首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transfer RNAs from liver and brain of young and old BC3F1 mice were compared in regard to extent of aminoacylation and cochromatographic profiles of isoaccepting tRNA species on reversed-phase columns. Homologous synthetase preparations and optimal aminoacylation conditions were employed, having been determined for each amino acid and found to be the same for those from old and young mice. Small differences were found between tRNAs from young and old mice in the extent of acceptance for arginine and tyrosine in the liver and for aspartic acid in the brain. There were no differences observed between preparations from young and old mice in any of the cochromatographic profiles for the amino acids examined in this study, which included arginyl-, aspartyl-, glutamyl-, histidyl-, leucyl-, lysyl-, phenylalanyl-, seryl-, and tyrosyl-tRNAs from liver and arginyl-, aspartyl-, histidyl-, leucyl-, lysyl-, and seryl-tRNAs from brain. Comparisons of tRNA preparations from fetal and neonatal liver with those from adult liver did reveal both qualitative and quantitative differences. These results suggest that the postulated accumulation of errors as a result of age-related alterations in the translational mechanism does not occur in tRNA or aminoacyl-tRNA synthetases of these two tissues.  相似文献   

2.
Transfer ribonucleic acid (tRNA) from exponentially growing cells (trophozoites) and from precysts of Acanthamoeba castellanii were examined by reversed-phase column (RPC-2) chromatography. This system gave excellent resolution of isoaccepting species of tRNA. The tRNAs for 12 amino acids were studied. A comparison of trophozoite and precyst tRNA elution profiles revealed no apparent differences in the number of isoaccepting species of alanyl-, arginyl-, asparaginyl-, glycyl-, leucyl-, lysyl-, methionyl-, phenylalanyl-, tryptophanyl-, or valyl-tRNAs. Seryl-tRNAs from trophozoites were eluted as three components, whereas precyst seryl-tRNAs were eluted as only two components. Precharged trophozoite and precyst isoleucyl-tRNAs were both eluted as single components; however, post-chromatography charging of trophozoite tRNA resulted in three components of activity for tRNA(Ile) and only one component for precyst tRNA(Ile). None of the observed changes could be attributed to differences in synthetases or to the presence of altered tRNA lacking the CCA terminus or partially degraded by nucleases. The possible significance of these observations is discussed.  相似文献   

3.
In chloroplasts there is a correlation between the amounts of tRNAs specific for a given amino acid and the codons specifying this amino acid. Furthermore, for the amino acids coded for by more than one codon, the population of isoaccepting tRNAs is adjusted to the frequency of synonymous codons used in chloroplast protein genes. A comparison by two-dimensional gel electrophoresis of the tRNA populations extracted from chloroplasts and from chloroplast polysomes shows that all chloroplast tRNAs are involved in protein biosynthesis.  相似文献   

4.
Fractionation (by two-dimensional polyacrylamide gel electrophoresis) of total tRNA from wheat chloroplasts yields about 33 RNA spots. Of these, 30 have been identified by aminoacylation as containing tRNAs specific for 17 amino acids. Hybridization of labeled individual tRNAs to cloned chloroplast DNA fragments has revealed the location of at least nine pairs of tRNA genes in the segments of the inverted repeat, at least twelve tRNA genes in the large single copy region and one tRNA gene in the small single copy region. A comparison of this wheat chloroplast tRNA gene map to that of maize and of other higher plants suggests that gene rearrangements have occurred during evolution, even within cereal chloroplast DNA. These rearrangements have taken place within the inverted repeat, within the large single copy region and between the inverted repeat and the large single copy region.  相似文献   

5.
6.
Horak A  Hill RD 《Plant physiology》1972,49(3):365-370
Extracts of bean (Phaseolus vulgaris L.) etioplasts and chloroplasts contain a dithiothreitol-activated Ca2+-dependent adenosine triphosphatase which is inhibited by Dio-9. The chloroplast and etioplast enzymes have identical RF values upon disc gel electrophoresis. Optimum extraction of the enzyme from either plastid preparation is accomplished with 1 mm ethylenediamine tetraacetic acid. Photophosphorylation capacity can be partially restored to depleted chloroplast preparations by addition of either the chloroplast or etioplast extract. These results suggest that the adenosine triphosphatase from etioplasts and chloroplasts represents a modified coupling factor for photophosphorylation.  相似文献   

