首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The aim of the present study was to assess the effect of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in the pathophysiology of spinal cord injury (SCI) in mice. Spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5–T8 laminectomy. SCI in mice resulted in severe trauma characterized by oedema, neutrophil infiltration, production of inflammatory mediators, tissue damage and apoptosis. ww-85 treatment (30–300 µg/kg, i.p. 1 h after the SCI) significantly reduced in a dose-dependent manner: (1) the degree of spinal cord inflammation and tissue injury, (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation and PARP activation, (4) pro-inflammatory cytokines expression, (5) NF-κB activation and (6) apoptosis. Moreover, ww-85 significantly ameliorated the recovery of limb function (evaluated by motor recovery score) in a dose-dependent manner. The results demonstrate that ww-85 treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.  相似文献   

2.
《Free radical research》2013,47(6):694-709
Abstract

The standard iron-chelator deferoxamine is known to reduce neurological deficits. The aim of the present study was to evaluate the contribution of deferoxamine in the secondary damage in experimental spinal cord injury (SCI) in mice, induced by the application of vascular clips to the dura via a four-level T5–T8 laminectomy. SCI resulted in production of inflammatory mediators, tissue damage and apoptosis. Deferoxamine treatment 30 min before and 1 and 6 h after the SCI significantly reduced: (1) GFAP immunoreactivity, (2) neutrophil infiltration, (3) NF-κB activation, (4) iNOS expression, (5) nitrotyrosine and MDA formation, (6) DNA damage (methyl green pyronin staining and PAR formation and (7) apoptosis (TUNEL staining, FasL, Bax and Bcl-2 expression, S-100 expression). Moreover, deferoxamine significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, the results clearly demonstrate that deferoxamine treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.  相似文献   

3.

Background

Olprinone hydrochloride is a newly developed compound that selectively inhibits PDE type III and is characterized by several properties, including positive inotropic effects, peripheral vasodilatory effects, and a bronchodilator effect. In clinical settings, olprinone is commonly used to treat congestive cardiac failure, due to its inotropic and vasodilating effects. The mechanism of these cardiac effects is attributed to increased cellular concentrations of cAMP. The aim of the present study was to evaluate the pharmacological action of olprinone on the secondary damage in experimental spinal cord injury (SCI) in mice.

Methodology/Principal Findings

Traumatic SCI is characterized by an immediate, irreversible loss of tissue at the lesion site, as well as a secondary expansion of tissue damage over time. Although secondary injury should be preventable, no effective treatment options currently exist for patients with SCI. Spinal cord trauma was induced in mice by the application of vascular clips (force of 24 g) to the dura via a four-level T5–T8 laminectomy. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of inflammatory mediators, tissue damage, apoptosis, and locomotor disturbance. Olprinone treatment (0.2 mg/kg, i.p.) 1 and 6 h after the SCI significantly reduced: (1) the degree of spinal cord inflammation and tissue injury (histological score), (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation, (4) pro-inflammatory cytokines, (5) NF-κB expression, (6) p-ERK1/2 and p38 expression and (7) apoptosis (TUNEL staining, FAS ligand, Bax and Bcl-2 expression). Moreover, olprinone significantly ameliorated the recovery of hind-limb function (evaluated by motor recovery score).

Conclusions/Significance

Taken together, our results clearly demonstrate that olprinone treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.  相似文献   

4.
5.
6.
7.
We investigated mechanisms by which a monoclonal antibody (mAb) against the CD11d subunit of the leukocyte integrin CD11d/CD18 improves neurological recovery after spinal cord injury (SCI) in the rat. The effects of an anti-CD11d mAb treatment were assessed on ED-1 expression (estimating macrophage infiltration), myeloperoxidase activity (MPO, approximating neutrophil infiltration), lipid peroxidation, inducible nitric oxide synthase (iNOS) and nitrotyrosine (indicating protein nitration) expression in the spinal cord lesion after severe clip-compression injury. Protein expression was evaluated by western blotting and immunocytochemistry. Lipid peroxidation was assessed by thiobarbituric acid reactive substances (TBARS) production. After anti-CD11d mAb treatment, decreased ED-1 expression at 6-72 h after SCI indicated reduced macrophage infiltration. MPO activity (units/g tissue) was reduced significantly from 114 +/- 11 to 75 +/- 8 (- 34%) at 6 h and from 38 +/- 2 to 22 +/- 4 (- 42%) at 72 h. After SCI, anti-CD11d mAb treatment significantly reduced TBARS from 501 +/- 61 to 296 +/- 17 nm (- 41%) at 6 h and to approximately uninjured values (87 nm) at 72 h. The mAb treatment also attenuated the expression of iNOS and formation of nitrotyrosine at 6-72 h after SCI. These data indicate that anti-CD11d mAb treatment blocks intraspinal neutrophil and macrophage infiltration, reducing the intraspinal concentrations of reactive oxygen and nitrogen species. These effects likely underlie improved tissue preservation and neurological function resulting from the mAb treatment.  相似文献   

8.
PDE 7 inhibitors: new potential drugs for the therapy of spinal cord injury   总被引:1,自引:0,他引:1  

Background

Primary traumatic mechanical injury to the spinal cord (SCI) causes the death of a number of neurons that to date can neither be recovered nor regenerated. During the last years our group has been involved in the design, synthesis and evaluation of PDE7 inhibitors as new innovative drugs for several neurological disorders. Our working hypothesis is based on two different facts. Firstly, neuroinflammation is modulated by cAMP levels, thus the key role for phosphodiesterases (PDEs), which hydrolyze cAMP, is undoubtedly demonstrated. On the other hand, PDE7 is expressed simultaneously on leukocytes and on the brain, highlighting the potential crucial role of PDE7 as drug target for neuroinflammation.

Methodology/Principal Findings

Here we present two chemically diverse families of PDE7 inhibitors, designed using computational techniques such as virtual screening and neuronal networks. We report their biological profile and their efficacy in an experimental SCI model induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5–T8 laminectomy. We have selected two candidates, namely S14 and VP1.15, as PDE7 inhibitors. These compounds increase cAMP production both in macrophage and neuronal cell lines. Regarding drug-like properties, compounds were able to cross the blood brain barrier using parallel artificial membranes (PAMPA) methodology. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of a range of inflammatory mediators, tissue damage, and apoptosis. Treatment of the mice with S14 and VP1.15, two PDE7 inhibitors, significantly reduced the degree of spinal cord inflammation, tissue injury (histological score), and TNF-α, IL-6, COX-2 and iNOS expression.

Conclusions/Significance

All these data together led us to propose PDE7 inhibitors, and specifically S14 and VP1.15, as potential drug candidates to be further studied for the treatment of SCI.  相似文献   

9.
Acidic fibroblast growth factor (aFGF; also known as FGF-1) is a potent neurotrophic factor that affects neuronal survival in the injured spinal cord. However, the pathological changes that occur with spinal cord injury (SCI) and the attribution to aFGF of a neuroprotective effect during SCI are still elusive. In this study, we demonstrated that rat SCI, when treated with aFGF, showed significant functional recovery as indicated by the Basso, Beattie, and Bresnahan locomotor rating scale and the combined behavior score (p < 0.01-0.001). Furthermore proteomics and bioinformatics approaches were adapted to investigate changes in the global protein profile of the damaged spinal cord tissue when experimental rats were treated either with or without aFGF at 24 h after injury. We found that 51 protein spots, resolvable by two-dimensional PAGE, had significant differential expression. Using hierarchical clustering analysis, these proteins were categorized into five major expression patterns. Noticeably proteins involved in the process of secondary injury, such as astrocyte activation (glial fibrillary acidic protein), inflammation (S100B), and scar formation (keratan sulfate proteoglycan lumican), which lead to the blocking of injured spinal cord regeneration, were down-regulated in the contusive spinal cord after treatment with aFGF. We propose that aFGF might initiate a series of biological processes to prevent or attenuate secondary injury and that this, in turn, leads to an improvement in functional recovery. Moreover the quantitative expression level of these proteins was verified by quantitative real time PCR. Furthermore we identified various potential neuroprotective protein factors that are induced by aFGF and may be involved in the spinal cord repair processes of SCI rats. Thus, our results could have a remarkable impact on clinical developments in the area of spinal cord injury therapy.  相似文献   

