首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Horak A  Hill RD 《Plant physiology》1972,49(3):365-370
Extracts of bean (Phaseolus vulgaris L.) etioplasts and chloroplasts contain a dithiothreitol-activated Ca2+-dependent adenosine triphosphatase which is inhibited by Dio-9. The chloroplast and etioplast enzymes have identical RF values upon disc gel electrophoresis. Optimum extraction of the enzyme from either plastid preparation is accomplished with 1 mm ethylenediamine tetraacetic acid. Photophosphorylation capacity can be partially restored to depleted chloroplast preparations by addition of either the chloroplast or etioplast extract. These results suggest that the adenosine triphosphatase from etioplasts and chloroplasts represents a modified coupling factor for photophosphorylation.  相似文献   

2.
Mitochondria isolated from 4-day-old dark-grown wheat seedlings were purified by self-generating Percoll gradient. Phosphorylation reaction was carried out in vitro with the addition of [ c-32P]ATP and polypeptides resolved by 50S-PAGE were subjected to autoradiography. Amongst endogenous polypeptides phosphorylated, four polypeptides of 120, 66, 43 and 21 kD were prominent. Addition of Mg2+ (5 mM) caused dephosphorylation of 120 and 66 kO polypeptides but, simultaneously, induced/enhanced the phosphorylation of some polypeptides, with the effect being more pronounced on a 67 kD species. The phosphorylation of 120 kD species and a few other polypeptides was also down-regulated and that of a 18 kD polypeptide was up-regulated by Ca2+. The present study provides evidence that phosphorylation status of mitochondrial proteins is regulated by Mg2+ and/or Ca2+-dependent phosphatase(s) and protein kinase(s).  相似文献   

3.
4.
5.
Irradiation with red light of Sorghum bicolor seedlings stimulated in vitro phosphorylation of 55 kD and several other soluble polypeptides in a development-dependent manner. The red light stimulated phosphorylation of 55 kD polypeptide was more in 6-day-old etiolated plants as compared to 5-day-old plants. The in vitro phosphorylation of 55 kD polypeptide was enhanced further when calcium was added to the extracts obtained from red light irradiated tissues of 6-day-old seedlings. This effect was inhibited in the presence of calmodulin inhibitors. There was no significant stimulation in the phosphorylation of this polypeptide by calcium in 5-day-old and 7-day-old etiolated plants. Besides 55 kD, the phosphorylation of several other polypeptides was either stimulated or inhibited by light, calcium and calmodulin inhibitors suggesting involvement of both kinases and phosphatases in light-mediated phosphorylation.  相似文献   

6.
In vitro phosphorylation of several membrane polypeptides and soluble polypeptides from corn (Zea mays var. Patriot) coleoptiles was promoted by adding Ca2+. Ca2+-promoted phosphorylation of the membrane polypeptides was further increased in the presence of calmodulin. Both Ca2+-stimulated and Ca2+- and calmodulin-stimulated phosphorylations of membrane polypeptides were inhibited by chlorpromazine, a calmodulin antagonist. Ca2+-stimulated phosphorylation of soluble polypeptides increased with increasing Ca2+ concentration. The calmodulin antagonists chlorpromazine and trifluoperazine inhibited the Ca2+-promoted phosphorylation of soluble polypeptides. Added calmodulin promoted the Ca2+-dependent phosphorylation of a 98 kilodaltons polypeptide. Both Ca2+-dependent and Ca2+-independent phosphorylations required Mg2+ at an optimal concentration of 5 to 10 millimolar. Cyclic AMP was found to have no stimulatory effect on protein phosphorylation. Sodium molybdate, an inhibitor of protein phosphatase, increased the net phosphorylation of several polypeptides. Rapid loss of radioactivity from the phosphorylated polypeptides following incubation in unlabeled ATP indicated the presence of phosphoprotein phosphatase activity.  相似文献   

