首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants were regenerated from root explants of Arabidopsis halleri (L.) O’Kane and Al-Shehbaz via a three-step procedure callus induction, induction of somatic embryos and shoot development. Callus was induced from root segments, leaflets and petiole segments after incubation for 2 weeks in Murashige and Skoog medium (MS) supplemented with 0.5 mg/l−1 (2.26 μM) 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.05 mg/l−1 (0.23 μM) kinetin. Only calli developed from root segments continued to grow when transferred to a regeneration medium containing 2.0 mg/l−1 (9.8 μM) 6-γ-γ-(dimethylallylamino)-purine (2ip) and 0.05 mg/l−1 (2.68 μM) α-naphthalenacetic acid (NAA) and eventually 40 of them developed embryogenic structures. On the same medium 38 of these calli regenerated shoots. Rooting was achieved for 50 of the shoots subcultured in MS medium without hormones. The regeneration ability of callus derived from root cuttings, observed in this study, makes this technique useful for genetic transformation experiments and in vitro culture studies.  相似文献   

2.
Sternbergia fischeriana is an endangered geophyte and therefore in vitro micropropagation of this plant will have great importance for germplasm conservation and commercial production. Bulb scale and immature embryo explants of S. fischeriana were cultured on different nutrient media supplemented with various concentrations of plant growth regulators. Immature embryos produced higher number of bulblets than bulb scales. Large numbers of bulblets were regenerated (over 80 bulblets/explants) from immature embryos on Murashige and Skoog (MS) medium supplemented with 4 mg l–1 6-benzylaminopurine (BA) and 0.25 mg l–1 -naphthaleneacetic (NAA) or 2 mg l–12,4-dichlorophenoxyacetic acid (2,4-D) after 14 months of culture initiation. Regenerated bulblets were kept at 5 °C for 5 weeks and then transplanted to a potting mixture.  相似文献   

3.
Agrobacterium tumefaciens-mediated transformation system for perilla (Perilla frutescens Britt) was developed. Agrobacterium strain EHA105 harboring binary vector pBK I containing bar and γ-tmt cassettes or pIG121Hm containing nptII, hpt, and gusA cassettes were used for transformation. Three different types of explant, hypocotyl, cotyledon and leaf, were evaluated for transformation and hypocotyl explants resulted in the highest transformation efficiency with an average of 3.1 and 2.2%, with pBK I and pIG121Hm, respectively. The Perilla spp. displayed genotype-response for transformation. The effective concentrations of selective agents were 2 mg l−1 phosphinothricin (PPT) and 150 mg l−1 kanamycin, respectively, for shoot induction and 1 mg l−1 PPT and 125 mg l−1 kanamycin, respectively, for shoot elongation. The transformation events were confirmed by herbicide Basta spray or histochemical GUS staining of T0 and T1 plants. The T-DNA integration and transgene inheritance were confirmed by PCR and Southern blot analysis of random samples of T0 and T1 transgenic plants.  相似文献   

4.
An N-acetylglucosaminidase produced by Streptomyces cerradoensis was partially purified giving, by SDS-PAGE analysis, two main protein bands with Mr of 58.9 and 56.4 kDa. The Km and Vmax values for the enzyme using p-nitrophenyl-β-N-acetylglucosaminide as substrate were of 0.13 mM and 1.95 U mg−1 protein, respectively. The enzyme was optimally activity at pH 5.5 and at 50 °C when assayed over 10 min. Enzyme activity was strongly inhibited by Cu2+ and Hg2+ at 10 mM, and was specific to substrates containing acetamide groups such as p-nitrophenyl-β-N-acetylglucosaminide and p-nitrophenyl-β-D-N,N′-diacetylchitobiose.  相似文献   

5.
The xylitol dehydrogenase-encoding Arxula adeninivorans AXDH gene was isolated and characterized. The gene includes a coding sequence of 1107 bp encoding a putative 368 amino acid protein of 40.3 kDa. The identity of the gene was confirmed by a high degree of homology of the derived amino acid sequence to that of xylitol dehydrogenases from different sources. The gene activity was regulated by carbon source. In media supplemented with xylitol, D-sorbitol and D-xylose induction of the AXDH gene and intracellular accumulation of the encoded xylitol dehydrogenase was observed. This activation pattern was confirmed by analysis of AXDH promoter – GFP gene fusions. The enzyme characteristics were analysed from isolates of native strains as well as from those of recombinant strains expressing the AXDH gene under control of the strong A. adeninivorans-derived TEF1 promoter. For both proteins, a molecular mass of ca. 80 kDa was determined corresponding to a dimeric structure, an optimum pH at 7.5 and a temperature optimum at 35 °C. The enzyme oxidizes polyols like xylitol and D-sorbitol whereas the reduction reaction is preferred when providing D-xylulose, D-ribulose and L-sorbose as substrates. Enzyme activity exclusively depends on NAD+ or NADH as coenzymes.  相似文献   

