首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Larvae of Pseudaletia unipuncta are moderately susceptible to infections caused by entomopathogenic nematodes, being a desirable host to study pathogenic processes caused by Heterorhabditis bacteriophora, Steinernema carpocapsae, and Steinernema glaseri and their associated bacteria. The ability of the infective stage of these nematodes to invade hosts is quite different. S. carpocapsae invades the highest number of insects and presents the highest penetration rate, followed by H. bacteriophora. Regression analysis between the number of insects parasitized and the number of IJs counted per insect, over time, showed a high correlation for S. carpocapsae whereas for H. bacteriophora it was low. Dose-response was most evident at a concentration below 100 IJs per insect on H. bacteriophora, whereas on S. carpocapsae it was found for doses ranging from 100 to 2,000 IJs. Student's t test analysis of dose-response showed parallel, yet unequal, slopes for both strains of H. bacteriophora, whereas distinct regressions were obtained for S. carpocapsae and S. glaseri, thus, evidencing each species develop a distinct pathogenic process. Insects injected with Photorhabdus luminescens died within 50 h after injection, whereas those treated with X. nematophila died much later. Moreover, the mortality in insects exposed to H. bacteriophora complex and injected with P. luminescens was close, but insects injected with bacteria died faster. Insect mortality in treatments with complexes S. carpocapsae and S. glaseri was significantly higher than that which was observed in insects injected with symbiotic bacteria.  相似文献   

2.
In laboratory bioassays, Steinernema glaseri Steiner, Steinernema riobrave Cabanillas, Poinar & Raulston, Heterorhabditis bacteriophora Poinar, and Heterorhabditis marelatus Liu & Berry were capable of infecting and killing the bark scorpion, Centruroides exilicauda (Wood). Steinernema feltiae (Filipjev) and Steinernema carpocapsae (Weiser) failed to infect C. exilicauda at 22 degrees C. S. glaseri, H. marelatus, and H. bacteriophora caused significant mortality at 22 degrees C, indicating the potential role of these parasites as a biocontrol option. Efficacy of S. glaseri and H. bacteriophora was reduced in an assay conducted at 25 degrees C. Only S. glaseri was able to reproduce in the target host. Dissection of scorpions at the end of the experimental periods revealed inactive juvenile S. riobrave, H. marelatus, and H. bacteriophora nematodes. Both mermithid and oxyurid nematodes have been documented as nematode parasites of scorpions, but rhabditids have not been reported until now. Field studies are warranted to assess the usefulness of entomopathogenic nematodes as biocontrol agents of bark scorpions.  相似文献   

3.
Sugar beet, Beta vulgaris L. is a strategic crop of sugar industry in Egypt. It is threatened by several insect pests among most important of them is the beet fly Pegomyia mixta. This work deals with the biological control of this insect using four entomopathogenic nematodes (EPNs). The nematodes included Steinernema carpocapsae S2, Steinernema feltiae, Heterorhabditis bacteriophora (HB1-3) and Heterorhabditis bacteriophora S1. Daily mortality of larvae and pupae of P. mixta were recorded after treatment with serial concentrations (500, 1000, 2000 and 4000 infective juveniles (IJs)/ml) of each of four studied EPNs. In the laboratory all tested nematodes killed the larvae inside their mines in the sugar beet leaves and developed in their bodies in different extends. They also killed the insect pupae in the soil and developed in their bodies. Young larvae were more susceptible than old ones. New pupae were more susceptible than old ones. In the field a single spray of S. feltiae or H. bacteriophora caused 81.3 or 75.9% reduction in the larval population of the in sugar beet leaves.  相似文献   

