首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The type (antixenosis or antibiosis) of resistance against the aphids Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) was characterized for the wild tuber-bearing potatoes, Solanum chomatophilum Bitter and Solanum stoloniferum Schltdl. & Bouché through behavioral (olfactometry and electrical penetration graph) and physiological studies. In dual-choice assays, only S. stoloniferum exerted attraction to M. euphorbiae. This ruled out the possibility that plant volatiles of S. chomatophilum and S. stoloniferum may contribute to the high resistance expressed. In electrical penetration graph experiments, aphids feeding on S. stoloniferum showed increased salivation phases, whereas phloem ingestion was drastically reduced for both aphid species. Because reaching phloem elements was not delayed in both species, the resistance mechanism was phloem-located. The antixenosis exhibited by S. stoloniferum was similar on young and mature leaves. S. chomatophilum also showed phloem-located antixenosis against M. persicae. In contrast, M. euphorbiae had no difficulty to reach S. chomatophilum phloem tissues and to ingest sap. S. chomatophilum resistance against M. euphorbiae was antibiosis and only expressed in mature leaves, where a complete nymphal mortality was observed.  相似文献   

2.
Plant resistance to aphids can be improved by introgressing resistant traits from wild Solanum species into the potato germplasm. Breeding parents are commonly selected from the different accessions of each species. Accessions originate from several seeds collected in a restricted area and are conserved as seeds in genebanks. Genetic heterogeneity may be expected between genotypes from the same accession and could influence resistance level. Working with the potato aphid, Macrosiphum euphorbiae (Thomas), and the accession PI243340 of Solanum chomatophilum (Bitter), which has been previously rated as resistant to M. euphorbiae, we genetically identified and assessed the resistance level of genotypes within the accession. A combination of two multilplex polymerase chain reactions (PCRs) discriminated the 13 plant genotypes assessed. Survival of M. euphorbiae, measured using clip cages, varied significantly between five genotypes, randomly selected among the 13 previously assessed, but did not differ between same-genotype plants. Survival among genotypes ranged from 0 to > 60% 12 d after adult molt, and the least resistant genotype exhibited survival close to the susceptible standard, Solanum tuberosum L. Our results support the use of PCR multiplex methods to assess genetic heterogeneity in wild Solanum, and suggest that within accession genetic heterogeneity is sufficient to influence resistance level to aphids. Fine screening at the genotype level is preferable when assessing resistance to aphids.  相似文献   

3.
Sticky traps, water traps and leaf samples were used to monitor aphid populations at 32 sites in southwestern Australia between October and May for four seasons between 1988–92. Twenty-seven sites were located in potato, Solanum tuberosum L., crops, with five others located in mixed vegetable crops or pastures. Sites were located in an area of approximately 90,000 km2, and encompassed most of the potato growing areas of the region. Thirty-four species of aphids were detected. Potato-colonising aphids found were Myzus persicae, Aulacorthum solani, Macrosiphum euphorbiae and Aphis craccivora. M. persicae was the most widespread, and its seasonal distribution in southwestern Australia is presented. Fewer M. persicae were recorded and it arrived later in the season for 2 of 3 years at southern sites than northern sites. At sites where both sticky traps and leaf sampling were used, leaf sampling often detected M. persicae before they were found on traps. Results suggest that potato crops grown on the southern coast will be least vulnerable to infection by aphid-borne viruses.  相似文献   

4.
Andigena potatoes (Solanum tuberosum L. subsp. andigena Hawkes) (2n = 4x = 48) are important, native-farmer-selected cultivars in the Andes, which form a primary gene pool for improving a worldwide grown potato (S. tuberosum subsp. tuberosum). To elucidate the origin of Andigena, 196 Andigena accessions were compared with 301 accessions of 33 closely related cultivated and wild species using several types of chloroplast DNA (ctDNA) markers and nuclear DNA (nDNA) restriction fragment length polymorphism (RFLP) markers. Fourteen ctDNA types (haplotypes) and 115 RFLP bands were detected in Andigena, of which the main haplotypes and frequent RFLP bands were mostly shared with a cultivated diploid species, S. stenotomum Juz. et Buk. Principal component analysis of nDNA polymorphisms revealed a progressive and continuous variation from Peruvian wild species with C-type ctDNA to a group of wild species having S-type ctDNA in its variation range (S. bukasovii, S. canasense, S. candolleanum, and S. multidissectum), to cultivated diploid potatoes (S. phureja and S. stenotomum), and to cultivated tetraploid potatoes (Andigena and Chilean S. tuberosum subsp. tuberosum). These results suggest that the initial Andigena population arose with multiple origins exclusively from S. stenotomum. The overall evolutionary process toward the present-day Andigena was discussed.  相似文献   