7.
The function of plastid ribosomes in pea (Pisum sativum L.) was investigated by characterizing the products of protein synthesis in vitro in plastids isolated at different stages during the transition from etioplast to chloroplast. Etioplasts and plastids isolated after 24, 48 and 96h of greening in continuous white light, use added ATP to incorporate labelled amino acids into protein. Plastids isolated from greening leaves can also use light as the source of energy for protein synthesis. The labelled polypeptides synthesized in isolated plastids were analysed by electrophoresis in sodium dodecyl sulphate-ureapolyacrylamide gels. Six polypeptides are synthesized in etioplasts with ATP as energy source. Only one of these polypeptides is present in a 150 000g supernatant fraction. This polypeptide has been identified as the large subunit of Fraction I protein (3-phospho-D-glycerate carboxylyase EC 4.1.1.39) by comparing the tryptic 'map' of its L-(35S)methionine-labelled peptides with the tryptic 'map' of large subunit peptides from Fraction I labelled with L-(35S)methionine in vivo. The same gel pattern of six polypeptides is seen when plastids isolated from greening leaves are incubated with either added ATP or light as the energy source. However, the rates of synthesis of particular polypeptides are different in plastids isolated at different stages of the etioplast to chloroplast transition. The results support the idea that plastid ribosomes synthesize only a small number of proteins, and that the number and molecular weight of these proteins does not alter during the formation of chloroplasts from etioplasts.  相似文献   

8.
In the last few years the presence in thylakoid membranes of chloroplasts of a NAD(P)H-plastoquinone oxidoreductase complex (Ndh complex) homologous to mitochondrial complex I has been well established. Herein, we report the identification of the Ndh complex in barley etioplast membranes. Two plastid DNA-encoded polypeptides of the Ndh complex (NDH-A and NDH-F) were relatively more abundant in etioplast membranes than in thylakoids from greening chloroplasts. Conversion of etioplast into chloroplast, after light exposure of barley seedlings grown in the dark, was accompanied by a decrease in the NADH dehydrogenase activity associated to plastid membranes. Using native-PAGE and immunolabelling techniques we have determined that a NADH specific dehydrogenase activity associated with plastid membranes, which was more active in etioplasts than in greening chloroplasts, contained the NDH-A and NDH-F polypeptides. These results complemented by those obtained through blue-native-PAGE indicated that NDH-A and NDH-F polypeptides are part of a 580 kDa NADH dependent dehydrogenase complex present in etioplast membranes. This finding proves that accumulation of the Ndh complex is independent of light. The decrease in the relative levels and specific activity of this complex during the transition from etioplast to chloroplasts was accompanied by a parallel decrease in the specific activity of peroxidase associated to plastid membranes. Based on the mentioned observations it is proposed that an electron transport chain from NADH to H2O2 could be active in barley etioplasts.  相似文献   

9.
1. Maize chloroplasts contain a trypsin-, dithiothreitol-, and Ca2+-activated ATPase. This enzyme, which can serve as a coupling factor for photosynthetic phosphorylation, differs slightly in a few properties but in general resembles a similar one in spinach plastids which was described earlier by others.

2. Maize etioplasts (immature plastids in dark-grown plants) also contain this ATPase, and it is shown that NaCl-EDTA extracts of etioplasts can restore photosynthetic phosphorylation activity to depleted green membranes of chloroplasts.

3. Electron microscopy of maize etioplast and chloroplast membranes demonstrates the presence of protruding knobs, approx. 90 Å in diameter. Removal and reassociation of knobs with membranes can be correlated with the ability to carry on photosynthetic phosphorylation.

4. Most or possibly all of the coupling factor (measured as ATPase) activity of a chloroplast may be present in the etioplast from which it develops. The photosynthetic membrane of the chloroplast can be formed in stages.

5. The significance of these observations is discussed with regard to membrane formation in general and plastid membrane development in particular.  相似文献   


10.
Etioplasts were isolated from leaves of dark-grown wheat (Triticum aestivum L. var Starke II). Galactolipid biosynthesis was assayed in an envelope-rich fraction and in the fraction containing the rest of the etioplast membranes by measuring incorporation of 14C from uridine-diphospho[14C]galactose into monogalactosyl diacylglycerol and digalactosyl diacylglycerol. More than half of the galactolipid biosynthetic capability was found in the fraction of inner etioplast membranes. This fraction was subfractioned into fractions enriched in prolamellar bodies and membrane vesicles (prothylakoids), respectively. All membrane fractions obtained from etioplasts were able to carry out galactolipid biosynthesis, although the activity was very low in prolamellar body-enriched fractions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed markedly different polypeptide patterns between the different fractions. It is concluded that the capability of galactolipid biosynthesis of etioplasts probably is not restricted to the envelope, but is also present in the inner membranes of this plastid.  相似文献   

11.
Protein methylation in pea chloroplasts   总被引:1,自引:1,他引:0  
Niemi KJ  Adler J  Selman BR 《Plant physiology》1990,93(3):1235-1240
The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with [3H-methyl]-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. One is a polypeptide with a molecular mass of 64 kD, a second has an Mr of 48 kD, and the third has a molecular mass of less than 10 kD. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide, having a molecular mass of 24 kD, is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methyl-linkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile [3H]methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the [3H]methyl group.  相似文献   