4.
The efficacy of six entomopathogenic nematode (EPN) strains was tested in a laboratory study against soil-dwelling life stages of western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). The EPN strain collections screened included two Heterorhabditis bacteriophora species, i.e., H. bacteriophora HK3 (H.b H) and H. bacteriophora HB Brecan (H.b B), three Steinernema feltiae species, i.e., S. feltiae Sylt (S.f S), S. feltiae OBSIII (S.f O), and S. feltiae strain CR (S.f C), and the S. carpocapsae strain DD136 (S.c D). All soil-dwelling life stages of WFT were susceptible to the tested EPN strains. The most virulent strains were S.f S, S.c D, and H.b H. The S.f O strain was highly virulent against late second instar larvae and prepupae of WFT under high soil moisture conditions, but less effective against pupae under comparatively drier soil conditions. Results from dose rate experiments indicate that a comparatively high concentration of 400 infective juveniles (IJs) per cm(2) was needed to obtain high mortality in all soil-dwelling life stages of WFT. However, dose rates of 100-200 IJs/cm(2) already caused 30-50% mortality in WFT. The chances for combining EPNs with other biological control agents of WFT are discussed.  相似文献   

5.
Entomopathogenic nematode species available in Europe were screened for their efficacy against both the root-feeding larvae and silk-feeding adults of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Laboratory screening tests were aimed at the selection of candidate biological control agents for the management of this invasive alien pest in Europe. Steinernema glaseri, S. arenarium, S. abassi, S. bicornutum, S. feltiae, S. kraussei, S. carpocapsae and Heterorhabditis bacteriophora were studied to determine their virulence against third instar larvae and adults of D. v. virgifera in small-volume arenas (using nematode concentrations of 0.5, 0.8, 7.9 and 15.9 infective juveniles cm-2). All nematode species were able to invade and propagate in D. v. virgifera larvae, but adults were rarely infected. At concentrations of 7.9 and 15.9 cm-2, S. glaseri, S. arenarium, S. abassi and H. bacteriophora caused the highest larval mortality of up to 77%. Steinernema bicornutum, S. abassi, S. carpocapsae and H. bacteriophora appeared to have a high propagation level, producing 5970+/-779, 5595+/-811, 5341+/-1177 and 4039+/-1025 infective juveniles per larva, respectively. Steinernema glaseri, S. arenarium, S. feltiae, S. kraussei and H. bacteriophora were further screened at a concentration of 16.7 nematodes cm-2 against third instar larvae in medium-volume arenas (sand-filled trays with maize plants). Heterorhabditis bacteriophora, S. arenarium and S. feltiae caused the highest larval mortality with 77+/-16.6%, 67+/-3.5%, and 57+/-17.1%, respectively. In a next step, criteria for rating the entomopathogenic nematode species were applied based on results obtained for virulence and propagation, and for current production costs and availability in Europe. These criteria were then rated to determine the potential of the nematodes for further field testing. Results showed the highest potential in H. bacteriophora, followed by S. arenarium and S. feltiae, for further testing as candidate biological control agents.  相似文献   

6.
In laboratory bioassays, Steinernema riobrave Cabanillas, Poinar and Raulston (355 strain), Steinernema carpocapsae (Weiser) (Mexican 33 strain), Steinernemafeltiae (Filipjev) (UK76 strain), and Heterorhabditis bacteriophora Poinar (HP88 strain) were all capable of infecting and killing three termite species, Heterotermes aureus (Snyder), Gnathamitermes perplexus (Banks), and Reticulitermes flavipes (Kollar) in laboratory sand assays. S. riobrave and S. feltiae caused low levels of Reticulitermes virginicus (Banks) mortality under the same conditions. At 22 degrees C, significant mortality (> or = 80%) of worker H. aureus and G. perplexus was caused by S. riobrave, in sand assays, indicating the need for further study. Because of the short assay time (3 d maximum), reproduction of the nematodes in the target host species was not recorded. All nematode species were observed to develop to fourth-stage juveniles, preadult stages, or adults in all termite species with the exception of R. virginicus. Only S. riobrave developed in R. virginicus. Nematode concentration and incubation time had significant effects on the mortality of worker H. aureus. S. riobrave consistently generated the highest infection levels and mortality of H. aureus in sand assays.  相似文献   

7.
Multiple-species natural enemy approach for the biological control of the alfalfa snout beetle, Otiorhynchus ligustici (L.) (Coleoptera: Curculionidae), was compared with using single-species of natural enemies in the alfalfa ecosystem by using entomopathogenic nematodes with different dispersal and foraging behaviors. Steinernema carpocapsae NY001 (ambush nematode), Heterorhabditis bacteriophora Oswego (cruiser nematode), and Steinernema feltiae Valko (intermediate nematode) were applied in single-species, two-species combinations, and one three-species combination treatments at 2.5 x 10(9) infective juveniles per hectare. All nematode species persisted for a full year (357 d). S. carpocapsae NY001 protected the plants from root-feeding damage better than H. bacteriophora Oswego but allowed for higher larval survival than all other nematode treatments. S. feltiae Valko protected the plants better than H. bacteriophora Oswego and controlled alfalfa snout beetle larvae better than S. carpocapsae NY001. H. bacteriophora Oswego allowed for similar root damage compared with control plots but reduced larval populations better than S. carpocapsae NY001. The combination of S. carpocapsae NY001 and H. bacteriophora Oswego provided significantly better protection for the plants than the control (unlike H. bacteriophora Oswego alone) and reduced host larva survival more than S. carpocapsae NY001 alone. The combination S. feltiae Valko and H. bacteriophora Oswego could not be statistically separated from the performance of S. feltiae Valko applied alone.  相似文献   

8.
The potential of using the entomopathogenic nematode Steinernema feltiae to control the sweetpotato whitefly Bemisia tabaci (Gennadius) has been established in previous laboratory studies. However, laboratory studies can overestimate the level of control achieved by biocontrol agents in the glasshouse. Glasshouse trials are therefore required to confirm laboratory results before full-scale commercial development is considered. Under both controlled laboratory and glasshouse conditions high mortality of second instar B. tabaci (>90% and >80%, respectively) was recorded after application of S. feltiae. The efficacy of the biocontrol agent at various application rates was also investigated, where halving the rate of S. feltiae application caused no significant reduction in B. tabaci mortality on tomato foliage. Steinernema feltiae has shown much potential for incorporation into integrated pest management strategies for the control of B. tabaci.  相似文献   

9.
The impact of entomopathogenic nematodes (EPN) on mortality of soil-dwelling stages of western flower thrips (WFT), Frankliniella occidentalis (Thysanoptera: Thripidae) with different insect stage combinations was studied in the laboratory and under semi-field conditions. In laboratory experiments, the efficacy of Steinernema feltiae strain Sylt (Rhabditida: Steinernematidae) at a concentration of 400 infective juveniles (IJs) cm -2 was tested against different proportions of soil-dwelling stages of WFT, i.e. late second instar larvae (L2), prepupae and pupae. Soil was used as the testing medium. S. feltiae significantly affected the mortality of all soil-dwelling life stages of WFT at all tested insect stage combinations. The proportion of late L2 in the population negatively correlated to EPN-induced mortality. WFT prepupa and pupa were similarly susceptible to S. feltiae and their proportion in the population did not affect the EPN-induced mortality under laboratory conditions. The highest mortality (80%) was recorded when the population consisted only of prepupae and/or pupae. In the semi-field study, the impact of S. feltiae , S. carpocapsae strain DD136 and Heterorhabditis bacteriophora strain HK3 (Rhabditida: Heterorhabditidae) ( H. bacteriophora ) at concentrations of 400 and 1000 IJs cm -2 was evaluated against WFT reared on green beans, Phaseolus vulgaris L., as host plant in pot experiments in a controlled climate chamber. All tested EPN strains at both dose rates significantly reduced the WFT populations. Up to 70% reduction of the WFT population was obtained at the higher EPN concentration.  相似文献   

