首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The impact of entomopathogenic nematodes (EPN) on mortality of soil-dwelling stages of western flower thrips (WFT), Frankliniella occidentalis (Thysanoptera: Thripidae) with different insect stage combinations was studied in the laboratory and under semi-field conditions. In laboratory experiments, the efficacy of Steinernema feltiae strain Sylt (Rhabditida: Steinernematidae) at a concentration of 400 infective juveniles (IJs) cm -2 was tested against different proportions of soil-dwelling stages of WFT, i.e. late second instar larvae (L2), prepupae and pupae. Soil was used as the testing medium. S. feltiae significantly affected the mortality of all soil-dwelling life stages of WFT at all tested insect stage combinations. The proportion of late L2 in the population negatively correlated to EPN-induced mortality. WFT prepupa and pupa were similarly susceptible to S. feltiae and their proportion in the population did not affect the EPN-induced mortality under laboratory conditions. The highest mortality (80%) was recorded when the population consisted only of prepupae and/or pupae. In the semi-field study, the impact of S. feltiae , S. carpocapsae strain DD136 and Heterorhabditis bacteriophora strain HK3 (Rhabditida: Heterorhabditidae) ( H. bacteriophora ) at concentrations of 400 and 1000 IJs cm -2 was evaluated against WFT reared on green beans, Phaseolus vulgaris L., as host plant in pot experiments in a controlled climate chamber. All tested EPN strains at both dose rates significantly reduced the WFT populations. Up to 70% reduction of the WFT population was obtained at the higher EPN concentration.  相似文献   

2.
Nonfeeding infective juvenile (IJ) entomopathogenic nematodes (EPNs) are used as biological agents to control soil-dwelling insects, but poor storage stability remains an obstacle to their widespread acceptance by distributors and growers as well as a frustration to researchers. Age is one factor contributing to variability in EPN efficacy. We hypothesized that age effects on the infectiousness of IJs would be evident within the length of time necessary for IJs to infect a host. The penetration behavior of "young" (<1-wk-old) and "old" (2- to 4-wk-old) Heterorhabditis bacteriophora (GPS 11 strain), Steinernema carpocapsae (All strain), and Steinernema feltiae (UK strain) IJs was evaluated during 5 "exposure periods" to the larvae of the wax moth, Galleria mellonella. Individual larvae were exposed to nematode-infested soil for exposure periods of 4, 8, 16, 32, and 64 hr. Cadavers were dissected after 72 hr, and the IJs that penetrated the larvae were counted. Larval mortality did not differ significantly between 72- and 144-hr "observation periods," or points at which larval mortality was noted, for any age class or species. However, age and species effects were noted in G. mellonella mortality and nematode penetration during shorter time periods. Initial mortality caused by S. carpocapsae and H. bacteriophora IJs declined with nematode age but increased with S. feltiae IJ age. Young S. carpocapsae IJs penetrated G. mellonella larvae at higher rates than old members of the species (27-45% vs. 1-4%). Conversely, old S. feltiae IJs had higher penetration rates than young IJs (approximately 8 to 57% vs. 4 to approximately 31%), whereas H. bacteriophora IJs had very low penetration rates regardless of age (3-5.6%). Our results show that the effect of age on IJ infectiousness can be detected in IJs aged only 2 wk by a 4-hr exposure period to G. mellonella. These results have important implications for storage and application of EPNs and suggest the possibility of shortening the time required to detect nematodes in the soil.  相似文献   

