首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The protonation constants of 1,3,5-trideoxy-1,3,5-tris(2-hydroxyl-benzyl)amino-cis-inositol (thci) in I = 1 M (NaClO4) were determined to be: pKa1 5.96 ± 0.03, pKa2 7.21 ± 0.01, pKa3 8.32 ± 0.07, pKa4 8.95 ± 0.06. The solvent extraction studies were consistent with the formation of the Ln(thci)3+ and complexes. The log of the stability constants (log β1 and log β2) at 25 °C in 1 M (NaClO4) at pH 4 for formation of these complexes are reported. Laser luminescence measurements of the 7F0-5D0 transition of Eu(III) complexed by thci indicated two species. The shifts in the peaks relative to that of Eu(aq)3+ were comparable to the values reported for other complexes of Eu(III) with organic ligands, but the intensities were greater. Luminescence lifetime measurements of the fluorescence spectra indicated that the complex has 5 inner sphere water molecules bound to the Eu(III) cation at pH 6.71-8.52. This was consistent with bidentate chelation of Eu(III) with each thci molecule. gaussian view energy calculations indicated bonding for M(III) to the amino and hydroxyl groups of the cyclohexanetriol and (2-hydroxybenzyl)amino moieties in the Ln(thci)3+ complex.  相似文献   

2.
The complex formation of europium(III) and curium(III) with urea in aqueous solution has been studied at I = 0.1 M (NaClO4), room temperature and trace metal concentrations in the pH-range of 1-8 at various ligand concentrations using time-resolved laser-fluorescence spectroscopy. While for curium(III) the luminescence maximum is red shifted upon complexation, in case of europium(III) emission wavelengths remain unaltered but a significant change in peak splitting occurs. Both heavy metals form weak complexes of the formulae ML3+ and MLOH2+ with urea. Stability constants were determined to be log β110 = −0.12 ± 0.05 and log β11-1 = −6.86 ± 0.15 for europium(III) and log β110 = −0.28 ± 0.12 and log β11-1 = −7.01 ± 0.15 for curium(III).  相似文献   

3.
The coordination between Al(III) and sialic acid (N-acetylneuraminic acid, HL, pKa = 2.58 ± 0.01) was studied by potentiometric titrations at 25 °C in aqueous 0.2 M KCl, by 1H NMR, and by electrospray ionization mass spectrometry (ESI-MS). The potentiometric measurements gave the following aluminium complex stoichiometries and stability constants: , log β(AlLH−2) = −6.34 ± 0.02, and log β(AlL2H−1) = −1.14 ± 0.04. The 1H NMR spectra yielded structural information on species . The ESI-MS data confirmed the metal-ligand stoichiometry of the complexes.The metal-ligand speciation at micromolar Al(III) concentrations (i.e., under in vivo conditions) at physiological pH values reveals that considerable amount of Al(III) is complexed. This suggests that the toxic effect of Al(III) towards cellular membranes might be due to its coordination by protein-bound sialic acid.  相似文献   

4.
The binary complexation of Am3+, Cm3+and Eu3+ with citrate has been studied at I = 6.60 m (NaClO4), pcH 3.60 and in the temperatures range of 0-60 °C employing a solvent extraction technique with di-(2-ethylhexyl)phosphoric acid/heptane. Two complexes, MCit and , were formed at all temperatures. For the three metal ions, the log β101 was between 5.9 and 6.2 and log β102 between 10.2 and 10.6 at 25 °C. The thermodynamic parameters for the Am-Cit system have been calculated from the temperature dependence of the β101 and β102 values. Positive enthalpy and entropy values for the formation of both complexes are interpreted as due to the contributions from the dehydration of the metal ions exceeding the exothermic cation-anion pairing. The formation of the ternary complex M(EDTA)(Cit)4− (M = Cm and Eu) was measured to have large stability constants (log β111 between 20.9 and 24.4) at 25 and 60 °C. Time resolved laser luminescence spectroscopy and lifetime measurement data validated the nature of the complexes of Eu(III) formed in the presence of Cit and EDTA + Cit in 6.60 m (NaClO4) solution.  相似文献   

5.
The kinetics of the reaction of Cr(CN)5(H2O)2− with NCS and were studied at pH 5.0 and at pH 6.3-7.0, respectively, as a function of the temperature between 25.0 and 55.0 °C, and at various ionic strengths. Anation occurs in competition with aquation of CN, with rate constants that exhibit less-than-first-order dependence on the concentration of the entering anions. The results are interpreted in terms of ligand interchange in a context of association of the two reacting anions mediated by the Na+ or Ca2+ counterions. The degree of aggregation depends mainly on the total cationic charge rather than on the ionic strength, and is ca. 2-fold larger for than for NCS. Within the associated species, is a better entering ligand than NCS by a factor of 4.5. The Cr(CN)5(NCS)3− and Cr(CN)5(N3)3− complexes were also synthesized, and the rates of aquation of NCS and were measured at pH 5.0 and between 55.0 and 80.0 °C, over the same range of ionic strengths. The ionic strength enhances the anation rates but has little effect on the aquation rates. The average activation enthalpies of the interchange step are 80 ± 3 and 76 ± 3 kJ mol−1 for entry of NCS and , respectively. Those of the corresponding aquation reactions are 94 ± 4 and 107 ± 4 kJ mol−1. Within error limits, all ΔH values are independent of the ionic strength. The results are consistent with an Id mechanism for substitution in Cr(CN)5Xz complexes.  相似文献   

6.
The synthesis, characterization, and application in asymmetric catalytic cyclopropanation of Rh(III) and Ir(III) complexes containing (Sa,RC,RC)-O,O′-[1,1′-binaphthyl-2,2′-diyl]-N,N′-bis[1-phenyl-ethyl]phosphoramidite (1) are reported. The X-ray structures of the half-sandwich complexes [MCl2(C5Me5)(1P)] (M = Rh, 2a; M = Ir, 2b) show that the metal-phosphoramidite bond is significantly shorter in the Ir(III) analog. Chloride abstraction from 2a (with CF3SO3SiMe3 or with CF3SO3Me) and from 2b (with AgSbF6) gives the cationic species [MCl(C5Me5)(1,2-η-1P)]+ (M = Rh, 3a; M = Ir, 3b), which display a secondary interaction between the metal and a dangling phenethyl group (NCH(CH3)Ph) of the phosphoramidite ligand, as indicated by NMR spectroscopic studies. Complexes 3a and 3b slowly decompose in solution. In the case of 3b, the binuclear species [Ir2Cl3(C5Me5)2]+ is slowly formed, as indicated by an X-ray study. Preliminary catalytic tests showed that 3a cyclopropanates styrene with moderate yield (35%) and diastereoselectivity (70:30 trans:cis ratio) and with 32% ee (for the trans isomer).  相似文献   

7.
The preparation and variable temperature-magnetic investigation of three squarate-containing complexes of formula [Fe2(OH)2(C4O4)2(H2O)4]·2H2O (1) [Cr2(OH)2(C4O4)2(H2O)4]·2H2O (2) and [Co(C4O4)(H2O)4]n (3) [H2C4O4 = 3.4-dihydroxycyclobutene-1,2-dione (squaric acid)] together with the crystal structures of 1 and 3 are reported. Complex 1 contains discrete centrosymmetric [Fe2(OH)2(C4O4)2(H2O)4] diiron(II) units where the iron pairs are joined by a di-μ-hydroxo bridge and two squarate ligands acting as bridging groups through adjacent oxygen atoms. Two coordinated water molecules in cis position complete the octahedral environment at each iron atom in 1. The iron-iron distance with the dinuclear unit is 3.0722(6) Å and the angle at the hydroxo bridge is 99.99(7)°, values which compare well with the corresponding ones in the isostructural compound 2 (2.998 Å and 99.47°) whose structure was reported previously. The crystal structure of 3 contains neutral chains of squarato-O1,O3-bridged cobalt(II) ions where four coordinated water molecules complete the six-coordination at each cobalt atom. The cobalt-cobalt separation across the squarate bridge is 8.0595(4) Å. A relatively important intramolecular antiferromagnetic coupling occurs in 1 whereas it is very weak in 2, the exchange pathway being the same [J = −14.4 (1) and −0.07 cm−1 (2), the spin Hamiltonian being defined as ]. A weak intrachain antiferromagnetic interaction between the high-spin cobalt(II) ions occurs in 3 (J = −0.30 cm−1). The magnitude and nature of these magnetic interactions are discussed in the light of their respective structures and they are compared with those reported for related systems.  相似文献   

8.
Using the 1:2 condensate of benzildihydrazone and 2-acetylpyridine as a tetradentate N donor ligand L, LaL(NO3)3 (1) and EuL(NO3)3 (2), which are pale yellow in colour, are synthesized. While single crystals of 1 could not be obtained, 2 crystallises as a monodichloromethane solvate, 2·CH2Cl2 in the space group Cc with a = 11.7099(5) Å, b = 16.4872(5) Å, c = 17.9224(6) Å and β = 104.048(4)°. From the X-ray crystal structure, 2 is found to be a rare example of monohelical complex of Eu(III). Complex 1 is diamagnetic. The magnetic moment of 2 at room temperature is 3.32 BM. Comparing the FT-IR spectra of 1 and 2, it is concluded that 1 also is a mononuclear single helix. 1H NMR reveals that both 1 and 2 are mixtures of two diastereomers. In the case of the La(III) complex (1), the diastereomeric excess is only 10% but in the Eu(III) complex 2 it is 80%. The occurrence of diastereomerism is explained by the chiralities of the helical motif and the type of pentakis chelates present in 1 and 2.  相似文献   

9.
The stability constants and the thermodynamic parameters of the formation of the binary complexes of trivalent Am3+, Cm3+ and Eu3+ with CDTA and of their ternary complexes with CDTA + IDA were determined by solvent extraction measurements in aqueous solutions of I = 6.60 m (NaClO4) at temperatures of 0-60 °C. The endothermic enthalpy and the positive entropy values reflect the significant effects of cation dehydration and of the rigidity of the ligand structure in the formation of these complexes. TRLFS and NMR (1H and 13C) data provided information on the structure of the ternary complexes in solution. The size and rigidity of CDTA affect the binding mode of IDA in the complexation of M(CDTA)(IDA)(H2O)3− and M(CDTA)(IDA)3− in which IDA has a bidentate coordination mode in the former and a tridentate coordination mode in the latter.  相似文献   

10.
The reaction of with H2O2 in 1.0 M HClO4/LiClO4 was found to be first-order in both reactants and the [H+] dependence of the second-order rate constant is given by k2obs = b/[H+], b at 25 °C is 26.4 ± 0.5 s−1. The rate law shows a simple inverse dependence on [H+] that is consistent with a rapidly maintained equilibrium between and its hydrolyzed form Co(H2O)5(OH)2+, followed by the rate controlling step, i.e. oxidation of H2O2 by Co(H2O)5(OH)2+.  相似文献   

11.
The tris-chelate formed by biguanide, H2NC(NH)NHC(NH)NH2, and Mn(IV) is one of the rarely encountered examples of water-stable mononuclear complexes of this oxidation state. This cation is reduced in aqueous acid by both V(II) and V(III). In contrast to the kinetically straightforward bimolecular reduction by V(II) in 0.5 M HClO4 (k = 7.4 × 103 M−1 s−1 at 22 °C), reductions by excess V(III) yield profiles which are linear (zero-order in MnIV) until the last few percent reaction. Analyses of these composite curves are consistent with the sequences
  相似文献   

12.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

13.
Four cobalt(III) polypyridyl complexes, [Co(phen)3−n(dpq)n]3+ (phen = 1,10-phenanthroline, dpq = dipyrido[3,2-f:2′,3′-h]-quinoxaline) (n = 0, 1, 2, and 3) were synthesized and the influences of the dpq ligand on the photophysical properties, electrochemical properties, DNA binding affinities, as well as photonuclease activities of the complexes, were examined in detail. The presence of dpq ligand increases the DNA binding affinities of the corresponding complexes remarkably with respect to [Co(phen)3]3+. With the sequential substitution of phen ligand by dpq ligand, the 1O2 quantum yields of the corresponding complexes are enhanced greatly. As a result, the photonuclease activities follow the order of [Co(dpq)3]3+ > [Co(phen)(dpq)2]3+ > [Co(phen)2(dpq)]3+ ? [Co(phen)3]3+. It was found all the examined complexes can generate OH upon UV irradiation, and OH is also involved in DNA photocleavage as reactive oxygen species.  相似文献   

14.
Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone, H-PLN) was isolated from Plumbago zeylanica, the anticancer traditional Chinese medicine (TCM). Five new lanthanide(III) complexes of deprotonated plumbagin: [Y(PLN)3(H2O)2] (1), [La(PLN)3(H2O)2] (2), [Sm(PLN)3(H2O)2]⋅H2O (3), [Gd(PLN)3(H2O)2] (4), and [Dy(PLN)3(H2O)2] (5) were synthesized by the reaction of plumbagin with the corresponding lanthanide salts, in amounts equal to ligand/metal molar ratio of 3:1. The PLN-lanthanide(III) complexes were characterized by different physicochemical methods: elemental analyses, UV-visible, IR and 1H NMR and ESI-MS (electrospray ionization mass spectrum) as well as TGA (thermogravimetric analysis). The plumbagin and its lanthanide(III) complexes 1-5, were tested for their in vitro cytotoxicity against BEL7404 (liver cancer) cell lines by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The five PLN-lanthanide (III) complexes 1-5 effectively inhibited BEL7404 cell lines growth with IC50 values of 11.0 ± 3.5, 5.1 ± 1.3, 6.1 ± 1.1, 6.4 ± 1.3, and 9.8 ± 1.5 μM, respectively, and exhibited a significantly enhanced cytotoxicity compared to plumbagin and the corresponding lanthanide salts, suggesting a synergistic effect upon plumbagin coordination to the Ln(III) ion. The lanthanide complexes under investigation also exerted dose- and time-dependent cytotoxic activity. [La(PLN)3(H2O)2] (2) and plumbagin interact with calf thymus DNA (ct-DNA) mainly via intercalation mode, but for [La(PLN)3(H2O)2] (2), the electrostatic interaction should not be excluded; the binding affinity of [La(PLN)3(H2O)2] (2) to DNA is stronger than that of free plumbagin, which may correlate with the enhanced cytotoxicity of the PLN-lanthanide(III) complexes.  相似文献   

15.
The reaction of with Co(dmgBF2)2(H2O)2 in 1.0 M HClO4/LiClO4 was found to be first-order in both reactants and the [H+] dependence of the second-order rate constant is given by k2obs = b/[H+], b at 25 °C is 9.23 ± 0.14 × 102 s−1. The [H+] dependence at lower temperatures shows some saturation effect that allowed an estimate of the hydrolysis constant for as Ka = 9.5 × 10−3 M at 10 and 15 °C. Marcus theory and the known self-exchange rate constant for Co(OH2)5OH2+/+ were used to estimate an electron self-exchange rate constant of k22 = 1.7 × 10−4 M−1 s−1 for .  相似文献   

