首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protonation constants of 1,3,5-triamino-2,4,6-trihydroxycyclohexane (taci), at 25 °C in I = 1.00 M (NaClO4) were determined to be: pKa1, 5.57 (0.08); pKa2, 7.45 (0.02); pKa3, 9.05 (0.04). The log of the stability constants, log β302, at 25°C in I = 1.00 M (NaClO4) for formation of were measured by potentiometry to be: Nd(III), 25.33 (0.09); Eu(III), 26.42 (0.06); Tm(III), 30.07 (0.10); Lu(III), 33.68 (0.07) ; Y(III), 28.59 (0.07). 1H NMR spectra were consistent with formation of a single complex from pcH 6 to 10. Laser fluorescence measurements of the 7Fo-5Do transition of Eu(III) complexed by taci indicated a single complexed species. The shift in this peak relative to that of Eu3+(aq) was significantly greater than the values reported for the complexes of other organic ligands with Eu(III). Luminescence lifetime measurements indicated two water molecules bound to each of the Eu(III) cations in the taci complex.  相似文献   

2.
The coordination between Al(III) and sialic acid (N-acetylneuraminic acid, HL, pKa = 2.58 ± 0.01) was studied by potentiometric titrations at 25 °C in aqueous 0.2 M KCl, by 1H NMR, and by electrospray ionization mass spectrometry (ESI-MS). The potentiometric measurements gave the following aluminium complex stoichiometries and stability constants: , log β(AlLH−2) = −6.34 ± 0.02, and log β(AlL2H−1) = −1.14 ± 0.04. The 1H NMR spectra yielded structural information on species . The ESI-MS data confirmed the metal-ligand stoichiometry of the complexes.The metal-ligand speciation at micromolar Al(III) concentrations (i.e., under in vivo conditions) at physiological pH values reveals that considerable amount of Al(III) is complexed. This suggests that the toxic effect of Al(III) towards cellular membranes might be due to its coordination by protein-bound sialic acid.  相似文献   

3.
Complexation of 1,3,5-trideoxy-1,3,5-tris((2-hydroxybenzyl)amino)-cis-inositol (thci) in I = 1.00 M (NaClO4) with Eu(III) and La(III) was studied by EXAFS measurements and gaussian view energy calculations.EXAFS studies indicated that two complexes Eu(thci)2+ and are formed with thci and Eu(III). At lower pH, Eu(III) is bonded to thci via two hydroxyl groups (cyclohexanetriol or 2-hydroxybenzylamino moieties) and 7 H2O molecules, for a total of 9 Eu–O bonds. However, at higher pH there are two hydroxyl groups (cyclohexanetriol or 2-hydroxybenzylamino moieties), two amino groups, and five water molecules for a total Eu(III) coordination number of 9. gaussian view energy calculations indicate that in the Eu(thci)2+, thci bonds to Eu(III) in a similar manner and is in good correlation with the EXAFS data.  相似文献   

4.
The stability constants of Am+3, Cm3+ and Eu3+ with ortho silicate, were measured at pH 3.50 and in ionic strengths of 0.20-1.00 M (NaClO4) by the solvent extraction method. The Am+3, Cm3+ and Eu3+ forms 1:1 complex with ortho silicate ion at pH 3.60 with the stability constant (log β1) value of 8.02 ± 0.10, 7.78 ± 0.08 and 7.81 ± 0.11, respectively. The stability of these metal ions decrease with increased ionic strength from 0.20 to 1.00 M (NaClO4) for silicic acid concentrations of 0.002-0.020 M. Increasing silicic acid concentration above 0.02 M increased the amount of M3+ extracted into the organic phase, contrary to the trend usually observed for increased ligand concentration in solvent extraction. This reversed trend is likely due to the extraction of cationic species of silicic acid by HDEHP. Aging time (60-300 min) had no effect on the stability constant of these metal ions for 0.002-0.020 M silicic acid at pH 3.50 and I = 0.20 M (NaClO4).The fraction of polymeric silicic acid present in solutions of 0.20-4.50 M NaClO4 solutions at pH 3.0-10.0, T = 0-60 °C and aging time = 5-300 min was measured for determination of the silicomolybdate reaction to ascertain the proper conditions to study metal-silicate complexation.  相似文献   

5.
The complex formation of europium(III) and curium(III) with urea in aqueous solution has been studied at I = 0.1 M (NaClO4), room temperature and trace metal concentrations in the pH-range of 1-8 at various ligand concentrations using time-resolved laser-fluorescence spectroscopy. While for curium(III) the luminescence maximum is red shifted upon complexation, in case of europium(III) emission wavelengths remain unaltered but a significant change in peak splitting occurs. Both heavy metals form weak complexes of the formulae ML3+ and MLOH2+ with urea. Stability constants were determined to be log β110 = −0.12 ± 0.05 and log β11-1 = −6.86 ± 0.15 for europium(III) and log β110 = −0.28 ± 0.12 and log β11-1 = −7.01 ± 0.15 for curium(III).  相似文献   

6.
The oxidation of oxalic acid by tetrachloroaurate(III) ion in 0.005 ? [HClO4] ? 0.5 mol dm−3 is first order in and a fractional order in [oxalic acid], the reactive entities being AuCl3(OH) and ions. The pseudo first-order rate, kobs, with respect to [Au(III)], is retarded by increasing [H+] and [Cl]. The retardation by H+ ion is caused by the dissociation equilibrium . A mechanism in which a substitution complex, is formed from AuCl3(OH) and ions prior to its rate limiting disproportionation into products is suggested. The rate limiting constant, k, has been evaluated and its activation parameters are reported. The equilibrium constant K1 for the formation of the substitution complex and its thermodynamic parameters are also reported.  相似文献   

7.
The photochemical behavior of nitrosyl complexes Ru(salen)(NO)(OH2)+ and Ru(salen)(NO)Cl (salen = N,N′-ethylenebis-(salicylideneiminato) dianion) in aqueous solution is described. Irradiation with light in the 350-450 nm range resulted in nitric oxide (NO) release from both. For Ru(salen)(NO)Cl secondary photoreactions also resulted in chloride aquation. Thus, in both cases the final photoproduct is the diaquo cation , for which pKa’s of 5.9 and 9.1 were determined for the coordinated waters. The pKa of the Ru(salen)(NO)(OH2)+ cation was also determined as 4.5 ± 0.1, and the relative acidities of these ruthenium aquo units are discussed in the context of the bonding interactions between Ru(III) and NO.  相似文献   

8.
The system was studied at 25 °C and at I = 0.1 M NaClO4 using hydrodynamic voltammetry, gold potentiometry, UV-Vis spectrophotometry and Raman spectroscopy. The presence of two mixed-ligand species, Au(S2O3)(SO3)3− and , was detected from the Raman experiments and supported by the gold potentiometric experiments. The stepwise formation constant, log K11r, for the reaction was found to be 1.1 (r = 1) and 4.8 (r = 2) from the hydrodynamic voltammetric experiments.  相似文献   

9.
The kinetics of the reaction of Cr(CN)5(H2O)2− with NCS and were studied at pH 5.0 and at pH 6.3-7.0, respectively, as a function of the temperature between 25.0 and 55.0 °C, and at various ionic strengths. Anation occurs in competition with aquation of CN, with rate constants that exhibit less-than-first-order dependence on the concentration of the entering anions. The results are interpreted in terms of ligand interchange in a context of association of the two reacting anions mediated by the Na+ or Ca2+ counterions. The degree of aggregation depends mainly on the total cationic charge rather than on the ionic strength, and is ca. 2-fold larger for than for NCS. Within the associated species, is a better entering ligand than NCS by a factor of 4.5. The Cr(CN)5(NCS)3− and Cr(CN)5(N3)3− complexes were also synthesized, and the rates of aquation of NCS and were measured at pH 5.0 and between 55.0 and 80.0 °C, over the same range of ionic strengths. The ionic strength enhances the anation rates but has little effect on the aquation rates. The average activation enthalpies of the interchange step are 80 ± 3 and 76 ± 3 kJ mol−1 for entry of NCS and , respectively. Those of the corresponding aquation reactions are 94 ± 4 and 107 ± 4 kJ mol−1. Within error limits, all ΔH values are independent of the ionic strength. The results are consistent with an Id mechanism for substitution in Cr(CN)5Xz complexes.  相似文献   

10.
The UV, excitation and luminescence spectra of EuA3B to be the extracted species as well as the extraction of Eu(III) with pivaloyltrifluoroacetone, HA, and/or Lewis bases, B (2,2′-bipyridyl, bpy, and bis(salicylidene)trimethylenediamine, H2saltn) into CHCl3 were measured. The results are summarized: the stability constants of EuA3bpy and EuA3H2saltn complexes are 5.85 ± 0.05 and 2.95 ± 0.06 as , respectively. The present results suggest that because of intramolecular hydrogen bonding, the stability and luminescence of the H2saltn complex including the quantum yield are smaller than those of the bpy complex. The weaker luminescence is also concerned with the fact that the less stable complexes easily dissociate in solvents to diminish the essential concentration.  相似文献   

11.
The reaction of with Co(dmgBF2)2(H2O)2 in 1.0 M HClO4/LiClO4 was found to be first-order in both reactants and the [H+] dependence of the second-order rate constant is given by k2obs = b/[H+], b at 25 °C is 9.23 ± 0.14 × 102 s−1. The [H+] dependence at lower temperatures shows some saturation effect that allowed an estimate of the hydrolysis constant for as Ka = 9.5 × 10−3 M at 10 and 15 °C. Marcus theory and the known self-exchange rate constant for Co(OH2)5OH2+/+ were used to estimate an electron self-exchange rate constant of k22 = 1.7 × 10−4 M−1 s−1 for .  相似文献   

12.
The binary complexation of Am3+, Cm3+and Eu3+ with citrate has been studied at I = 6.60 m (NaClO4), pcH 3.60 and in the temperatures range of 0-60 °C employing a solvent extraction technique with di-(2-ethylhexyl)phosphoric acid/heptane. Two complexes, MCit and , were formed at all temperatures. For the three metal ions, the log β101 was between 5.9 and 6.2 and log β102 between 10.2 and 10.6 at 25 °C. The thermodynamic parameters for the Am-Cit system have been calculated from the temperature dependence of the β101 and β102 values. Positive enthalpy and entropy values for the formation of both complexes are interpreted as due to the contributions from the dehydration of the metal ions exceeding the exothermic cation-anion pairing. The formation of the ternary complex M(EDTA)(Cit)4− (M = Cm and Eu) was measured to have large stability constants (log β111 between 20.9 and 24.4) at 25 and 60 °C. Time resolved laser luminescence spectroscopy and lifetime measurement data validated the nature of the complexes of Eu(III) formed in the presence of Cit and EDTA + Cit in 6.60 m (NaClO4) solution.  相似文献   

13.
The reaction of with H2O2 in 1.0 M HClO4/LiClO4 was found to be first-order in both reactants and the [H+] dependence of the second-order rate constant is given by k2obs = b/[H+], b at 25 °C is 26.4 ± 0.5 s−1. The rate law shows a simple inverse dependence on [H+] that is consistent with a rapidly maintained equilibrium between and its hydrolyzed form Co(H2O)5(OH)2+, followed by the rate controlling step, i.e. oxidation of H2O2 by Co(H2O)5(OH)2+.  相似文献   

14.
The tris-chelate formed by biguanide, H2NC(NH)NHC(NH)NH2, and Mn(IV) is one of the rarely encountered examples of water-stable mononuclear complexes of this oxidation state. This cation is reduced in aqueous acid by both V(II) and V(III). In contrast to the kinetically straightforward bimolecular reduction by V(II) in 0.5 M HClO4 (k = 7.4 × 103 M−1 s−1 at 22 °C), reductions by excess V(III) yield profiles which are linear (zero-order in MnIV) until the last few percent reaction. Analyses of these composite curves are consistent with the sequences
  相似文献   

15.
The crystal structure and magnetic properties of a penta-coordinate iron(III) complex of pyridoxal-4-methylthiosemicarbazone, [Fe(H2mthpy)Cl2](CH3C6H4SO3), are reported. The synthesised ligand and the metal complex were characterised by spectroscopic methods (1H NMR, IR, and mass spectroscopy), elemental analysis, and single crystal X-ray diffraction. The complex crystallises as dark brown microcrystals. The crystal data determined at 100(1) K revealed a triclinic system, space group (Z = 2). The ONSCl2 geometry around the iron(III) atom is intermediate between trigonal bipyramidal and square pyramidal (τ = 0.40). The temperature dependence of the magnetic susceptibility (5-300 K) is consistent with a high spin Fe(III) ion (S = 5/2) exhibiting zero-field splitting. Interpretation of these data yielded: D = 0.34(1) cm−1 and g = 2.078(3).  相似文献   

16.
Synthesis, structural characterization, and magnetic properties of a new cyano-bridged one-dimensional iron (III)-gadolinium (III) compound, trans-[Gd(o-phen)2(H2O)2(μ-CN)2Fe(CN)4]n · 2no-phen (o-phen = 1,10-phenanthroline), have been described. The compound crystallizes in the triclinic space group with the following unit cell parameters: a = 10.538(14) Å, b = 12.004(14) Å, c = 20.61(2) Å, α = 92.41(1)°, β = 92.76(1)°, γ = 112.72(1)°, and Z = 2. In this complex, each gadolinium (III) is coordinated to two nitrile nitrogens of the CN groups coming from two different ferricyanides, the mutually trans cyanides of each of which links another different GdIII to create -NC-Fe(CN)4-CN-Gd-NC- type 1-D chain structure. The one-dimensional chains are self-assembled in two-dimensions via weak C-H?N hydrogen bonds. Both the variable-temperature (2-300 K, 0.01 T and 0.8 T) and variable-field (0-50 000 Gauss, 2 K) magnetic measurements reveal the existence of very weak interaction in this molecule. The temperature dependence of the susceptibilities has been analyzed using a model for a chain of alternating classic (7/2) and quantum (1/2) spins.  相似文献   

17.
Reaction of the five-coordinate trigonal-bipyramidal platinum(II) complex, [Pt(pt)(pp3)](BF4) (pt = 1-propanethiolate, pp3 = tris[2-(diphenylphosphino)ethyl]phosphine), with I in chloroform gave the five-coordinate square-pyramidal complex with a dissociated terminal phosphino group and an apically coordinated iodide ion in equilibrium. The thermodynamic parameters for the equilibrium between the trigonal-bipyramidal and square-pyramidal geometries, [Pt(pt)(pp3)]+ + I ? [PtI(pt) (pp3)], and the kinetic parameters for the chemical exchange were obtained as follows: , ΔH0 = − 10 ± 2.4 kJ mol−1, ΔS0 = − 36 ± 10 J K−1 mol−1, , ΔH = 34 ± 4.7 kJ mol−1, ΔS = − 50 ± 21 J K−1 mol−1. The square-planar trinuclear platinum(II) complex was formed by bridging reaction of one of the terminal phosphino groups of trigonal-bipyramidal [PtCl(pp3)]Cl with trans-[PtCl2(NCC6H5)2] in chloroform. From these facts, ligand substitution reactions of [PtX(pp3)]+ (X = monodentate anion) are expected to proceed via an intermediate with a dissociated phosphino group. The rate constants for the chloro-ligand substitution reactions of [PtCl(pp3)]+ with Br and I in chloroform approached the respective limiting values as concentrations of the entering halide ions are increased. These kinetic results confirmed the preassociation mechanism in which the square pyramidal intermediate with a dissociated phosphino group and an apically coordinated halide ion is present in the rapid pre-equilibrium.  相似文献   

18.
19.
The kinetics of the reduction of by Co(dmgBF2)2(H2O)2 in 0.041 M HNO3/NaNO3 was found to be first-order in both the oxidizing and reducing agents and the second-order rate constant is given by kobs = k1 + k2K[Cl], with k1=1.59 × 106 M−1 s−1and k2K = 1.83 × 108 M−2 s−1, at 25 °C. The term that is first-order in [Cl] is attributed to the formation of an ion-pair between and Cl. For k1, the activation parameters ΔH* and ΔS* are 2.22 ± 0.02 kcal mol−1 and −22.7 ± 0.8 cal mol−1 K−1, respectively. The self-exchange rate constant of k22 ≈ 8.7 × 10−3 M−1 s−1 for was estimated using Marcus theory and the known self-exchange rate constant for .  相似文献   

20.
Complexation of d-gluconate (Gluc) with Ca2+ has been investigated via 1H, 13C and 43Ca NMR spectroscopy in aqueous solutions in the presence of high concentration background electrolytes (1 M ? I ? 4 M (NaCl) ionic strength). From the ionic strength dependence of its formation constant, the stability constant at 6 ? pH ? 11 and at I → 0 M has been derived (). The protonation constant of Gluc at I = 1 M (NaCl) ionic strength was also determined and was found to be log Ka = 3.24 ± 0.01 (13C NMR) and log Ka = 3.23 ± 0.01 (1H NMR). It was found that 1H and 13C NMR chemical shifts upon complexation (both with H+ and with Ca2+) do not vary in an unchanging way with the distance from the Ca2+/H+ binding site. From 2D 1H-43Ca NMR spectra, simultaneous binding of Ca2+ to the alcoholic OH on C2 and C3 was deduced. Molecular modelling results modulated this picture by revealing structures in which the Gluc behaves as a multidentate ligand. The five-membered chelated initial structure was found to be thermodynamically more stable than that derived from a six-membered chelated initial structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号