10.
The study was performed to investigate the effect of combination therapy with aminoguanidine (AG) and dexamethasone (DEX) on the compression spinal cord injury (SCI) in rat. Compared to the control group, the combination therapy group with AG (75 mg/kg) and DEX (0.025 mg/kg) significantly reduced the degree of (1) spinal cord edema, (2) the permeability of blood spinal cord barrier (measured by 99mTc-Albumin), (3) infiltration of neutrophils (MPO evaluation), (4) cytokines expression (tumor necrosis factor-α and interleukin-1β), and (5) apoptosis (measured by Bax and Bcl-2 expression). In addition, we have also clearly demonstrated that the combination therapy significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, our results clearly indicated for the first time that strategies targeting multiple proinflammatory pathways may be more effective than a single effector molecule for the treatment of SCI.  相似文献   

11.
Acute inflammation is a prominent feature of central nervous system (CNS) insult and is detrimental to the CNS tissue. Although this reaction spontaneously diminishes within a short period of time, the mechanism underlying this inflammatory resolution remains largely unknown. In this study, we demonstrated that an initial infiltration of Ly6C+Ly6G? immature monocyte fraction exhibited the same characteristics as myeloid‐derived suppressor cells (MDSCs), and played a critical role in the resolution of acute inflammation and in the subsequent tissue repair by using mice spinal cord injury (SCI) model. Complete depletion of Ly6C+Ly6G? fraction prior to injury by anti‐Gr‐1 antibody (clone: RB6‐8C5) treatment significantly exacerbated tissue edema, vessel permeability, and hemorrhage, causing impaired neurological outcomes. Functional recovery was barely impaired when infiltration was allowed for the initial 24 h after injury, suggesting that MDSC infiltration at an early phase is critical to improve the neurological outcome. Moreover, intraspinal transplantation of ex vivo‐generated MDSCs at sites of SCI significantly reduced inflammation and promoted tissue regeneration, resulting in better functional recovery. Our findings reveal the crucial role of an Ly6C+Ly6G? fraction as MDSCs in regulating inflammation and tissue repair after SCI, and also suggests an MDSC‐based strategy that can be applied to acute inflammatory diseases.  相似文献   

12.
Neutrophil infiltration has been implicated in the secondary destructive pathomechanisms after initial mechanical injury to the spinal cord. Tissue myeloperoxidase (MPO) activity has been shown to be an exclusive indicator of the extent of post-traumatic neutrophil infiltration. We have studied the effect of magnesium sulphate on MPO activity after spinal cord injury in rats. Rats were randomly allocated into 5 groups. Group 1 was control and normal spinal cord samples were obtained after clinical examination. Forty g-cm contusion injury was introduced to Group 2. Group 3 was vehicle, 1 ml of physiological saline was injected post-trauma. Group 4 was given 30 mg/kg methylprednisolone sodium succinate (MPSS) immediately after trauma. Group 5 was given 600 mg/kg magnesium sulphate immediately after trauma. Animals were examined by inclined plane technique of Rivlin and Tator 24 h after trauma. Spinal cord samples obtained following clinical evaluations. Magnesium sulphate treatment improved early functional scores and decreased MPO activity. These findings revealed that magnesium sulphate treatment possesses neuroprotection on early clinical results and on neutrophil infiltration after acute contusion injury to the rat spinal cord.  相似文献   

13.
The purpose of this study is to evaluate, in an experimental model of spinal cord injury (SCI), the presence of apoptotic cell death after trauma and if early administration of a single bolus of methylprednisolone (MP) influences apoptosis in the zone of trauma and in adjacent spinal cord segments. For this study, a total of 96 adult female Wistar rats were subjected to spinal contusion at the T6-T8 level, producing immediate paraplegia. Forty-eight animals (treated group) received a single intraperitoneal injection of MP, at a dose of 30 mg/kg body weight, 10 minutes later. Cells undergoing apoptosis were detected by means of immunohistochemical labeling with the monoclonal antibody Apostain (anti-ssDNA MAb F7-26), in the injured spinal cord tissue, both in the zone of the lesion and in the adjacent spinal segments (rostral and caudal zones), 1, 4, 8, 24 and 72 hours and 1 week after injury. Apoptosis was detected in neurons and glial cells in the zone of the lesion 1 hour after trauma, with a pattern that showed no changes 4 hours later. Between 4 and 8 hours postinjury, the number of apoptotic cells increased, after which it decreased over the following days. In the adjacent spinal segments, apoptotic cells were detected 4 hours after trauma, and increased progressively over the remainder of the study, the number of apoptotic cells being similar in the lesion zone and in rostral and caudal zones one week after injury. When the group of MP-treated animals was considered, significant decreases in the number of apoptotic cells were detected in the lesion zone 24 hours after injury, and in the rostral and caudal zones, at 72 hours and at 1 week after trauma. These findings show that early administration of a single bolus of MP decreases apoptotic cell death after SCI, supporting the utility of MP in reducing secondary damage in injured spinal cord tissue.  相似文献   

14.
We have previously reported neuroprotection in spinal cord injury (SCI) by Lipitor [atorvastatin (AT)]-pre-treatment. Though informative, pre-treatment studies find only limited clinical application as trauma occurrence is unpredictable. Therefore, this study investigates the efficacy of AT treatment post-SCI. In a rat model of contusion-SCI resulting in complete hindlimb paralysis, AT treatment (5 mg/kg; gavage) was begun 2, 4, or 6 h post-SCI followed by a once daily dose thereafter for 6 weeks. While the placebo vehicle (VHC)-SCI rats showed substantial functional deficit, AT-SCI animals exhibited significant functional recovery. AT diminished injury-induced blood-spinal cord barrier (BSCB) dysfunction with significantly reduced infiltration and tumor necrosis factor-alpha/interleukin-1beta/inducible nitric oxide synthase expression at site of injury. BSCB protection in AT-SCI was attributable to attenuated matrix metalloproteinase-9 (MMP9) expression - a central player in BSCB disruption. Furthermore, endothelial MMP9 expression was found to be RhoA/ROCK pathway-mediated and regulated by AT through an isoprenoid-dependent mechanism. Attenuation of these early inflammatory events reduced secondary damage. Significant reduction in axonal degeneration, myelin degradation, gliosis, and neuronal apoptosis with resultant enhancement in tissue sparing was observed in AT-SCI compared with VHC-SCI. In summary, this novel report presenting the efficacy of post-injury AT treatment might be of critical therapeutic value as effective treatments are currently unavailable for SCI.  相似文献   

15.
Melatonin is well-documented to have the ability of reducing nerve inflammation and scavenging free radicals. However, the therapeutic effect of melatonin on spinal cord injury has not been fully described. In this study, we assessed the effect of melatonin on T9 spinal cord injury established by Allen method in rats. Melatonin deficiency significantly delayed the recovery of sensory and motor functions in SCI rats. Treatment with melatonin significantly alleviated neuronal apoptosis and accelerated the recovery of spinal cord function. These results suggest that melatonin is effective to ameliorate spinal cord injury through inhibition of neuronal apoptosis and promotion of neuronal repair.  相似文献   

16.
17.
18.
Previous experimental and clinical studies have suggested that the behavioral and pathological outcomes of spinal cord injury (SCI) are affected by the individual's age at the time of injury. However, the underlying mechanism responsible for these differences remains elusive because it is difficult to match injuries of similar severities between young and adult animals due to differences in the sizes of their respective spinal cords. In this study, the spinal cord size-matched young (4-week-old) and adult (10-week-old) mice were compared to evaluate their locomotor functions and inflammatory cellular/molecular responses after standardized contusion SCI. During the acute phase of SCI, young mice showed better functional recovery and lower pro-inflammatory cytokines/chemokines compared to adult mice. Flow-cytometric analysis revealed that the time courses of leukocyte infiltration were comparable between both groups, while the number of infiltrating neutrophils significantly decreased from 6 h after SCI in young mice. By combining flow-cytometric isolation and gene expression analysis of each inflammatory cell fraction, we found that microglial cells immediately initiate the production of several cytokines in response to SCI, which serve as major sources of IL-6, TNFa, and CXCL1 in injured spinal cord. Interestingly, the secretion of pro-inflammatory cytokines/chemokines but not anti-inflammatory cytokines by microglia was significantly lower in young mice compared to that in adult mice at 3 h after SCI, which will be attributed to the attenuation of the subsequent neutrophil infiltration. These results highlight age-related differences in pro-inflammatory properties of microglial cells that contribute to the amplification of detrimental inflammatory responses after SCI.  相似文献   

19.
Kynurenic acid (KYNA), a metabolite of the essential amino acid L-tryptophan, is a broad spectrum antagonist of excitatory amino acid receptors, which have also anticonvulsant and neuroprotective properties. After spinal cord injury (SCI), excitotoxicity is considered to play a significant role in the processes of secondary tissue destruction in both grey and white matter of the spinal cord. In this study, we have tested the potential therapeutic effect of glucosamine-kynurenic acid, administered after experimental compression-induced SCI in the rat. Spinal application of glucosamine-kynurenic acid continually for 24 hr after experimental SCI resulted in improved motor function recovery, beginning from the first week of evaluation and continuing until the end of the study (4 weeks). After 4 weeks?? survival, quantitative morphometric analysis of the spinal cord showed that glucosamine-kynurenic acid treatment was associated with improved tissue preservation at the lesion site. These findings indicate that spinal application of glucosaminekynurenic acid is neuroprotective and improves the outcome even when administered after spinal trauma. Our results suggest that the treatments initiated in early posttraumatic period can alleviate secondary injury and improve the final outcome after SCI.  相似文献   

20.
In view of a cytoprotective effect of elastase inhibitor on chemokine-mediated tissue injury, we examined the neuroprotective effect of ONO-5046, a specific inhibitor of neutrophil elastase, in rats with spinal cord injury. Standardized spinal cord compression markedly increased cytokine-induced neutrophil chemo-attractant (CINC)-1 mRNA and protein. Their increases correlated with neurologic severity of injured rats. Immunohistochemically, CINC-1 protein was detected sequentially in vascular endothelial cells at 4 h, in perivascular neutrophils at 8 h, and in neutrophils infiltrating into cord substance at 12 h. Pretreatment with ONO-5046 (50 mg/kg) markedly ameliorated motor disturbance in injured rats, and reduced CINC-1 protein and mRNA expression. ONO-5046 also significantly reduced the increase of neutrophil accumulation or infiltration estimated by myeloperoxidase activity, and the extent of vascular permeability by Evans blue extravasation in the injured cord segment in comparison to control animals receiving vehicle. These results suggest that CINC-1 contributed to inflammation in rat spinal cord injury and ONO-5046 attenuated neurologic damage partly by blocking CINC-1 production of the chemoattractant, preventing neutrophil activation and vascular endothelial cell injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号