7.
The chromatographic profiles of isoaccepting tRNAs were analyzed at five time points during the 96 hr, dimethylsulfoxide induced, erythroid-like differentiation of Friend leukemia cells. Sixty-four isoaccepting species of tRNA for 16 amino acids were resolved by RPC-5 chromatography. The relative amounts of tRNAphe, tRNAile, and tRNAval species were maintained by the cells during differentiation; whereas the relative amounts of some of the isoacceptor tRNAs for the other 13 amino acids changed significantly. Fluctuations in amounts of isoacceptors occurred between 36 and 72 hr after addition of dimethysulfoxide, corresponding to globin mRNA appearance and hemoglobin synthesis, respectively. In most cases, thepredominant tRNA isoacceptors of uninduced cells were retained throughout differentiation. Notable exceptions were tRNA species for threonine, proline, and methionine. Some of the isoacceptors occurring in relatively smaller amounts were not expressed at all times. These changes possibly reflect the cell's functional adaptation of tRNA in differentiation for hemoglobin synthesis.  相似文献   

8.
Changes in chromatographic profiles of tyrosyl-, leucyl-, tryptophanyl-, and lysyl-transfer ribonucleic acids (tRNAs) are presented as a function of the growth stage in Bacillus subtilis. All of the tRNA groups investigated expressed different temporal patterns of change in isoaccepting species. Tyrosyl-tRNAs were the earliest to change and were followed by changes in leucyl- and then tryptophanyl-tRNAs. Lysyl-tRNAs were unique in having two times of change: one early and one very late. As an aid in understanding the temporal aspect of tRNA alterations during sporulation, the chromatographic profiles of aminoacyl tRNAs from an early blocked asporogenous mutant were studied. The asporogenous mutant used was blocked at the axial filament stage, stage 0 of sporulation. Nevertheless, those tRNAs which showed differences between the spore and cells in exponential growth exhibited similar changes in the asporogenous mutant after 24 h of growth. The data suggest that several tRNA changes occur during development in B. subtilis but that the events leading to these changes are either independent of, or occur before, stage 0 of sporulation, except in the case of lysyl-tRNA.  相似文献   

9.
In the last few years the presence in thylakoid membranes of chloroplasts of a NAD(P)H-plastoquinone oxidoreductase complex (Ndh complex) homologous to mitochondrial complex I has been well established. Herein, we report the identification of the Ndh complex in barley etioplast membranes. Two plastid DNA-encoded polypeptides of the Ndh complex (NDH-A and NDH-F) were relatively more abundant in etioplast membranes than in thylakoids from greening chloroplasts. Conversion of etioplast into chloroplast, after light exposure of barley seedlings grown in the dark, was accompanied by a decrease in the NADH dehydrogenase activity associated to plastid membranes. Using native-PAGE and immunolabelling techniques we have determined that a NADH specific dehydrogenase activity associated with plastid membranes, which was more active in etioplasts than in greening chloroplasts, contained the NDH-A and NDH-F polypeptides. These results complemented by those obtained through blue-native-PAGE indicated that NDH-A and NDH-F polypeptides are part of a 580 kDa NADH dependent dehydrogenase complex present in etioplast membranes. This finding proves that accumulation of the Ndh complex is independent of light. The decrease in the relative levels and specific activity of this complex during the transition from etioplast to chloroplasts was accompanied by a parallel decrease in the specific activity of peroxidase associated to plastid membranes. Based on the mentioned observations it is proposed that an electron transport chain from NADH to H2O2 could be active in barley etioplasts.  相似文献   