5.
Abstract.  Aphids ( Myzus persicae , Macrosiphum euphorbiae and Aulacorthum solani ) are reared on potato plants with phloem sucrose concentrations reduced by up to two-fold by expressing the antisense of the sucrose-H+ symporter ( StSUT1 ) gene. The performance of My. persicae and A. solani on the antisense plants is comparable or superior to that on the wild-type plants, but Ma. euphorbiae increases more slowly on the antisense plants than on the wild-type and fails to feed from the antisense line with the lowest phloem sucrose concentration. Electrical monitoring by electical penetration graphs reveals that Ma. euphorbiae either do not locate the sieve elements or withdraw their stylets prematurely from the sieve elements of these plants. This difference between Ma. euphorbiae and the other aphid species may reflect interspecific variation in response both to the low phloem sucrose in transgenic plants and to pleiotropic effects of the transgene on the wider physiology of the plants. All aphid species perform well on plants with phloem sucrose concentrations that, when administered via chemically-defined diets, support little or no aphid growth. These results illustrate the need for caution in extrapolating conclusions reached for diet-reared aphids to aphids on plants, and demonstrate the importance of plant-based experiments for studies of the nutritional physiology of aphids.  相似文献   

6.
The seasonal abundance and dynamics of potato-infesting aphids were studied in two seasons, on potato Solanum tuberosum L. with various types of transgenic and classical resistance to primary pests, especially the Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say). The lines tested were the NewLeaf potato, a transgenic expressing the Bacillus thuringiensis CryIIIA toxin (BTT); NYL 235-4 a parental line derived from S. berthaultii (NYL) with a high density of glandular trichomes; and a transgenic line expressing oryzacystatln I (OCI), a proteinase inhibitor gene from rice; potatoes from two commercial cultivars, Superior and Kennebec, served as controls. Over the two seasons, Macrosiphum euphorbiae (Thomas) and, to a lesser extent, Myzus persicae (Sulzer) were by far the most abundant aphids observed in the experimental plots. M. persicae was observed relatively late in the season, and was most abundant on the Kennebec-OCI potato. Macrosiphum euphorbiae was more regular over seasons, and its highest densities were observed on the NYL 235-4 line. The population of M. euphorbiae showed markedly different patterns on the five lines studied, which was clearly related to potato plant phenology. Density of M. euphorbiae was observed on the NYL 235-4 line, in late July and early August.  相似文献   

7.
Mixed viral infections of heterologous viruses such as Potato virus Y (family Potyviridae, genus Potyvirus, PVY) and Potato leafroll virus (family Luteoviridae, genus Polerovirus, PLRV) are a regular occurrence in Idaho's potato, Solanum tuberosum (L.), cropping systems. An increased number of plant samples from Idaho's potato fields over the past 2 yr has serologically tested positive for both PVY and PLRV via double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and exhibited more severe symptoms than singly-infected plants (PVY or PLRV). Several studies have extensively examined the mixed infection phenomenon but to the best of our knowledge, none have examined the effect of such infections on vector biology and preference. Laboratory studies were conducted to examine the effect of mixed viral (PVY-PLRV) infection on the fecundity and preference of two of the most efficient PVY and PLRV vectors, the green peach aphid, Myzus persicae (Sulzer), and the potato aphid, Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae). M. persicae and M. euphorbiae adults were clip-caged (one adult per cage) to leaflets of PVY, PLRV, PVY-PLRV-infected, and noninfected potato plants. The number of nymphs produced in all four treatments was recorded after 96 h. M. persicae and M. euphorbiae fecundity was significantly higher on mixed infected plants than on singly infected plants or noninfected plants. Preference of alatae and apterae of M. persicae and M. euphorbiae was determined with the use of settling bioassays. Both alatae and apterae of M. persicae and M. euphorbiae preferentially settled on PVY-PLRV-infected plants than on singly infected plants (PVY or PLRV) or noninfected plants.  相似文献   

8.
Hairy nightshade, Solanum sarrachoides (Sendtner), is a ubiquitous weed in potato agro-ecosystems and nonagricultural lands of southeastern Idaho and the Pacific Northwest. This weed increases the complexity of the Potato leafroll virus (PLRV) (Luteoviridae: Polervirus)-potato pathosystem by serving as aphid and virus reservoir. Previous field studies showed higher densities of green peach aphid, Myzus persicae (Sulzer), and potato aphid, Macrosiphum euphorbiae (Thomas), the two most important vectors of PLRV, on S. sarrachoides compared with potato plants in the same fields. Some of the S. sarrachoides plants sampled in these surveys tested positive for PLRV. Viral infections can alter the physiology of plant hosts and aphid performance on such plants. To understand better the potential effects of S. sarrachoides on the PLRV-potato-aphid pathosystem, the life histories of M. persicae and M. euphorbiae were compared on virus-free and PLRV-infected S. sarrachoides and potato. Individual nymphs of each aphid species were held in clip cages on plants from each treatment to monitor their development, survival, and reproductive output. Nymphal survival for both aphids across plant species was higher on S. sarrachoides than on potato, and, within plant species, it was higher on PLRV-infected plants than on noninfected plants. With a few exceptions, similar patterns occurred for fecundity, reproductive periods, adult longevity, and intrinsic rate of increase. The enhanced performance of aphids on S. sarrachoides and on PLRV-infected plants could alter the vector population dynamics and thus the PLRV-disease epidemiology in fields infested with this weed.  相似文献   