16.
In vitro antitumour activity of the [Pt(ox)(Ln)2] (1-7) and [Pd(ox)(Ln)2] (8-14) oxalato (ox) complexes involving N6-benzyl-9-isopropyladenine-based N-donor carrier ligands (Ln) against ovarian carcinoma (A2780), cisplatin resistant ovarian carcinoma (A2780cis), malignant melanoma (G-361), lung carcinoma (A549), cervix epitheloid carcinoma (HeLa), breast adenocarcinoma (MCF7) and osteosarcoma (HOS) human cancer cell lines was studied. Some of the tested complexes were even several times more cytotoxic as compared with cisplatin employed as a positive control. The improved cytotoxic effect was demonstrated for the platinum(II) complexes 3 (IC50 = 3.2 ± 1.0 μM and 3.2 ± 0.6 μM) and 5 (IC50 = 4.0 ± 1.0 μM and 4.1 ± 1.4 μM) against A2780 and A2780cis, as compared with 11.5 ± 1.6 μM, and 30.3 ± 6.1 μM determined for cisplatin, respectively. The significant in vitro cytotoxicity against MCF7 (IC50 = 8.2 ± 3.8 μM for 12) and A2780 (IC50 = 5.4 ± 1.2 μM for 14) was evaluated for the palladium(II) oxalato complexes, which again exceeded cisplatin, whose IC50 equalled 19.6 ± 4.3 μM against the MCF7 cells. Selected complexes were also screened for their in vitro cytotoxic effect in primary cultures of human hepatocytes and they were found to be non-hepatotoxic.  相似文献   

17.
The UV, excitation and luminescence spectra of EuA3B to be the extracted species as well as the extraction of Eu(III) with pivaloyltrifluoroacetone, HA, and/or Lewis bases, B (2,2′-bipyridyl, bpy, and bis(salicylidene)trimethylenediamine, H2saltn) into CHCl3 were measured. The results are summarized: the stability constants of EuA3bpy and EuA3H2saltn complexes are 5.85 ± 0.05 and 2.95 ± 0.06 as , respectively. The present results suggest that because of intramolecular hydrogen bonding, the stability and luminescence of the H2saltn complex including the quantum yield are smaller than those of the bpy complex. The weaker luminescence is also concerned with the fact that the less stable complexes easily dissociate in solvents to diminish the essential concentration.  相似文献   

18.
The oxidation of oxalic acid by tetrachloroaurate(III) ion in 0.005 ? [HClO4] ? 0.5 mol dm−3 is first order in and a fractional order in [oxalic acid], the reactive entities being AuCl3(OH) and ions. The pseudo first-order rate, kobs, with respect to [Au(III)], is retarded by increasing [H+] and [Cl]. The retardation by H+ ion is caused by the dissociation equilibrium . A mechanism in which a substitution complex, is formed from AuCl3(OH) and ions prior to its rate limiting disproportionation into products is suggested. The rate limiting constant, k, has been evaluated and its activation parameters are reported. The equilibrium constant K1 for the formation of the substitution complex and its thermodynamic parameters are also reported.  相似文献   

19.
20.
Four new dinuclear Mn(III) compounds have been synthesised: [{Mn(bpy)(H2O)}2(μ-4-ClC6H4COO)2(μ-O)}](ClO4)2 (1), [{Mn(EtOH)(phen)}2(μ-O)(μ-4-ClC6H4COO)2](ClO4)2 (2), [{Mn(bpy)(EtOH)}(μ-4-BrC6H4COO)2(μ-O){Mn(bpy)(ClO4)](ClO4) (3) and [{Mn(H2O)(phen)}2(μ-4-BrC6H4COO)2(μ-O)](ClO4)2 (4). The crystal structures of 2 and 3 are evidence for the tendency of the ethanol and the perchlorate to act as ligands. Due to the coordination of these groups, the environment of the manganese ions is elongated in the monodentate ligand direction, and this distortion is more important when this ligand is the perchlorate. The magnetic properties of the four compounds have been analysed: compounds 1, 3 and 4 show antiferromagnetic behaviour, with J = −6.33 cm−1 for 1, J = −6.76 cm−1 for 3 and J = −3.08 cm−1 for 4 (H = −JS1·S2), while compound 2 shows a very weak ferromagnetic coupling. For this compound, at low temperature the most important effect on the χMT data is the zero-field splitting of the ion, and the best fit was obtained with |DMn| = 2.38 cm−1 and |EMn| = 0.22 cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号