3.
Five bioassays were compared for their usefulness to determine the virulence of four nematode strains. The objective of this study was to develop standard assays for particular nematode species. In all assays, the nematodes Steinernema feltiae (strain UK), S. riobravis, S. scapterisci Argentina and Heterorhabditis bacteriophora HP88 were exposed to Galleria mellonella larvae. All bioassays except the sand column assay were conducted in multi-well plastic dishes. In the penetration rate assay, the number of individual nematodes invading the insect was determined after a 48-h exposure to 200 infective juveniles (IJs). In the one-on-one assay, each larva was exposed to an individual nematode for 72 h before insect mortality was recorded. In the exposure time assay, insect mortality was recorded after exposure to 200 IJs for variable time periods. The dose-response assay involved exposing larvae to different nematode concentrations over the range 1-200 IJs/insect and recording mortality every 24 h for a 96-h period. In the sand columns assay, insects were placed in the bottom of a plastic cylinder filled with sand. Nematodes were applied on top of the sand and insect mortality was determined after IJs had migrated through the cylinder. The highest mortality level in the sand column assay was obtained with IJs of S. feltiae followed by H. bacteriophora; treatments with S. riobravis and S. scapterisci produced low levels of insect mortality. In the other four assays, S riobravis was the most virulent, followed by S. feltiae, H. bacteriophora and S. scapterisci. In the exposure time assay, rapid mortality was achieved when the insects were exposed to S. feltiae and S. riobravis. For these nematode species, a gradual increase in the number of individuals which penetrated into cadavers was recorded. Conversely, the number of nematodes in the cadavers of insects infected by H. bacteriophora and S. scapterisci remained low during the entire exposure period. In this assay, exposing the insects to these nematodes resulted in a gradual increase in mortality. In the dose-response assay, complete separation among nematode species was obtained only after 48 h of incubation at a concentration of 15 IJs/insect. LD and LD values were calculated from 50 90 dose-response assay data. However, these values did not indicate differences among the different nematode species. The present study demonstrated the variation in entomopathogenic nematode performance in different bioassays and supports the notion that one common bioassay cannot be used as a universal measure of virulence for all species and strains because nematodes differ in their behavior. Furthermore, particular assays should be used for different purposes. To select a specific population for use against a particular insect, assays that are more laborious but which simulate natural environmental conditions (e.g. the sand column assay) or invasion by the nematode (e.g. the penetration rate assay) should be considered. In cases where commercial production batches of the same nematode strains are compared, simple and fast assays are needed (e.g. the one-on-one and exposure time assays). Further studies are needed to determine the relationships between data obtained in each assay and nematode efficacy in the field.  相似文献   

4.
Seven Pakistani strains of entomopathogenic nematodes belonging to the genera Steinernema and Heterorhabditis were tested against last instar and adult stages of the pulse beetle, Callosobruchus chinensis (L.). These nematodes included Steinernema pakistanense Shahina, Anis, Reid and Maqbool (Ham 10 strain); S. asiaticum Anis, Shahina, Reid and Rowe (211 strain); S. abbasi Elawad, Ahmad and Reid (507 strain); S. siamkayai Stock, Somsook and Reid (157 strain); S. feltiae Filipjev (A05 strains); Heterorhabditis bacteriophora Poinar (1743 strain); and H. indica Poinar, Karunakar and David (HAM-64 strain). Activity of all strains was determined at four different nematode densities in Petri dishes and in concrete containers. A significant nematode density effect was detected for all nematode species tested. Overall, Heterorhabditis bacteriophora, S. siamkayai, and S. pakistanense were among those that showed the highest virulence to pulse beetle larvae and adults. For all nematode species, the last larval stage of the pulse beetle seems to be more susceptible than the adult. LC(50) values in Petri dish and concrete containers were 14-340 IJs/larvae and 41-441 IJs/larvae, respectively, and 59-1376 IJs/adult and 170-684/adult, respectively.  相似文献   

5.
The pecan weevil, Curculio caryae (Horn), is a key pest of pecans in the Southeast. Entomopathogenic nematodes have been shown to be pathogenic toward the larval stage of this pest. Before this research, only three species of nematodes had been tested against pecan weevil larvae. In this study, the virulence of the following nine species and 15 strains of nematodes toward fourth-instar pecan weevil was tested: Heterorhabditis bacteriophora Poinar (Baine, HP88, Oswego, NJ1, and Tf strains), H. indica Poinar, Karunakar & David (original and Homl strains), H. marelatus Liu & Berry (IN and Point Reyes strains), H. megidis Poinar, Jackson & Klein (UK211 strain), H. zealandica Poinar (NZH3 strain), Steinernema riobrave Cabanillas, Poinar & Raulston (355 strain), S. carpocapsae (Weiser) (All strain), S. feltiae (Filipjev) (SN strain), and S. glaseri (Steiner) (NJ43 strain). No significant difference in virulence was detected among nematode species or strains. Nematode-induced mortality was not significantly greater than control mortality (in any of the experiments conducted) for the following nematodes: H. bacteriophora (Baine), H. zealandica (NZH3), S. carpocapsae (All), S. feltiae (SN), S. glaseri (NJ43), and S. riobrave (355). All other nematodes caused greater mortality than the control in at least one experiment. Heterorhabditis megidis (UK211) but not H. indica (original) displayed a positive linear relationship between nematode concentration and larval mortality. Results suggested that, as pecan weevil larvae age, they may have become more resistant to infection with entomopathogenic nematodes.  相似文献   