10.
Chloroplasts are semiautonomous organelles found in photosynthetic plants. The major functions of chloroplasts include photosynthesis and carbon fixation, which are mainly regulated by its circular genomes. In the highly conserved chloroplast genome, the chloroplast transfer RNA genes (cp tRNA) play important roles in protein translation within chloroplasts. However, the evolution of cp tRNAs remains unclear. Thus, in the present study, we investigated the evolutionary characteristics of chloroplast tRNAs in five Adoxaceae species using 185 tRNA gene sequences. In total, 37 tRNAs encoding 28 anticodons are found in the chloroplast genome in Adoxaceae species. Some consensus sequences are found within the Ψ‐stem and anticodon loop of the tRNAs. Some putative novel structures were also identified, including a new stem located in the variable region of tRNATyr in a similar manner to the anticodon stem. Furthermore, phylogenetic and evolutionary analyses indicated that synonymous tRNAs may have evolved from multiple ancestors and frequent tRNA duplications during the evolutionary process may have been primarily caused by positive selection and adaptive evolution. The transition and transversion rates are uneven among different tRNA isotypes. For all tRNAs, the transition rate is greater with a transition/transversion bias of 3.13. Phylogenetic analysis of cp tRNA suggested that the type I introns in different taxa (including eukaryote organisms and cyanobacteria) share the conserved sequences “U‐U‐x2‐C” and “U‐x‐G‐x2‐T,” thereby indicating the diverse cyanobacterial origins of organelles. This detailed study of cp tRNAs in Adoxaceae may facilitate further investigations of the evolution, phylogeny, structure, and related functions of chloroplast tRNAs.  相似文献   

11.
Transfer RNAs isolated from lupin chloroplasts and mitochondria were compared by two-dimensional gel electrophoresis. Twenty chloroplast and 24 mitochondrial tRNA species were identified. The saturation hybridization between lupin chloroplast DNA and 125I-labelled lupin chloroplast tRNAs pointed to the presence of about 34 tRNA genes in lupin chloroplast DNA. The number of mitochondrial tRNA genes estimated by the same method was about 30 genes. EcoRI restriction digest of lupin mitochondrial DNA probed with 32P-labelled lupin mitochondrial tRNAs revealed only a small number of positive restriction fragments. Some of these mitochondrial restriction fragments hybridized with 32P-labelled chloroplast tRNA.  相似文献   

12.
We have analyzed proteome dynamics during light-induced development of rice (Oryza sativa) chloroplasts from etioplasts using quantitative two-dimensional gel electrophoresis and tandem mass spectrometry protein identification. In the dark, the etioplast allocates the main proportion of total protein mass to carbohydrate and amino acid metabolism and a surprisingly high number of proteins to the regulation and expression of plastid genes. Chaperones, proteins for photosynthetic energy metabolism, and enzymes of the tetrapyrrole pathway were identified among the most abundant etioplast proteins. The detection of 13 N-terminal acetylated peptides allowed us to map the exact localization of the transit peptide cleavage site, demonstrating good agreement with the prediction for most proteins. Based on the quantitative etioplast proteome map, we examined early light-induced changes during chloroplast development. The transition from heterotrophic metabolism to photosynthesis-supported autotrophic metabolism was already detectable 2 h after illumination and affected most essential metabolic modules. Enzymes in carbohydrate metabolism, photosynthesis, and gene expression were up-regulated, whereas enzymes in amino acid and fatty acid metabolism were significantly decreased in relative abundance. Enzymes involved in nucleotide metabolism, tetrapyrrole biosynthesis, and redox regulation remained unchanged. Phosphoprotein-specific staining at different time points during chloroplast development revealed light-induced phosphorylation of a nuclear-encoded plastid RNA-binding protein, consistent with changes in plastid RNA metabolism. Quantitative information about all identified proteins and their regulation by light is available in plprot, the plastid proteome database (http://www.plprot.ethz.ch).  相似文献   

13.
Populations of transfer ribonucleic acid (tRNA) extracted from control and type 2 adenovirus (Ad2)-infected KB cells were compared. No consistent differences in acceptor activity for 11 amino acids were observed. Comparison of methylated albumin-kieselguhr (MAK) elution profiles of arginyl-tRNA from control and infected cells revealed a minor modification in that the proportion of arginyl-tRNA eluting at high salt concentration was somewhat greater in infected cells. No similar differences were observed in MAK elution profiles of aspartyl-, isoleucyl-, leucyl-, phenylalanyl-, seryl-, tyrosyl-, and valyl-tRNA. Hybridization of 4S RNA from infected cells labeled by incorporation of 3H-uridine with Ad2 deoxyribonucleic acid revealed the presence of a complementary species of RNA in this preparation. Hybridization of 3H-arginyl-tRNA and of 3H-aminoacyl-tRNA labeled by charging with 3H-arginine or a 3H-mixture of amino acids, respectively, failed to detect the presence of virus-specific tRNA in Ad2-infected cells.  相似文献   

14.
15.
1. Maize chloroplasts contain a trypsin-, dithiothreitol-, and Ca2+-activated ATPase. This enzyme, which can serve as a coupling factor for photosynthetic phosphorylation, differs slightly in a few properties but in general resembles a similar one in spinach plastids which was described earlier by others.

2. Maize etioplasts (immature plastids in dark-grown plants) also contain this ATPase, and it is shown that NaCl-EDTA extracts of etioplasts can restore photosynthetic phosphorylation activity to depleted green membranes of chloroplasts.

3. Electron microscopy of maize etioplast and chloroplast membranes demonstrates the presence of protruding knobs, approx. 90 Å in diameter. Removal and reassociation of knobs with membranes can be correlated with the ability to carry on photosynthetic phosphorylation.

4. Most or possibly all of the coupling factor (measured as ATPase) activity of a chloroplast may be present in the etioplast from which it develops. The photosynthetic membrane of the chloroplast can be formed in stages.

5. The significance of these observations is discussed with regard to membrane formation in general and plastid membrane development in particular.  相似文献   


16.
The nucleotide sequences of four chloroplast tRNAs (methionine elongator, lysine, glycine, and arginine) from the siphonaceous green alga Codium fragile have been determined. These tRNAs have an unusually high A-U content compared to other chloroplast tRNAs and show varied, but in general only limited, sequence homology to the corresponding tRNAs of other chloroplasts. The locations of the genes for these four tRNAs have been determined and they show no similarity to the location of the corresponding tRNA genes in other chloroplasts. The Codium chloroplast glycine tRNA has an unmodified uridine in the wobble position of the anticodon, a characteristic rarely found in tRNA but present in mitochondrial tRNAs which read the genetic code by extended wobble.  相似文献   

17.
The levels of macromolecules in Escherichia coli 15T(-) growing in broth, glucose, succinate, and acetate media were determined to compare relationships among deoxyribonucleic acid (DNA), ribosomal ribonucleic acid (rRNA), transfer RNA (tRNA), and protein in cells at different growth rates. DNA and protein increased in relative amounts with decreasing growth rate; relative amounts of rRNA and tRNA decreased, tRNA making up a slightly larger proportion of RNA. For several amino acid-specific tRNAs studied, acceptor capacities per unit of DNA increased with increasing growth rate. The syntheses of tRNA and rRNA are regulated by similar, yet different, mechanisms. Chromatographic examination on columns of benzoylated diethylaminoethyl-cellulose of isoaccepting tRNAs for arginine, leucine, lysine, methionine, phenylalanine, serine, and valine did not reveal differences in the isoaccepting profiles for rapidly (broth culture) and slowly growing (acetate culture) cells. Therefore, isoacceptors for individual amino acids appear to be regulated as a group. Lower efficiencies of ribosomal function in protein synthesis can be explained, in part, by a low ratio of tRNA to the number of ribosomes available and by a decreasing concentration of tRNA with decreasing growth rate. Data on the tRNAs specific for seven amino acids indicate that the decreasing concentration of tRNA is a general event rather than a severe limitation of any one tRNA or isoaccepting tRNA.  相似文献   

18.
The polypeptides of etioplast and chloroplast fractions, purified on Percoll discontinuous gradient, were phosphorylated in vitro using (γ-32P)ATP, resolved by SDS-PAGE and autoradiographed. In general, about 15-18 phosphopolypeptides in the range of 14-150 kD were distinctly visible in autoradiograms of both organelle fractions with varying degree of radiolabel incorporation. Although short-term irradiation with red or far-red light did not have any significant effect on phosphorylation status of etioplast polypeptides, in vivo irradiation with 1 h white light, followed by in vitro phosphorylation, decreased phosphorylation of a 116 kD polypeptide and increased the phosphorylation of polypeptides of 38 kD and a doublet around 20 kD. Strikingly, the phosphorylation status of 116 kD etioplast polypeptide was adversely affected by Ca2+ as well, and this phosphopolypeptlde was not distinctly visible in the autoradiogram of the chloroplast fraction proteins. However, in vitro phosphorylation of 98, 57 and 50 kD polypeptides of both etioplast and chloroplast fractions was found to be Ca2+ dependent. Unlike Ca2+, 3′,5′-cyclic AMP down-regulated the phosphorylation of several polypeptides of both etioplasts and chloroplasts, including 98 and 50 kD, and up-regulated the phosphorylation of 32 and 57 kD polypeptides. The significance of these observations on changes in phosphoprotein profile of etioplasts and chloroplasts, as influenced by light, Ca2+ and cyclic nucleotides, has been discussed.  相似文献   

19.
Apparent differences in tRNA and aminoacyl-tRNA synthetase complements in tissues undergoing differentiation have frequently been used to support theories of translational control. The validity of at least some of these studies must now be questioned because of anomalies in the tRNA aminoacylation reaction which can lead to incomplete aminoacylation of tRNA. Incomplete acylation of a tRNA mixture could result in different relative amounts of acylated isoaccepting species if acylation rates were not identical for all species. Using common methods of analysis, this situation could lead to misestimation of relative levels of isoacceptors or an inability to detect the presence of minor species. Bonnet and Ebel [Bonnet, J., and Ebel, J. (1972) Eur. J. Biochem.31, 335] used a highly purified valyl-tRNA and valyl-tRNA synthetase from yeast to demonstrate the presence of four reactions that occur simultaneously in that system. Herein, I apply the findings of Bonnet and Ebel to a mammalian system in a manner which is representative of attempts to study relative tissue proportions of tRNA isoacceptors. Total complements of tRNAs and the aminoacyl-tRNA synthetases have been partially purified from rabbit liver according to the methods of Yang and Novelli [Yang, W. K., and Novelli, G. D. (1971) in Methods in Enzymology (Moldave, K., and Grossman, L., eds.), Vol. 20, p. 44, Academic Press, New York], probably the most commonly used procedures in the literature. Reaction conditions for tRNA acylation are shown to be modifiable so as to influence the extent of tRNA acylation. Procedures for optimizing the extent of tRNA acylation in such systems are demonstrated, and the unfavorable influence of Tris buffer, a factor not discussed by Bonnet and Ebel, is shown. Finally, examples of altered ratios of isoaccepting species in samples incompletely acylated due to suboptimal reaction conditions are provided.  相似文献   

20.
The function of plastid ribosomes in pea (Pisum sativum L.) was investigated by characterizing the products of protein synthesis in vitro in plastids isolated at different stages during the transition from etioplast to chloroplast. Etioplasts and plastids isolated after 24, 48 and 96h of greening in continuous white light, use added ATP to incorporate labelled amino acids into protein. Plastids isolated from greening leaves can also use light as the source of energy for protein synthesis. The labelled polypeptides synthesized in isolated plastids were analysed by electrophoresis in sodium dodecyl sulphate-ureapolyacrylamide gels. Six polypeptides are synthesized in etioplasts with ATP as energy source. Only one of these polypeptides is present in a 150 000g supernatant fraction. This polypeptide has been identified as the large subunit of Fraction I protein (3-phospho-D-glycerate carboxylyase EC 4.1.1.39) by comparing the tryptic 'map' of its L-(35S)methionine-labelled peptides with the tryptic 'map' of large subunit peptides from Fraction I labelled with L-(35S)methionine in vivo. The same gel pattern of six polypeptides is seen when plastids isolated from greening leaves are incubated with either added ATP or light as the energy source. However, the rates of synthesis of particular polypeptides are different in plastids isolated at different stages of the etioplast to chloroplast transition. The results support the idea that plastid ribosomes synthesize only a small number of proteins, and that the number and molecular weight of these proteins does not alter during the formation of chloroplasts from etioplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号