6.
Gluconobacter oxydans LMG 1489 was selected as the best strain for NAD(P)-dependent polyol dehydrogenase production. The highest enzyme activities were obtained when this strain was cultivated on a medium consisting of 30 g glycerol l–1, 7.2 g peptone l–1 and 1.8 g yeast extract l–1. Two D-fructose reducing, NAD-dependent intracellular enzymes were present in the G. oxydans cell-free extract: sorbitol dehydrogenase, and mannitol dehydrogenase. Substrate reduction occurred optimally at a low pH (pH 6), while the optimum for substrate oxidation was situated at alkaline pHs (pH 9.5–10.5). The mannitol dehydrogenase was more thermostable than the sorbitol dehydrogenase. The cell-free extract could be used to produce D-mannitol and D-sorbitol enzymatically from D-fructose. Efficient coenzyme regeneration was accomplished by formate dehydrogenase-mediated oxidation of formate into CO2.  相似文献   

7.
The batch fermentation of Rhodotorula acheniorum MC on a culture medium containing 5% sucrose, mineral salts and yeast extract at 26 °C for 96 h, with aeration at 0.75 v/v/m and agitation at 500 rev min −1 resulted in the synthesis of an exopolysaccharide (6.2 g l −1) which formed two fractions upon precipitation. The fractions were purified to a carbohydrate content of 98.2% for fraction I and 87.3% for fraction II. Mannose was the main monosaccharide component in a 92.8% concentration in fraction I and a 90.6% concentration in Fraction II. The exopolysaccharide was thus a mannan. The gel chromatograms confirmed the chemical composition of both fractions. The molecular weight of mannan I was 310 kD, whereas that of mannan II was 249 kD. The mannan I intrinsic viscosity [η]=6.23 dl g−1 was higher than that of mannan II [η]=2.73 dl g−1. The water-binding capacity of the mannan samples was established within the 1.2–3.5 g g−1 range. The multiplicative model [η]=387.22. Dr−0.1913. T−1.095. C1.814 describing the effect of the velocity gradient Dr, the exomannan concentration C and the temperature T on the dynamic viscosity values η of polymer solutions was obtained.  相似文献   

8.
In industry, fosfomycin is mainly prepared via chemical epoxidation of cis-propenylphosphonic acid (cPPA). The conversion yield of fosfomycin is less than 50% in the whole process and a large quantity of waste is produced. Biotransformation by microorganisms is an alternative method of preparation. This kind of conversion is more delicate, environmentally friendly, and the conversion yield of fosfomycin would be higher. In this work, an aerobic bacterium capable of transforming cPPA to fosfomycin was isolated. The organism, designated as strain S101, was identified as Bacillus simplex by morphological and physiological characteristics as well as by analysis of the gene encoding the 16S rRNA. Fosfomycin was assayed by two means, bioassay and gas chromatography (GC). Glycerol was a good carbon source for growth and cPPA conversion of strain S101. When cPPA was used as the sole carbon source, neither growth nor conversion to fosfomycin occurred. The optimum cPPA concentration in the conversion medium was 2,000 μg ml−1. After 6 days of incubation, the concentration of fosfomycin reached its maximum level (1,838.2 μg ml−1), with a conversion ratio of 81.3%. Air was indispensable for the growth but not for the conversion to fosfomycin. Furthermore, vanadium ions were found to be essential for the conversion. High concentrations of cPPA had fewer inhibitory effects on the growth of strain S101.  相似文献   