9.
温度对桃蚜和马铃薯长管蚜实验种群生命表参数的影响   总被引:1,自引:0,他引:1  
【目的】桃蚜Myzus persicae (Sulzer)和马铃薯长管蚜Macrosiphum euphorbiae (Thomas)是2种主要的马铃薯害虫。本研究旨在明确温度对这两种马铃薯蚜虫生长发育、存活、繁殖及种群增长的影响。【方法】在室内测定了5个温度(10, 15, 20, 25和30℃)下桃蚜和马铃薯长管蚜的生长发育、存活和繁殖指标,并组建了4个恒温条件下(10,15,20和25℃)的实验种群生命表。【结果】在10~25℃范围内,2种蚜虫的若蚜期、世代历期、成蚜寿命和产蚜期等均随温度的升高而缩短,而30℃高温抑制了其发育、存活和繁殖。2种蚜虫的平均世代历期(T)随温度的升高而缩短,桃蚜和马铃薯长管蚜分别从10℃的30.08 d和35.35 d缩短至25℃的14.28 d和12.95 d。桃蚜的净增殖率(R0)在15℃时最高(86.00),其次为20℃(73.75),再次为25℃(62.49),最低为10℃(51.00);马铃薯长管蚜的R0在15℃最高(58.97),其次为10℃(51.98),再次为20℃(48.94),最低为25℃(12.36)。桃蚜的内禀增长率(rm)随温度的升高而增大,从最小10℃的0.1307增大到25℃的0.2896;马铃薯长管蚜的rm在20℃时最大(0.2182),其次为25℃(0.1942),再次为15℃(0.1485),最小为10℃(0.1118)。在相同的温度下,桃蚜的发育速率、净增殖率和内禀增长率均高于马铃薯长管蚜。【结论】温度对2种马铃薯蚜虫的生长发育、存活、繁殖及种群增长有显著的影响,桃蚜在马铃薯上的种群增长能力强于马铃薯长管蚜。这一结果为马铃薯蚜虫预测模型的建立奠定了必要的基础,并解释了桃蚜在马铃薯上发生数量多于马铃薯长管蚜的原因。  相似文献   

10.
The possibility to obtain diploid hybrids by pollination of allotetraploid wild potato species Solanum acaule and S. stoloniferum plants with fertile pollen of S. tuberosum dihaploids was demonstrated for the first time. Dihaploid hybrids have arisen with comparatively high frequency (from 12.5 to 33.3%). They were characterized by high regularity of meiosis and high fertility. They easily crossed with S. tuberosum dihaploids, forming viable progeny. This seems prospective for effective introgression of valuable genetic gene pool of wild allotetraploid potato species in breeding material of S. tuberosum on the diploid level.  相似文献   

11.
Potato is the world's fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R) genes into potato (Solanum tuberosum) is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity) on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR) in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.  相似文献   

12.
In this study molecular markers linked to the Rysto gene, which originates from the wild potato species Solanum stoloniferum and confers extreme resistance against PVY, were identified and the applicability of recently published Rysto, markers was analyzed. Three RAPD markers covering a total distance of 8.60 cM were detected in this experiment. The closest of these markers was located 0.53 cM from the gene. From among the published markers only one had diagnostic value in the experimental plant material, and mapped 2.95 cM from the gene, on the side opposite the RAPD markers developed in the present study. All the markers analyzed were present in Solanum stoloniferum accessions, irrespective of their resistance, indicating that these sequences are linked to the locus and not exclusively to the dominant allele of the Rysto gene in the wild species. The inapplicability of several published markers indicates that the genetic background is decisive in this tetraploid and highly heterozygous species. This means that it may be necessary to develop markers from the breeding material itself, until the resistance gene is not cloned and cannot be used as a selection marker in marker-assisted selection.  相似文献   

13.
Parasitic hymenoptera of potato aphids were collected and identified in 2000 and 2001 in 11 potato fields in Belgium. Nine Aphidiidae species, parasiting seven aphid species, were found: Aphidius ervi, Aphidius matricariae, Aphidius picipes, Binodoxys angelicae, Diaeretiella rapae, Praon abjectum, Praon gallicium, Praon volucre and Toxares deltiger. A. ervi and A. picipes were the dominant and sub-dominant species, with 54% and 28% of the primary parasite collected, respectively. