanisms of redistribution and on certain aspects of the cleavage process.  相似文献   

11.
Evidence suggests that p190RhoGAP (p190), a GTPase activating protein (GAP) specific for Rho, plays a role in cytokinesis. First, ectopic expression of p190 induces a multinucleated cellular phenotype. Second, endogenous p190 localizes to the cleavage furrow of dividing cells. Lastly, its levels are reduced in late mitosis by ubiquitin-mediated proteasomal degradation, consistent with the idea that low levels of p190 and high levels of active Rho are required for completion of cytokinesis. As with p190, RhoA and the RhoGEF, ECT2, have been localized to the cleavage furrow. These findings raise the question of whether p190 and ECT2 cooperate antagonistically to regulate the activity of Rho and contraction of the actomyosin ring during cytokinesis. Here we demonstrate ECT2 can, in a dose-dependent manner, reduce multinucleation induced by p190. Furthermore, endogenous p190 and ECT2 colocalize at the cleavage furrow of dividing cells and stably associate with one another in co-immunoprecipitation assays. Functional and physical interactions between p190 and ECT2 are reflected in the levels of Rho activity, as assessed by Rho pull-down assays. Together, these results suggest that co-regulation of Rho activity by p190RhoGAP and ECT2 in the cleavage furrow determines whether cells properly complete cytokinesis.  相似文献   

12.
Developmental modifications in cell shape depend on dynamic interactions between the extracellular matrix and cytoskeleton. In contrast, existing models of cytokinesis describe substantial cell surface remodeling that involves many intracellular regulatory and structural proteins but includes no contribution from the extracellular matrix [1-3]. Here, we show that extracellular hemicentins assemble at the cleavage furrow of dividing cells in the C.?elegans germline and in preimplantation mouse embryos. In the absence of hemicentin, cleavage furrows form but retract prior to completion, resulting in multinucleate cells. In addition to their role in tissue organization, the data indicate that hemicentins are the first secreted proteins required during mammalian development and the only known secreted proteins required for cytokinesis, with an evolutionarily conserved role in stabilizing and preventing retraction of nascent cleavage furrows. Together with studies showing that extracellular polysaccharides are required for cytokinesis in diverse species [4-9], our data suggest that assembly of a cell type-specific extracellular matrix may be a general requirement for cleavage furrow maturation and contractile ring function during cytokinesis.  相似文献   

13.
The Rho GTPases RhoA and Rac1 function as master regulators of cytokinesis by controlling the actomyosin cytoskeleton. RhoA and Rac1 have to be respectively activated and inactivated at the division plane for cytokinesis to occur properly. The inactivation of Rac1 at the cleavage furrow is controlled by MgcRacGAP. However, the guanine-nucleotide exchange factor (GEF) that activates Rac1 during cell division remains unknown. Here, using a siRNA screening approach in HeLa cells, we identify Trio as a mitotic GEF of Rac1. We demonstrate that Trio controls Rac1 activation and subsequent F-actin remodeling in dividing cells. Moreover, Trio depletion specifically rescues the cytokinesis failure induced by MgcRacGAP depletion. Of importance, we demonstrate that this rescue is mediated by the Trio-Rac1 pathway, using GEF-dead mutants of Trio and a specific inhibitor of Rac1 activation by Trio. Overall this work identifies for the first time a GEF controlling Rac1 activation in dividing cells that counteracts MgcRacGAP function in cytokinesis.  相似文献   

14.
Several families of kinases work together to ensure the rate and precision of mitosis. Aurora-B is an important serine/threonine kinase required for chromosome segregation and cytokinesis. Identification of Aurora-B substrates will help to enhance our understanding of the molecular mechanism of mitosis. Through a yeast two-hybrid screen, we found a novel partner of Aurora-B, Septin1, belonging to a conserved family of GTPase proteins that localize to the cleavage furrow and are involved in cytokinesis. We confirmed this interaction using Co-immunoprecipitation experiments in mammalian cells and GST-pull-down analysis in vitro. Moreover, Aurora-B can phosphorylate Septin1 in vitro. We identified that Ser248, Ser307, and Ser315 are the main phosphorylation sites in Septin1. These two proteins partially co-localize to the midbody during cytokinesis. So, it is possible that Septin1's role in the regulation of cytokinesis is related to its phosphorylation by Aurora-B. Unlike previous reports that Septins function in cytokinesis and localize to the cleavage furrow, we found that Septin1 localizes to the spindle pole throughout mitosis, indicating that Septin1 may function in chromosome segregation as well.  相似文献   

15.
Aurora-B is a protein kinase required for chromosome segregation and the progression of cytokinesis during the cell cycle. We report here that Aurora-B phosphorylates GFAP and desmin in vitro, and this phosphorylation leads to a reduction in filament forming ability. The sites phosphorylated by Aurora-B; Thr-7/Ser-13/Ser-38 of GFAP, and Thr-16 of desmin are common with those related to Rho-associated kinase (Rho-kinase), which has been reported to phosphorylate GFAP and desmin at cleavage furrow during cytokinesis. We identified Ser-59 of desmin to be a specific site phosphorylated by Aurora-B in vitro. Use of an antibody that specifically recognized desmin phosphorylated at Ser-59 led to the finding that the site is also phosphorylated specifically at the cleavage furrow during cytokinesis in Saos-2 cells. Desmin mutants, in which in vitro phosphorylation sites by Aurora-B and/or Rho-kinase are changed to Ala or Gly, cause dramatic defects in filament separation between daughter cells in cytokinesis. The results presented here suggest the possibility that Aurora-B may regulate cleavage furrow-specific phosphorylation and segregation of type III IFs coordinatedly with Rho-kinase during cytokinesis.  相似文献   

16.
Myosin II is activated by the monophosphorylation of its regulatory light chain (MRLC) at Ser19 (1P-MRLC). Its ATPase activity is further enhanced by MRLC diphosphorylation at Thr18/Ser19 (2P-MRLC). As these phosphorylated MRLCs are colocalized with their heavy chains at the contractile ring in dividing cells, we believe that the phosphorylated MRLC acts as a subunit of the activated myosin II during cytokinesis. However, the distinct role(s) of 1P- and 2P-MRLC during cytokinesis has not been elucidated. In this study, a monoclonal antibody (4F12) specific for 2P-MRLC was raised and used to examine the roles of 2P-MRLC in cultured mammalian cells. Our confocal microscopic observations using 4F12 revealed that 2P-MRLC localized to the contractile ring, and, unexpectedly, to the midzone also. Interestingly, 2P-MRLC did not colocalize with 1P-MRLC, myosin II heavy chain, and F-actin at the midzone. These results suggest that 2P-MRLC has a role different from that of 1P-MRLC at the midzone, and is not a subunit of myosin II.  相似文献   

17.
Cell division ends up with the membrane separation of two daughter cells, presumably by a membrane fusion that requires dynamic changes of the distribution and the composition of membrane lipids. We have previously shown that a membrane lipid phosphatidylethanolamine (PE) is exposed on the cell surface of the cleavage furrow during late cytokinesis and that this PE movement is involved in regulation of the contractile ring disassembly. Here we show that immobilization of cell surface PE by a PE-binding peptide blocks the RhoA inactivation in the late stage of cytokinesis. Phosphatidylinositol 4-phosphate 5-kinase (PIP5K), but not other RhoA effectors, is co-localized with RhoA in the peptide-treated cells. Indeed, PIP5K and its product phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) are localized to the cleavage furrow of normally dividing cells. Both overexpression of a kinase-deficient PIP5K mutant and microinjection of anti-PI(4,5)P(2) antibodies compromise cytokinesis by preventing local accumulation of PI(4,5)P(2) in the cleavage furrow. These findings demonstrate that the localized production of PI(4,5)P(2) is required for the proper completion of cytokinesis and that the possible formation of a unique lipid domain in the cleavage furrow membrane may play a crucial role in coordinating the contractile rearrangement with the membrane remodeling during late cytokinesis.  相似文献   

18.
Radixin is a barbed end-capping actin-modulating protein which was first identified in isolated cell-to-cell adherens junctions from rat liver (Tsukita, Sa., Y. Hieda, and Sh. Tsukita, 1989. J. Cell Biol. 108:2369-2382). In the present study, we have analyzed the distribution of radixin in dividing cells. For this purpose, an mAb specific for radixin was obtained using chicken gizzard radixin as an antigen. By immunofluorescence microscopy with this mAb and a polyclonal antibody obtained previously, it was clearly shown in rat fibroblastic cells (3Y1 cells) that radixin was highly concentrated at the cleavage furrow during cytokinesis. Radixin appeared to accumulate rapidly at the cleavage furrow at the onset of furrowing, continued to be concentrated at the furrow during anaphase and telophase, and was finally enriched at the midbody. This concentration of radixin at the cleavage furrow was detected in all other cultured cells we examined: bovine epithelial cells (MDBK cells), mouse myeloma cells (P3 cells), rat kangaroo Ptk2 cells, mouse teratocarcinoma cells, and chicken fibroblasts. Furthermore, it became clear that the epitope for the mAb was immunofluorescently masked in the cell-to-cell adherens junctions. Together, these results lead us to conclude that radixin is present in the undercoat of the cell-to-cell adherens junctions and that of the cleavage furrow, although their respective molecular architectures are distinct. The possible roles of radixin at the cleavage furrow are discussed with special reference to the molecular mechanism of the actin filament-plasma membrane interaction at the furrow.  相似文献   

19.
Selection of the cleavage plane during cytokinesis in dividing cells is linked to the position of the mitotic spindle. A major player in cleavage plane positioning is believed to be the anaphase central spindle and its associated signaling complex called centralspindlin, composed of MgcRacGap and MKLP1. Centralspindlin has the capacity to induce furrowing of the cell cortex by promoting the localized activation of RhoA, which in turn promotes assembly of the contractile ring. We have found a way to induce a cytokinesis-like process in unfertilized Drosophila eggs and very early embryos, when spindle structures are few and located far from invaginating egg cortex. The simple injection of a small molecule inhibitor of Cdk1/Cyclin B (either Roscovitin or RO3306) is sufficient to promote membrane invagination near the site of injection. The furrow generated is in many respects similar to a classical cleavage furrow. Actin, myosin, anillin and MKLP1 are all associated with the forming furrow, which in some cases can entirely circumscribe the unfertilized egg. A similar furrow can also be generated by the localized injection of constitutively active RhoA protein, suggesting that Cdk1 is normally an upstream inhibitor of RhoA activation. We show further that this process apparently is not associated with microtubules. Since simple localized inhibition of Cdk1 is sufficient to induce a furrow, we suggest that in real cytokinesis in normal cells, the localized downregulation of Cdk1 activity at the metaphase-anaphase transition may contribute, along with the spindle, to the positioning of the cleavage furrow.  相似文献   

20.
Anillin, an actin-binding protein localized at the cleavage furrow, is required for cytokinesis. Through an in vitro expression screen, we identified anillin as a substrate of the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that controls mitotic progression. We found that the levels of anillin fluctuate in the cell cycle, peaking in mitosis and dropping drastically during mitotic exit. Ubiquitination of anillin required a destruction-box and was mediated by Cdh1, an activator of APC/C. Overexpression of Cdh1 reduced the levels of anillin, whereas inactivation of APC/C(Cdh1) increased the half-life of anillin. Functionally, anillin was required for the completion of cytokinesis. In anillin knockdown cells, the cleavage furrow ingressed but failed to complete the ingression. At late cytokinesis, the cytosol and DNA in knockdown cells underwent rapid myosin-based oscillatory movement across the furrow. During this movement, RhoA and active myosin were absent from the cleavage furrow, and myosin was redistributed to cortical patches, which powers the random oscillatory movement. We concluded that anillin functions to maintain the localization of active myosin, thereby ensuring the spatial control of concerted contraction during cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号