6.
The efficacy of five entomopathogenic nematode strains of the families Steinernematidae and Heterorhabditidae was tested against the neonate larvae of Capnodis tenebrionis. The nematode strains screened included two of Steinernema carpocapsae (Exhibit and M137), and one each of S. feltiae (S6), S. arenarium (S2), and Heterorhanditis bacteriophora (P4). Exposure of neonate larvae of Capnodis to 10 and 150 infective juveniles (IJs) per larva (equivalent to 3 and 48 IJs/cm2 respectively) in test tubes with sterile sand, resulted in mortality between 60–91% and 96–100%, respectively. At a concentration of 150 IJs/larva, all of the nematode strains were highly virulent. Both S. carpocapsae strains (Exhibit and M137) caused infection and mortality to larvae more quickly than the other strains. However, at a lower concentration assay (10 IJs/larva), S. arenarium was the most virulent strain. The penetration rate as an indicator of entomopathogenic nematode infection was also evaluated. The highest value was recorded for S. arenarium (36%), followed by H. bacteriophora (30.6%), S. feltiae (23.1%), and S. carpocapsae (20.7%).  相似文献   

7.
Seventeen entomopathogenic nematode species and strains were evaluated for virulence to the grape root borer, Vitacea polistiformis (Harris) in laboratory and greenhouse bioassays. Heterohabditis bacteriophora strain GPS11 and H. zealandica strain X1 produced a larval mortality rate of over 85% of larvae embedded in the root cambium in laboratory bioassays. The nematode species H. marelata and H. bacteriophora strain Oswego produced mortality rates of over 75%. Of the Steinernema species tested, S. carpocapsae strain 'All' performed the best with a mortality rate of 69%. All other nematode species and strains tested, with the exception of S. bicornutum , produced some degree of larval mortality. In the greenhouse bioassays, 93% control was achieved with H. zealandica strain X1 applied at 4 ×109 infective juveniles (IJs) acre1 -1 (9.88 ×10 9 IJs ha -1 ). H. bacteriophora strain GPS11 successfully reproduced in grape root borer larvae. The numbers of IJs produced within infected larvae were related to larval size. The survival rate of neonate larvae on grape root sections was 61%, which thus provides a means to rear the neonate larvae for bioassays.  相似文献   

8.
The Diaprepes root weevil, Diaprepes abbreviatus (L.) is the most severe weevil pest in Florida citrus. Entomopathogenic nematodes have effectively suppressed larval populations of D. abbreviatus. Our objective was to conduct a broad laboratory comparison of entomopathogenic nematodes for virulence toward larvae of D. abbreviatus. The study was conducted at three temperatures (20, 24, and 29 degrees C) and included nine entomopathogenic species and 17 strains: Heterorhabditis bacteriophora Poinar (Baine, NJl, Hb, Hbl, HP88, and Lewiston strains), H. indica Poinar, Karunakar & David (original and Homl strains), H. marelatus Liu & Berry (IN and Point Reyes strains), H. megidis Poinar, Jackson & Klein (UK21l strain), H. zealandica Poinar (NZH3 strain), Steinernema riobrave Cabanillas, Poinar & Raulston (355 strain), S. carpocapsae (Weiser) (All strain), S. feltiae (Filipjev) (SN and UK76 strains), and S. glaseri (Steiner) (NJ43 strain). At 20 degrees C, the greatest mortality was caused by S. riobrave although it was not significantly greater than H. bacteriophora (Baine), H. bacteriophora (Hb), H. bacteriophora (Hbl), and H. indica (original). At 24 and 29 degrees C, S. riobrave caused greater larval mortality than other nematodes tested. Two strains of H. indica, H. bacteriophora (Baine), and S. glaseri were next in terms of virulence at 29 degrees C. Our results suggest that S. riobrave has the greatest potential for control of D. abbreviatus.  相似文献   

9.
Infections were carried out in the laboratory to determine the host range, specificity, and virulence of Steinernema rarum, S. feltiae, and Heterorhabditis bacteriophora that were isolated from different regions of Argentina. All insect orders showed a remarkable susceptibility to the three nematode species, showing mortality values higher than 66%, except for Anoplura. The mortality of the insects of agronomic interest was more than 90%. As for insects of sanitary importance, S. feltiae and S. rarum caused 60% of mortality, whereas H. bacteriophora caused 80%. The results fluctuated when considering the buccal apparatus function of the insects. Nematodes completed their cycle in anoplurans, orthopterans, lepidopterans, and hymenopterans, while the development varied in coleopterans, homopterans, hemipterans, and dipterans. S. rarum developed completely both in immature and adult, while S. feltiae and H. bacteriophora developed preferably in immature. The three isolates are capable of parasitizing a wide host range under laboratory conditions; H. bacteriophora is more virulent than the evaluated Steinernema spp. against Galleria mellonella larvae; the pathogenicity and specificity depend on the bioecological characteristics of nematodes and hosts.  相似文献   

10.
Eight entomopathogenic nematode species / strains, Steinernema glaseri (steiner), S. carpocapsae (Weiser), S. feltiae (Filipjev), Steinernema sp. Ecomax strain, Heterorhabditis bacteriophora (Pioner), Heterorhabditis sp. Ecomax strain, two locally isolated strains called as JFC and TFC were tested against the final instar larvae of diamond back moth, Plutella xylostella (L.). All nematodes were found pathogenic. However, H. bacteriophora was adjudged the most pathogenic amongst the test nematodes on the basis of LD50 (9.16 IJS/larva), LT50 (43.26 hr), Lex T50 (3.24 hr) and the propagation potential (average of 271.42 IJS/mg) on the host body weight.  相似文献   

11.
The entomopathogenic nematodes Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema glaseri, and Steinernema feltiae were exposed to freezing while inside their hosts. Survival was assessed by observing live and dead nematodes inside cadavers and by counting the infective juveniles (IJs) that emerged after freezing. We (1) measured the effects of 24h of freezing at different times throughout the course of an infection, (2) determined the duration of freezing entomopathogenic nematodes could survive, (3) determined species differences in freezing survival. Highest stage-specific survival was IJs for S. carpocapsae, and adults for H. bacteriophora. When cadavers were frozen two or three days after infection, few IJs emerged from them. Freezing between five and seven days after infection had no negative effect on IJ production. No decrease in IJ production was measured for H. bacteriophora after freezing. H. bacteriophora also showed improved survival inside versus outside their host when exposed to freezing.  相似文献   

12.
An improved calcium alginate gel formulation was developed and tested as a carrier for entomopathogenic nematodes against Spodoptera littoralis and Helicoverpa armigera larvae. Mortality of 100% was caused in 4th instar larvae of the two insects by feeding them on 1000 infective juveniles (IJ) g -1 of Steinernema carpocapsae (ALL strain) in the gel for 24 h. Exposing 2nd to 5th instars of H. armigera and 3rd to 6th of S. littoralis to 500 IJ g -1 of S. carpocapsae (ALL strain) resulted in 70-100% larval mortality. Mature larvae were less susceptible to the nematodes. Mortality of larvae exposed to 500 IJg -1 of S. carpocapsae (ALL strain) ranged from about 45-55% at 4 h to 90-95% at 48 h. Fourth instar larvae fed for 24 h with 250 IJ g -1 of nematode strains in gel showed in S. littoralis ranges of susceptibility in the following descending order: S. feltiae (IS -7 strain) = S. carpocapsae (DT strain) = S. feltiae (IS-6 strain) > S. carpocapsae (Mexican strain) = S. carpocapsae (ALL strain) = Heterorhabditis bacteriophora (HP-88 strain) = H sp. (IS-5 strain) > S. riobravae (Texas strain); in H. armigera the rating was: S. feltiae (IS-7 strain) = H. bacteriophora (HP88 strain) > S. carpocapsae (ALL strain) = S. feltiae (IS-6 strain ) = Heterorhabditis sp. (IS5 strain) > S. carpocapsae (Mexican strain) > S. riobravae (Texas strain) . The number of nematodes per larval cadaver increased with mortality rates. In greenhouse tests at 28 &#45 2&#176;C and 90% relative humidity, gel discs containing 500 IJ g -1 of nematodes were pinned to leaves of potted plants of cotton ( Gossypium hirsutum ) (Acala SJ2) and the plants were offered to S. littoralis larvae. Larval mortality of 89 &#45 12.7% was caused by S. feltiae (IS-7 strain) and most of the plant leaves were protected against the larvae by the nematodes. In the control, larval mortality was 3.3 &#45 0.05% and the plants were almost completely defoliated. Possibilities of using the gel-nematode formulation to protect sheltered crops against insect pests are discussed  相似文献   