10.
Infectivity and biocontrol potential of entomopathogenic nematodes against winter moths (Operophtera brumata and O. fagata)pupating in the soil were examined in laboratory, semi-field and field conditions. A pilot experiment conducted in the field showed that Steinernema feltiae was completely ineffective against pupae of these moths in the soil. Subsequent laboratory tests revealed that none of the tested species (i.e. S. feltiae, S. affinae, S. carpocapsae, Heterorhabditis megidis and H. bacteriophora) could colonise the pupae, while mature larvae descending to the soil for pupation and prepupae were highly susceptible to nematode infection. No differences were observed between O. brumata and O. fagata in susceptibility to nematodes. In laboratory experiments H. megidis applied at 1.5×105infective juveniles (IJ) m-2infected almost 100% of insects exposed for 6 days in the soil. It was significantly more infective than H. bacteriophora (73-77%) and Steinernema species (29-50%). H. megidis was also highly effective in semi-field conditions when applied at an even lower dose, i.e. 105IJ m-2. After a 45-day experiment, only 3% of insects descending for pupation survived in the soil pre-treated with this species. This was significantly less than in soil with S. feltiae (43%) and control treated with water only (59%). Very high efficacy of H. megidis and a relatively easy method for its field application through ground spraying gives some promise for environmentally safe and successful biological control of winter moths during their pupation in the soil. The low application rate required and recycling in the host could be additional advantages for economic and long lasting protection of high value trees, particularly those in urban parks and forests.  相似文献   

11.
Nonfeeding infective juvenile (IJ) entomopathogenic nematodes (EPNs) are used as biological agents to control soil-dwelling insects, but poor storage stability remains an obstacle to their widespread acceptance by distributors and growers as well as a frustration to researchers. Age is one factor contributing to variability in EPN efficacy. We hypothesized that age effects on the infectiousness of IJs would be evident within the length of time necessary for IJs to infect a host. The penetration behavior of "young" (<1-wk-old) and "old" (2- to 4-wk-old) Heterorhabditis bacteriophora (GPS 11 strain), Steinernema carpocapsae (All strain), and Steinernema feltiae (UK strain) IJs was evaluated during 5 "exposure periods" to the larvae of the wax moth, Galleria mellonella. Individual larvae were exposed to nematode-infested soil for exposure periods of 4, 8, 16, 32, and 64 hr. Cadavers were dissected after 72 hr, and the IJs that penetrated the larvae were counted. Larval mortality did not differ significantly between 72- and 144-hr "observation periods," or points at which larval mortality was noted, for any age class or species. However, age and species effects were noted in G. mellonella mortality and nematode penetration during shorter time periods. Initial mortality caused by S. carpocapsae and H. bacteriophora IJs declined with nematode age but increased with S. feltiae IJ age. Young S. carpocapsae IJs penetrated G. mellonella larvae at higher rates than old members of the species (27-45% vs. 1-4%). Conversely, old S. feltiae IJs had higher penetration rates than young IJs (approximately 8 to 57% vs. 4 to approximately 31%), whereas H. bacteriophora IJs had very low penetration rates regardless of age (3-5.6%). Our results show that the effect of age on IJ infectiousness can be detected in IJs aged only 2 wk by a 4-hr exposure period to G. mellonella. These results have important implications for storage and application of EPNs and suggest the possibility of shortening the time required to detect nematodes in the soil.  相似文献   