9.
A Francisella sp., isolate GM2212T, previously isolated from diseased farmed Atlantic cod Gadus morhua in Norway is characterized. The complete 16S rDNA, 16S–23S intergenic spacer, 23S rDNA, 23S–5S intergenic spacer, 5S rDNA, FopA, lipoprotein TUL4 (LpnA), malate dehydrogenase and a hypothetical lipoprotein (LpnB) is sequenced and compared with Francisella tularensis and Francisella philomiragia. All these sequences support a close relationship between GM2212T and F. philomiragia. The bacterium grows at 10–25°C with an optimum at about 20°C, a temperature range clearly different from F. tularensis and F. philomiragia. GM2212T is catalase-positive, indole positive, oxidase-negative, do not produce H2S in Triple Sugar Iron agar, and does not hydrolyze gelatin, is resistant to erythromycin and susceptible to ceftazidime, the latter five characteristics separating it from F. philomiragia. Cysteine enhances growth. Acid is produced from d-glucose, maltose, sucrose (weak) but not from lactose or glycerol. GM2212T grows on both MacConkey agar and in nutrient broth (6% NaCl). The bacterium is resistant to trimethoprim-sulfamethoxazole, penicillines, cefuroxime and erythromycin; but is susceptible to ceftazidime, tetracycline, gentamicin, ciprofloxacin. Based on the molecular and phenotypical characteristics, we suggest that this GM2212 isolate, may represent a new species of Francisella. Isolate GM2212T (=CNCM I-3481T = CNCM I-3511T = DSM 18777T).  相似文献   

10.
We have developed a protocol for the in vitro propagation of the genus Clivia. Shoots were regenerated when fragments of the peduncle-pedicel junction (PP junction) from young inflorescences were used as explants. The optimal media for PP junction were Murashige and Skoog (MS)-based medium containing 10 M of 6-benzyladenine (BA) and 10 M of 2,4-dichlorophenoxyacetic acid (2,4-D) or MS supplemented with 5 M BA, 10 M -naphthaleneacetic acid (NAA), 250 mg l-1 glutamine and 500 mg l–1 casein hydrolysate and their usage depended on the breeding lines. Multiplication from initiations and in vitro seedlings was the best when the explants were cut longitudinally through the meristem and placed on MS plus 44 M BA. Plantlets were transferred on to hormone -free MS medium with charcoal for rooting.  相似文献   

11.
Arene cis-diols are interesting chemicals because of their chiral structures and great potentials in industrial synthesis of useful chiral chemical products. Pseudomonas putida KT2442 was genetically modified to transform benzoic acid (benzoate) to 1,2-dihydroxy-cyclohexa-3,5-diene-1-carboxylic acid (DHCDC) or named benzoate cis-diol. BenD gene encoding cis-diol dehydrogenase was deleted to generate a mutant named P. putida KTSY01. Genes benABC encoding benzoate dioxygenase were cloned into plasmid pSYM01 and overexpressed in P. putida KTSY01. The recombinant bacteria P. putida KTSY01 (pSYM01) showed strong ability to transform benzoate to DHCDC. DHCDC of 2.3 g/L was obtained with a yield of 73% after 24 h of cultivation in shake flasks incubated under optimized growth conditions. Transformation of benzoate carried out in a 6-L fermentor using a benzoate fed-batch process produced over 17 g/L DHCDC after 48 h of fermentation. The average DHCDC production rate was 0.356 g L−1 h−1. DHCDC purified from the fermentation broth showed a purity of more than 95%, and its chemical structure was confirmed by nuclear magnetic resonance.  相似文献   

12.
Brush border membrane vesicles (BBMV) enriched in sucrase, maltase and alkaline phosphatase, and impoverished in Na+-K+-ATPase, were isolated from proximal and distal intestine of the gilthead sea bream (Sparus aurata) by a MgCl2 precipitation method. Vesicles were suitable for the study of the characteristics of D-glucose apical transport. Only one D-glucose carrier was found in vesicles from each intestinal segment. In both cases, the D-glucose transport system was sodium-dependent, phlorizin-sensitive, significantly inhibited by D-glucose, D-galactose, α-methyl-D-glucose, 3-O-methyl-D-glucose and 2-deoxy-D-glucose, and showed stereospecificity. Apparent affinity constants of D-glucose transport (Kt) were 0.24 ± 0.03 mM in proximal and 0.18 ± 0.03 mM in distal intestine. Maximal rate of influx (Jmax) was 47.3 ± 2.2 pmols. mg−1 protein for proximal and 27.3 ± 3.6 pmols. mg−1 protein for distal intestine. Specific phlorizin binding and relative abundance of an anti-SGLT1 reactive protein were significantly higher in proximal than in distal BBMV. These results suggest the presence of the same D-glucose transporter along the intestine, with a higher density in the proximal portion. This transporter is compatible with the sodium-dependent D-glucose carrier described for other fish and with the SGLT1 of higher vertebrates.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

13.
Ge B  Tang Z  Lin L  Ren Y  Yang Y  Qin S 《Biotechnology letters》2005,27(11):783-787
A recombinant allophycocyanin (rAPC), used for treatment of tumors, has been expressed in E. coli which was grown in glucose fed-batch culture in a 30 l fermentor. Recombinant allophycocyanin was purified from soluble E. coli cell lysate using hydrophobic interaction chromatography followed by chromatography using amylose affinity column. The purity of product was greater than 98% and yielded an average of 5.5 g kg−1 dry cells. Recombinant allophycocyanin significantly inhibited H22 hepatoma (p ( 0.01) in mice with inhibition rates ranging from 36% to 62% with doses from 6.25 to 50 mg kg−1 d−1.  相似文献   

14.
Li B  Mao D  Liu Y  Li L  Kuang T 《Photosynthesis research》2005,83(3):297-305
A pure, active cytochrome b 6 f was isolated from the chloroplasts of the marine green alga, Bryopsis corticulans. To investigate and characterize this cytochrome b 6 f complex, sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), absorption spectra measurement and HPLC were employed. It was shown that this purified complex contained four large subunits with apparent molecular masses of 34.8, 24, 18.7 and 16.7 kD. The ratio of Cyt b 6 to Cytf was 2.01 : 1. The cytochromeb 6 f was shown to catalyze the transfer of 73 electrons from decylplastoquinol to plastocyanin–ferricyanide per Cyt f per second. α-Carotene, one kind of carotenoid that has not been found to present in cytochrome b 6 f complex, was discovered in this preparation by reversed phase HPLC. It was different from β-carotene usually found in cytochrome b 6 f complex. The configuration of the major α-carotene component was assigned to be 9-cis by resonance Raman spectroscopy. Different from the previous reports, the configuration of this α-carotene in dissociated state was determined to be all-trans. Besides this carotene, chlorophyll a was also found in this complex. It was shown that the molecular ratios of chlorophylla, cis and all-trans-α-carotene to Cyt f in this complex were 1.2, 0.7 and 0.2, respectively.  相似文献   

15.
Preparative-scale fermentation of ginsenoside Rb1 (1) with Acremonium strictum AS 3.2058 gave three new compounds, 12β-hydroxydammar-3-one-20 (S)-O-β-d-glucopyranoside (7), 12β, 25-dihydroxydammar-(E)-20(22)-ene-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (8), and 12β, 20 (R), 25-trihydroxydammar-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (9), along with five known compounds, ginsenoside Rd (2), gypenoside XVII (3), ginsenoside Rg3 (4), ginsenoside F2 (5), and compound K (6). The structural elucidation of these metabolites was based primarily on one- and two-dimensional nuclear magnetic resonance and high-resolution electron spray ionization mass spectra analyses. Among these compounds, 26 are also the metabolites of ginsenoside Rb1 in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, A. strictum might be a useful tool for generating mammalian metabolites of related analogs of ginsenosides for complete structural identification and for further use in pharmaceutical research in this series of compounds. In addition, the biotransformation kinetics was also investigated.  相似文献   

16.
Crocus sativus L., cultivated since ancient times as the source of saffron, is a triploid plant that can be propagated only via its corms which undergo a period of dormancy. Understanding the processes taking place in the corm is essential to preserve the plant and improve its quality. Color and taste being of prime importance in the quality of the saffron spice, knowledge on polyphenol oxidase (PPO) activity in the plant is of particular interest given the role of the enzyme in fruit and vegetable browning during processing and during the storage of processed food. In this paper, PPO activity was investigated for the first time in extracts obtained from dormant C. sativus L. corms. PPO activity was detectable using l-DOPA, pyrogallol, catechol or p-cresol as substrate, each being oxidized to its corresponding o-quinone; no activity was detectable with l-tyrosine, tyramine or phenol as substrate. Two pH optima, respectively at 4.5 and 6.7, were observed with all substrates and a third one, at 8.5, was found with l-DOPA and p-cresol. Kinetics parameters studied at pH 6.7 indicated the highest catalytic efficiency (in units mg−1 prot mM−1) with pyrogallol: 150, then catechol: 39, l-DOPA: 6.4 and p-cresol: 4.6. The enzymatic activity was inhibited by 50% in the presence of 0.22, 0.35, 0.5 and 0.7 mM kojic acid with, respectively, catechol, pyrogallol, p-cresol and l-DOPA as substrate. When stained for PPO activity, non-denaturing gel electropherograms of extract revealed three distinct bands, indicating the presence of multiple isoenzymes in dormant C. sativus L. corms.  相似文献   

17.
Trametes versicolor 1 was shown to grow on phenol as its sole carbon and energy source. The culture growth and degradation ability dependence on culture medium pH value was observed. The optimal pH value of a liquid Czapek salt medium was 6.5. The investigated strain utilized completely 0.5 g/l phenol in 6 days. The dynamics of the phenol degradation process was investigated. The process was characterized by specific growth rate μmax 0.33 h−1, metabolic coefficient k = 4.4, yield coefficient Y x/s  = 0.23 and rate of degradation Q = 0.506 h−1. The intracellular activities of phenol hydroxylase (0.333 U/mg protein) and cis,cis-muconate lactonizing enzyme (0.41 U/mg protein) were demonstrated for the first time in this fungus. In an attempt to estimate the occurrence of gene sequences in T. versicolor 1 related to phenol degradation pathway a dot blot analysis with total DNA isolated from this strain was performed. Two synthetic oligonucleotides were used as hybridizing probes. One of the probes was homologous to the 5′end of phyA gene coding for phenol hydroxylase in Trichosporon cutaneum ATCC 46490. The other probe was created on the basis of cis,cis-muconate lactonizing enzyme coding gene in T. cutaneum ATCC 58094. The results of these investigations showed that T. versicolor 1 may carry genes similar to those of Trichosporon cutaneum capable to degrade phenol.  相似文献   

18.
To clarify the diversity and function of isozymes of ascorbate peroxidase (APX) in plants, a method of producing large quantities of these proteins is needed. Here, we describe an Escherichia coli expression system for the rapid and economic expression of two rice APX genes, APXa and APXb (GeneBank accession Nos. D45423 and AB053297, respectively). The two genes were cloned into the pGEX-6p-3 vector to allow expression of APX as a glutathione-S-transferase (GST) fusion protein. The GST-APXa and GST-APXb fusion proteins were purified by affinity chromatography using a glutathione-Sepharose 4B column, with final yields of 40 and 73 mg g–1 dry cells, respectively. Specific activities were 15 and 20 mM ascorbate min–1 mg–1 protein, respectively. The Km values for ascorbate were 4 and 1 mM, respectively, and those for H2O2 were 0.3 and 0.7 mM, respectively indicating that the two rice isoenzymes have different properties.Revisions requested 27 September 2004; Revisions received 12 November 2004  相似文献   

19.
A bacterium, strain 314B, able to assimilate (S)-5-oxo-2-tetrahydrofurancarboxylic acid was isolated from soil and identified as Erwinia cypripedii. A lactonase hydrolyzing (S)-5-oxo-2-tetrahydrofurancarboxylic acid to l--hydroxyglutaric acid was purified 63-fold with 2% recovery from crude extracts of this bacterium to homogeneity as judged by SDS-PAGE. The molecular masses estimated by SDS-PAGE and gel filtration were 41 kDa and 79 kDa, respectively. The maximum activity was observed at pH 6.5–7.5 and 35–45 °C. The enzyme showed lower activity toward dl-2-oxotetrahydrofuran-4,5-dicarboxylic acid, but did not act on (R)-5-oxo-2-tetrahydrofurancarboxylic acid and other natural and synthetic lactones tested.  相似文献   

20.
Escherichia coli W was genetically engineered to produce l-alanine as the primary fermentation product from sugars by replacing the native d-lactate dehydrogenase of E. coli SZ194 with alanine dehydrogenase from Geobacillus stearothermophilus. As a result, the heterologous alanine dehydrogenase gene was integrated under the regulation of the native d-lactate dehydrogenase (ldhA) promoter. This homologous promoter is growth-regulated and provides high levels of expression during anaerobic fermentation. Strain XZ111 accumulated alanine as the primary product during glucose fermentation. The methylglyoxal synthase gene (mgsA) was deleted to eliminate low levels of lactate and improve growth, and the catabolic alanine racemase gene (dadX) was deleted to minimize conversion of l-alanine to d-alanine. In these strains, reduced nicotinamide adenine dinucleotide oxidation during alanine biosynthesis is obligately linked to adenosine triphosphate production and cell growth. This linkage provided a basis for metabolic evolution where selection for improvements in growth coselected for increased glycolytic flux and alanine production. The resulting strain, XZ132, produced 1,279 mmol alanine from 120 g l−1 glucose within 48 h during batch fermentation in the mineral salts medium. The alanine yield was 95% on a weight basis (g g−1 glucose) with a chiral purity greater than 99.5% l-alanine. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号