12.
13.
Phosphorylation of polypeptides in membrane fractions from barley (Hordeum vulgare L. cv CM 72) roots was compared in in vitro and in vivo assays to assess the potential role of protein kinases in modification of membrane transport. Membrane fractions enriched in endoplasmic reticulum, tonoplast, and plasma membrane were isolated using sucrose gradients and the membrane polypeptides separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis. When the membrane fractions were incubated with γ-[32P]ATP, phosphorylation occurred almost exclusively in the plasma membrane fraction. Phosphorylation of a band at 38 kilodaltons increased as the concentration of Mg2+ was decreased from millimolar to micromolar levels. Phosphorylation of bands at 125, 86, 58, 46, and 28 kilodaltons required millimolar Mg2+ concentrations and was greatly enhanced by Ca2+. When roots of intact plants were labeled with [32P]orthophosphate, polypeptides at approximately 135, 116, 90, 46 to 53, 32, 28, and 19 kilodaltons were labeled in the plasma membrane fraction and polypeptides at approximately 73, 66, and 48 kilodaltons were labeled in the tonoplast fraction. Treatment of the roots of intact plants with 150 millimolar NaCl resulted in increased phosphorylation of some polypeptides while treatment with 100 mm NaCl had no effect.  相似文献   

14.
15.
The following parameters were found to prolong the time-course of translation by isolated pea (Pisum sativum, cv Progress No. 9) chloroplasts: addition of other amino acids (an effect synergistic with sufficient free Mg2+), use of lower light intensities, and additions of inorganic phosphate and ATP. In a chloroplast system which includes these parameters, active translation usually extends to almost an hour. The total amount of leucine incorporated is routinely 60 to 100 nanomoles/milligram chlorophyll and often 200 nanomoles/milligram chlorophyll. Accurate estimation of the amount of amino acid incorporated depends on supplying the labeled amino acid at a concentration sufficient to overcome isotope dilution effects from endogenous pools. Approximately 39 thylakoid and 60 stroma polypeptides were visible on autoradiographs after labeling with [35S]methionine. Label in a few of the polypeptide bands was increased or decreased by specific changes in the reaction conditions. Due to the long period of activity and the large number of labeled products, this chloroplast system should be useful for future studies of chloroplast translation.  相似文献   

16.
To study the localization of polypeptides synthesized by isolated senescent chloroplasts we have fractionated the chloroplasts into stroma, envelope and thylakoid components. The validity of the fractionation procedure was tested by assaying both chlorophyll and enzyme markers, as well as the polypeptide composition of each fraction. Plastids in the transition of etioplast to chloroplast, senescent chloroplasts and kinetin-treated chloroplasts produced acceptable fractions, although their polypeptide compositions varied considerably during the ontogeny, particularly those of the envelope. Most of the polypeptides synthesized by isolated senescent chloroplasts were incorporated into the thylakoids except for a 58 kDa polypeptide localized in the stroma and some minor polypeptides present in both stroma and envelope. Although most of the polypeptides synthesized by isolated chloroplasts from kinetin-treated leaves were incorporated into the thylakoid membrane, several polypeptides were found in the stroma (90, 80, 65 and 54 kDa) and in the envelope (100, 75, 48 and 28–30 kDa). The results indicate that early in senescence, the polypeptides of the envelope change but, that probably, most of the new polypeptides are synthesized in the cytoplasm.  相似文献   