13.
The susceptibility of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) to native and commercial strains of entomopathogenic nematodes (EPNs) was studied under laboratory conditions. Native strains of EPNs were collected from northeastern Iran and characterised as Steinernema feltiae and Heterorhabditis bacteriophora (FUM 7) using classic methods as well as analysis of internal transcribed spacer (ITS) and D2/D3 sequences of 28S genes. Plate assays were performed to evaluate the efficiency of five EPN strains belonging to four species including Steinernema carpocapsae (commercial strain), S. feltiae, Steinernem glaseri and H. bacteriophora (FUM 7 and commercial strains). This initial assessment with 0, 75, 150, 250, 375 and 500 IJs/ml concentrations showed that S. carpocapsae and H. bacteriophora caused the highest mortality in both larval and prepupal stages of P. operculella, PTM. Thereafter, these three strains (i.e. S. carpocapsae, H. bacteriophora FUM 7 and the commercial strains) were selected for complementary assays to determine the effects of soil type (loamy, loamy–sandy and sandy) on the virulence of EPNs against the second (L2) and fourth instar (L4) larvae as well as prepupa. A soil column assay was conducted using 500 and 2000 IJs in 2-ml distilled water. Mortality in the L2 larvae was not affected by the EPN strain or soil type, while there was a significant interactive effect of nematode strains and soil type on larval mortality. The results also showed that EPN strains have higher efficiency in lighter soils and caused higher mortality on early larvae than that in loamy soil. In L4 larvae, mortality of PTM was significantly influenced by nematode strain and applied concentrations of infective juveniles. The larval mortality induced by S. carpocapsae was higher than those caused either by a commercial or the FUM 7 strain of H. bacteriophora. Prepupa were the most susceptible stage.  相似文献   

14.
The European crane fly (ECF), Tipula paludosa Meigen feeds on leaves, crowns, and roots of cool-season turfgrasses causing damage to residential lawns and golf courses. A laboratory study was conducted to determine the susceptibility of ECF larvae to four commercial entomopathogenic nematode (EPN) species (Heterorhabditis marelatus, H. megidis, Steinernema carpocapsae and S. feltiae). The virulence of four S. feltiae isolates recovered from golf courses in Quebec and Ontario were also compared to a commercial strain. LC50 values of EPN against late instar ECF larvae were 152, 562, 763, and 3584 for S. feltiae, H. megidis, H. marelatus and S. carpocapsae, respectively. When non-feeding (without grass seedling), ECF larvae mortalities decreased for all nematode species and concentrations tested. At 25°C, LC50 values for the two most virulent indigenous S. feltiae were 129 and 187 nematodes/larva, not different from the commercial strain. At 5°C, the commercial S. feltiae was more effective than both BIC14A and RE6A isolates against ECF larvae. However, at 15°C, BIC14A was the most virulent at the low concentration of 200 IJs/larva.  相似文献   

15.
Sugar beet, Beta vulgaris L. is a strategic crop of sugar industry in Egypt. It is threatened by several insect pests among most important of them is the beet fly Pegomyia mixta. This work deals with the biological control of this insect using four entomopathogenic nematodes (EPNs). The nematodes included Steinernema carpocapsae S2, Steinernema feltiae, Heterorhabditis bacteriophora (HB1-3) and Heterorhabditis bacteriophora S1. Daily mortality of larvae and pupae of P. mixta were recorded after treatment with serial concentrations (500, 1000, 2000 and 4000 infective juveniles (IJs)/ml) of each of four studied EPNs. In the laboratory all tested nematodes killed the larvae inside their mines in the sugar beet leaves and developed in their bodies in different extends. They also killed the insect pupae in the soil and developed in their bodies. Young larvae were more susceptible than old ones. New pupae were more susceptible than old ones. In the field a single spray of S. feltiae or H. bacteriophora caused 81.3 or 75.9% reduction in the larval population of the in sugar beet leaves.  相似文献   

16.
Multiple-species natural enemy approach for the biological control of the alfalfa snout beetle, Otiorhynchus ligustici (L.) (Coleoptera: Curculionidae), was compared with using single-species of natural enemies in the alfalfa ecosystem by using entomopathogenic nematodes with different dispersal and foraging behaviors. Steinernema carpocapsae NY001 (ambush nematode), Heterorhabditis bacteriophora Oswego (cruiser nematode), and Steinernema feltiae Valko (intermediate nematode) were applied in single-species, two-species combinations, and one three-species combination treatments at 2.5 x 10(9) infective juveniles per hectare. All nematode species persisted for a full year (357 d). S. carpocapsae NY001 protected the plants from root-feeding damage better than H. bacteriophora Oswego but allowed for higher larval survival than all other nematode treatments. S. feltiae Valko protected the plants better than H. bacteriophora Oswego and controlled alfalfa snout beetle larvae better than S. carpocapsae NY001. H. bacteriophora Oswego allowed for similar root damage compared with control plots but reduced larval populations better than S. carpocapsae NY001. The combination of S. carpocapsae NY001 and H. bacteriophora Oswego provided significantly better protection for the plants than the control (unlike H. bacteriophora Oswego alone) and reduced host larva survival more than S. carpocapsae NY001 alone. The combination S. feltiae Valko and H. bacteriophora Oswego could not be statistically separated from the performance of S. feltiae Valko applied alone.  相似文献   

17.
Four strains of Steinernema feltiae from Eastern Java, Indonesia were characterized based on morphometric, morphological and molecular data. In addition, their virulence against last instar Tenebrio molitor and heat tolerance was tested. Infective juvenile have a mean body length ranging from 749 to 792 microm. The maximum sequence difference among the four strains was 7 bp (8.8%) in the ITS and 2 bp (0.3%) in D2D3 regions of the rDNA. All the strains are not reproductively isolated and can reproduce with European strain S. feltiae Owiplant. The lowest LC50 was observed for strain SCM (373) and the highest for S. feltiae strain Owiplant (458) IJs/40 T. molitor. All four strains showed relatively better mean heat tolerance when compared with S. feltiae Owiplant, both in adapted and non-adapted heat tolerance experiments.  相似文献   

18.
The susceptibility of the boll weevil (BW), Anthonomus grandis Boheman, to Steinernema riobrave and other nematode species in petri dishes, soil (Hidalgo sandy clay loam), and cotton bolls and squares was investigated. Third instar weevils were susceptible to entomopathogenic nematode (EN) species and strains in petri dish bioassays at 30 degrees C. Lower LC(50)'s occurred with S. riobrave TX- 355 (2 nematodes per weevil), S. glaseri NC (3), Heterorhabditis indicus HOM-1 (5), and H. bacteriophora HbL (7) than H. bacteriophora IN (13), S. riobrave TX (14), and H. bacteriophora HP88 (21). When infective juveniles (IJs) of S. riobrave were applied to weevils on filter paper at 25 degrees C, the LC(50) of S. riobrave TX for first, second, and third instars, pupae, and 1-day-old and 10-days-old adult weevils were 4, 5, 4, 12, 13, and 11IJs per weevil, respectively. The mean time to death, from lowest to highest concentration, for the first instar (2.07 and 1.27days) and second instar (2.55 and 1.39days) weevils were faster than older weevil stages. But, at concentrations of 50 and 100IJs/weevil, the mean time to death for the third instar, pupa and adult weevils were similar (1.84 and 2.67days). One hundred percent weevil mortality (all weevil stages) occurred 3days after exposure to 100IJs per weevil. Invasion efficiency rankings for nematode concentration were inconsistent and changed with weevil stage from 15 to 100% when weevils were exposed to 100 and 1IJs/weevil, respectively. However, there was a consistent relationship between male:female nematode sex ratio (1:1.6) and nematode concentration in all infected weevil stages. Nematode production per weevil cadaver increased with increased nematode concentrations. The overall mean yield of nematodes per weevil was 7680IJs. In potted soil experiments (30 degrees C), nematode concentration and soil moisture greatly influenced the nematode efficacy. At the most effective concentrations of 200,000 and 400,000IJs/m(2) in buried bolls or squares, higher insect mortalities resulted in pots with 20% soil moisture either in bolls (94 and 97% parasitism) or squares (92 and 100% parasitism) than those of 10% soil moisture in bolls (44 and 58% parasitism) or squares (0 and 13% parasitism). Similar results were obtained when nematodes were sprayed on the bolls and squares on the soil surface. This paper presents the first data on the efficacy of S. riobrave against the boll weevil, establishes the potential of EN to control the BW inside abscised squares and bolls that lay on the ground or buried in the soil.  相似文献   

19.
病原线虫对桔小实蝇种群的控制作用   总被引:17,自引:2,他引:15  
通过室内和田间实验研究了昆虫病原线虫对桔小实蝇Bactrocera (Bactrocera) dorsalis (Hendel)的控制作用。室内实验结果表明,供试的3种线虫的4个品系(小卷蛾斯氏线虫Steinernema carpocapsae All品系与A24品系,夜蛾斯氏线虫Steinernema feltiae SN品系和嗜菌异小杆线虫Heterorhabditis bacteriophora H06品系),以小卷蛾斯氏线虫All品系对桔小实蝇的侵染力最强,其3天的LD50和LD95分别为35.0和257.1条/cm2土壤。按300条/cm2土壤的量施用,小卷蛾斯氏线虫All品系对当代桔小实蝇的控制效果为86.3%。用以虫期作用因子组建的生命表方法评价了小卷蛾斯氏线虫All品系对田间桔小实蝇下代种群的控制作用,结果表明,按300条/cm2土壤的量施用线虫,对照杨桃园的桔小实蝇种群趋势指数为105.9,而处理杨桃园的桔小实蝇种群趋势指数下降为15.5;小卷蛾斯氏线虫All品系对桔小实蝇的干扰控制指数为0.146,即线虫处理果园的下代种群密度仅为对照果园的14.6%。  相似文献   

20.
Larvae of Pseudaletia unipuncta are moderately susceptible to infections caused by entomopathogenic nematodes, being a desirable host to study pathogenic processes caused by Heterorhabditis bacteriophora, Steinernema carpocapsae, and Steinernema glaseri and their associated bacteria. The ability of the infective stage of these nematodes to invade hosts is quite different. S. carpocapsae invades the highest number of insects and presents the highest penetration rate, followed by H. bacteriophora. Regression analysis between the number of insects parasitized and the number of IJs counted per insect, over time, showed a high correlation for S. carpocapsae whereas for H. bacteriophora it was low. Dose-response was most evident at a concentration below 100 IJs per insect on H. bacteriophora, whereas on S. carpocapsae it was found for doses ranging from 100 to 2,000 IJs. Student's t test analysis of dose-response showed parallel, yet unequal, slopes for both strains of H. bacteriophora, whereas distinct regressions were obtained for S. carpocapsae and S. glaseri, thus, evidencing each species develop a distinct pathogenic process. Insects injected with Photorhabdus luminescens died within 50 h after injection, whereas those treated with X. nematophila died much later. Moreover, the mortality in insects exposed to H. bacteriophora complex and injected with P. luminescens was close, but insects injected with bacteria died faster. Insect mortality in treatments with complexes S. carpocapsae and S. glaseri was significantly higher than that which was observed in insects injected with symbiotic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号