12.
Galleria mellonella larvae cultured axenically were treated with axenic dauer juveniles of Heterorhabditis bacteriophora and Steinernema carpocapsae. After 3 days S. carpocapsae had killed all insects, with 9.4 +/- 4.3 nematodes per larva. H. bacteriophora were unable to kill G. mellonella, although 13.3 +/- 6.4 nematodes per Galleria were found in the hemocoel. Invading nematodes of both strains recovered from the dauer stage. H. bacteriophora developed into hermaphrodites with eggs and J1 in the uterus and in the hemolymph of the living insects. Development beyond the J1 stage was not recorded. An injection of supernatants from different Photorhabdus luminescens cultures killed the insects but could not provide nutrients to support a further development. Only the injection of bacterial cells supported production of dauers in the axenic insects. Axenic S. carpocapsae developed to adults and produced offspring. After 3 weeks an average of 5275 nematodes per larva were counted, of which 6.7% were dauer juveniles, 39.2% other juvenile stages, 11.9% males, and 42.2% females. Compared to in vivo reproduction in the presence of the symbiotic bacterium Xenorhabdus nematophilus the dauer juvenile yields were low. Even after 5 weeks the percentage of dauer juveniles did not surpass 10%.  相似文献   

13.
The entomopathogenic nematodes Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema glaseri, and Steinernema feltiae were exposed to freezing while inside their hosts. Survival was assessed by observing live and dead nematodes inside cadavers and by counting the infective juveniles (IJs) that emerged after freezing. We (1) measured the effects of 24h of freezing at different times throughout the course of an infection, (2) determined the duration of freezing entomopathogenic nematodes could survive, (3) determined species differences in freezing survival. Highest stage-specific survival was IJs for S. carpocapsae, and adults for H. bacteriophora. When cadavers were frozen two or three days after infection, few IJs emerged from them. Freezing between five and seven days after infection had no negative effect on IJ production. No decrease in IJ production was measured for H. bacteriophora after freezing. H. bacteriophora also showed improved survival inside versus outside their host when exposed to freezing.  相似文献   

14.
The Diaprepes root weevil, Diaprepes abbreviatus (L.) is the most severe weevil pest in Florida citrus. Entomopathogenic nematodes have effectively suppressed larval populations of D. abbreviatus. Our objective was to conduct a broad laboratory comparison of entomopathogenic nematodes for virulence toward larvae of D. abbreviatus. The study was conducted at three temperatures (20, 24, and 29 degrees C) and included nine entomopathogenic species and 17 strains: Heterorhabditis bacteriophora Poinar (Baine, NJl, Hb, Hbl, HP88, and Lewiston strains), H. indica Poinar, Karunakar & David (original and Homl strains), H. marelatus Liu & Berry (IN and Point Reyes strains), H. megidis Poinar, Jackson & Klein (UK21l strain), H. zealandica Poinar (NZH3 strain), Steinernema riobrave Cabanillas, Poinar & Raulston (355 strain), S. carpocapsae (Weiser) (All strain), S. feltiae (Filipjev) (SN and UK76 strains), and S. glaseri (Steiner) (NJ43 strain). At 20 degrees C, the greatest mortality was caused by S. riobrave although it was not significantly greater than H. bacteriophora (Baine), H. bacteriophora (Hb), H. bacteriophora (Hbl), and H. indica (original). At 24 and 29 degrees C, S. riobrave caused greater larval mortality than other nematodes tested. Two strains of H. indica, H. bacteriophora (Baine), and S. glaseri were next in terms of virulence at 29 degrees C. Our results suggest that S. riobrave has the greatest potential for control of D. abbreviatus.  相似文献   

15.
Reproduction of entomopathogenic nematodes requires that they escape recognition by a host's immune system or that they have mechanisms to escape encapsulation and melanization. We investigated the immune responses of larvae for the greater wax moth (Galleria mellonella), tobacco hornworm (Manduca sexta), Japanese beetle (Popillia japonica), northern masked chafer (Cyclocephala borealis), oriental beetle (Exomala orientalis) and adult house crickets (Acheta domesticus), challenged with infective juveniles from different species and strains of entomopathogenic nematodes. The in vivo immune responses of hosts were correlated with nematode specificity and survival found by infection assays. In P. japonica, 45% of injected infective juveniles from Steinernema glaseri NC strain survived; whereas the hemocytes from the beetle strongly encapsulated and melanized the Heterorhabditis bacteriophora HP88 strain, S. glaseri FL strain, Steinernema scarabaei and Steinernema feltiae. Overall, H. bacteriophora was intensively melanized in resistant insect species (E. orientalis, P. japonica and C. borealis) and had the least ability to escape the host immune response. Steinernema glaseri NC strain suppressed the immune responses in susceptible hosts (M. sexta, E. orientalis and P. japonica), whereas S. glaseri FL strain was less successful. Using an in vitro assay, we found that hemocytes from G. mellonella, P. japonica, M. sexta and A. domestica recognized both nematode species quickly. However, many S. glaseri in M. sexta and H. bacteriophora in G. mellonella escaped from hemocyte encapsulation by 24h. These data indicate that, while host recognition underlies some of the differences between resistant and susceptible host species, escape from encapsulation following recognition can also allow successful infection. Co-injected surface-coat proteins from S. glaseri did not protect H. bacteriophora in M. sexta but did protect H. bacteriophora in E. orientalis larva; therefore, surface coat proteins do not universally convey host susceptibility. Comparisons of surface coat proteins by native and SDS-PAGE demonstrated different protein compositions between H. bacteriophora and S. glaseri and between the two strains of S. glaseri.  相似文献   

16.
The susceptibility of larvae of the Mediterranean flatheaded rootborer (Capnodis tenebrionis) to 13 isolates of entomopathogenic nematodes was examined using GF-677 potted trees (peachxalmond hybrid) as the host plant. The nematode strains tested included nine Steinernema feltiae, one S. affine, one S. carpocapsae and two Heterorhabditis bacteriophora. Nematodes showed the ability to locate and kill larvae of C. tenebrionis just after they enter into the roots of the tree. S. feltiae strains provided an efficacy ranging from 79.68% to 88.24%. H. bacteriophora strains resulted in control of 71.66-76.47%. S. carpocapsae (B14) and S. affine (Gspe3) caused lower control of C. tenebrionis larvae (62.03% and 34.76%, respectively). The influence of foraging strategy and the use of autochthonous nematodes to control C. tenebrionis larvae inside the roots is discussed.  相似文献   

17.
Abstract:  The use of infective juveniles (IJs) of the entomopathogenic nematode, Steinernema feltiae , to control the immature stages of the tobacco whitefly, Bemisia tabaci (Gennadius) (Hom., Aleyrodidae), on a range of host plants was investigated. Foliar applications of S. feltiae (10 000 IJs/ml) were made to tomato ( Lycopersicon esculentum ), cucumber ( Cucumis sativus ), poinsettia ( Euphorbia pulcherrima ), chrysanthemum ( Dendranthema spp.) and verbena ( Verbena hybrida ) infested with second instar B. tabaci , to determine whether efficacy was influenced by plant species. The effect of the adjuvants Agral, Triton X-100, methylcellulose, glycerol and spraying oil on the level of pest mortality was also assessed using two selected host plants, tomato and verbena. Following nematode application B. tabaci mortalities of 32, 28, 22 and 22% were recorded on tomato, cucumber, verbena and chrysanthemum, respectively, but a lower mean mortality was noted for whitefly feeding on poinsettia (10%). Mortality of B. tabaci on tomato and verbena was significantly increased by the addition of either Triton X-100 or Agral to the spray suspension. The use of Triton X-100 raised the mortality level to 63 and 37% on tomato and verbena, respectively, while 50 and 27% mortality followed the use of Agral on the two hosts. With the exception of glycerol no phytotoxic effects were observed by the adjuvants when applied to all five host plant species used in this study. The potential for use of the entomopathogenic nematode, S. feltiae , as a non-chemical alternative control measure for B. tabaci immatures is discussed.  相似文献   

18.
We tested the effect of soil type on the performance of the entomopathogenic pathogenic nematodes Steinernema scarabaei, Steinernema glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora. Soil types used were loamy sand, sandy loam, loam, silt loam, clay loam, acidic sand, and a highly organic potting mix. Infectivity was tested by exposing third-instar Anomala orientalis or Popillia japonica to nematodes in laboratory and greenhouse experiments and determining nematode establishment in the larvae and larval mortality. Infectivity of H. bacteriophora and H. zealandica was the highest in potting mix, did not differ among loamy sand and the loams, and was the lowest in acidic sand. Infectivity of S. glaseri was significantly lower in acidic sand than in loamy sand in a laboratory experiment but not in a greenhouse experiment, and did not differ among the other soils. Infectivity of S. scarabaei was lower in silt loam and clay loam than in loamy sand in a greenhouse experiment but not in a laboratory experiment, but was the lowest in acidic sand and potting mix. Persistence was determined in laboratory experiments by baiting nematode-inoculated soil with Galleria mellonella larvae. Persistence of both Heterorhabditis spp. and S. glaseri was the shortest in potting mix and showed no clear differences among the other substrates. Persistence of S. scarabaei was high in all substrates and its recovery declined significantly over time only in clay loam. In conclusion, generalizations on nematode performance in different soil types have to be done carefully as the effect of soil parameters including soil texture, pH, and organic matter may vary with nematode species.  相似文献   

19.
The pecan weevil, Curculio caryae (Horn), is a key pest of pecans in the Southeast. Entomopathogenic nematodes have been shown to be pathogenic toward the larval stage of this pest. Before this research, only three species of nematodes had been tested against pecan weevil larvae. In this study, the virulence of the following nine species and 15 strains of nematodes toward fourth-instar pecan weevil was tested: Heterorhabditis bacteriophora Poinar (Baine, HP88, Oswego, NJ1, and Tf strains), H. indica Poinar, Karunakar & David (original and Homl strains), H. marelatus Liu & Berry (IN and Point Reyes strains), H. megidis Poinar, Jackson & Klein (UK211 strain), H. zealandica Poinar (NZH3 strain), Steinernema riobrave Cabanillas, Poinar & Raulston (355 strain), S. carpocapsae (Weiser) (All strain), S. feltiae (Filipjev) (SN strain), and S. glaseri (Steiner) (NJ43 strain). No significant difference in virulence was detected among nematode species or strains. Nematode-induced mortality was not significantly greater than control mortality (in any of the experiments conducted) for the following nematodes: H. bacteriophora (Baine), H. zealandica (NZH3), S. carpocapsae (All), S. feltiae (SN), S. glaseri (NJ43), and S. riobrave (355). All other nematodes caused greater mortality than the control in at least one experiment. Heterorhabditis megidis (UK211) but not H. indica (original) displayed a positive linear relationship between nematode concentration and larval mortality. Results suggested that, as pecan weevil larvae age, they may have become more resistant to infection with entomopathogenic nematodes.  相似文献   

20.
Data from a comparative study of the efficacy of Steinernema feltiae for the control of three species of leafminer formed the basis of an application schedule which successfully suppressed an outbreak of the statutory leafminer pest, Liriomyza huidobrensis . All three instars of Liriomyza bryoniae and L. huidobrensis were similarly susceptible to S. feltiae at 20 o C and > 90% relative humidity (RH). Although all larval instars of Chromatomyia syngenesiae were susceptible to S. feltiae , mortality was lower than for L. bryoniae . Repeat applications of S. feltiae to L. bryoniae and C. syngenesiae indicated that a nematode treatment to the second/early third instar larvae was more effective than applying higher rates of nematodes when humidities were less than 90% RH. In a trial on lettuce at a commercial glasshouse a mean L. huidobrensis mortality of 82 +/- 5% was recorded after an S. feltiae application, significantly higher than the chemical treatment, heptenophos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号