17.
R. Höinghaus  J. Feierabend 《Planta》1985,166(4):452-465
To determine the sites of synthesis of chloroplast-envelope proteins, we have analysed several enzyme and translocator functions ascribed to the envelope membranes, and investigated the envelope polypeptide composition of plastids isolated from 70S ribosome-deficient leaves of rye (Secale cereale L.) generated by growing the plants at a temperature of 32°C. Since the ribosomedeficient plastids are also achlorophyllous in light-grown leaves, not only were chloroplasts from mature, green leaves used for comparison, but also those from yellowing, aged leaves as well as etioplasts from dark-grown leaves raised at a temperature of 22° C. A majority of the plastidenvelope polypeptides appeared to be of cytoplasmic origin. The envelopes of ribosome-deficient plastids possessed ATPase (EC 3.6.1.3) activity; this was not, however, dependent on divalent cations, in contrast to the Mn2+- or Mg2+-dependent ATPase which is associated with chloroplast envelopes. Adenylate kinase (EC 2.7.4.3) was present in the stromal fraction of ribosome-deficient plastids and the stromal form of this enzyme is, therefore, of cytoplasmic origin. In contrast to previous findings, adenylate kinase was not, however, specifically associated with the chloroplast-envelope membranes, either in rye or in spinach. Measurements of the uptake of l-[14C]-malate into ribosome-deficient plastids indicated the presence and cytoplasmic origin of the dicarboxylate translocator. Malate uptake into rye etioplasts was, however, low. The phosphate translocator was assayed by the uptake of 3-phospho-[14C]glycerate. While rapid 3-phosphoglycerate uptake was observed for rye chloroplasts and etioplasts, it was hardly detectable for ribosome-deficient, plastids and rather low for chloroplasts from aged leaves. A polypeptide of M r approx. 30000 ascribed to the phosphate translocator was greatly reduced in the envelope patterns of ribosome-deficient plastids and of chloroplasts from aged leaves.  相似文献   

18.
The effect of common intracellular signals (Ca2+ and cAMP) on the activity of protein phosphorylation in mitochondria was investigated in coleoptiles of maize (Zea mays L.). Treatment of isolated mitochondria with 2 mM CaCl2 brought about an increase in the level of phosphorylation of proteins with mol ws of 74, 60, and 33 kD but considerably reduced phosphorylation of the protein with a mol wt of 51.5 kD. In the presence of Ca2+, phosphorylation of polypeptides with mol wts of 59 and 66 kD was also detected. cAMP considerably reduced phosphorylation of essentially all the investigated proteins in isolated mitochondria, which could be explained by activation of their dephosphorylation. Phosphorylation of mitochondrial proteins involves a polypeptide of about 94 kD showing kinase activity, which may be proper protein kinase or one of the subunits of a compound structure. In maize mitochondria, PP1A phosphatases were found. A hypothesis was advanced that redox-dependent phosphorylation/dephosphorylation of mitochondrial proteins plays an important role in mitochondrial signaling in higher plants.  相似文献   

19.
Incubation of amyloplasts isolated from cultured cells of sycamore (Acer pseudoplatanus L.) with [γ-32P]ATP resulted in the rapid phosphorylation (half-time of 40 seconds at 25 degrees Celcius) of organellar polypeptides. The preferred substrate for amyloplast protein kinases was Mg2+. ATP, and recovery of only [32P]serine after partial acid hydrolysis indicated the predominance of protein serine kinases in the organelle. These activities were located in the envelope and stromal fractions of the plastid, which showed different specificities toward exogenous protein substrates and distinct patterns of phosphorylation of endogenous polypeptides. A 66-kilodalton polypeptide, inaccessible to an exogenously added protease, was one of the major phosphorylated products found in intact amyloplasts at low [γ-32P] adenosine triphosphate concentrations. This polypeptide represented the major phosphoprotein observed with the isolated envelope fraction. The patterns of polypeptide phosphorylation found in intact amyloplasts and chloroplasts from cultured cell lines of sycamore were clearly distinguishable. The overall results indicate the presence of protein phosphorylation systems unique to this reserve plastid present in nonphotosynthetic tissues.  相似文献   

20.
Phosphorylation of polypeptides in isolated thylakoids was examined during chloroplast biogenesis in greening etiolated wheat leaves and 4 day-old wheat leaves grown under a diurnal light regime. At early stages of plastid development standard thylakoid preparations were heavily contaminated with nuclear proteins, which distorted the polypeptide phosphorylation profiles. Removal of contamination from membranes by sucrose density centrifugation demonstrated that the major membrane phosphoprotein in etioplasts was at 35 kDa. During etioplast greening a number of phosphoproteins appeared, of which the 25–27 kDa apoproteins of the light-harvesting chlorophylla/b protein complex associated with photosystem II (LHCII) became the most dominant. At the early stages of thylakoid development found at the base of the 4-day-old light grown leaf the LHCII apoproteins were evident as phosphoproteins; however the major phosphoprotein was polypeptide atca. 9kDA. Phosphorylation of both the LHCII apoproteins and the 9 kDa polypeptide in these thylakoids was not light-dependent. In the older thylakoids isolated from the leaf tip the LHCII apoproteins were the major phosphoproteins and their phosphorylation had become light-regulated; however phosphorylation of the 9 kDa polypeptide remained insensitive to light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号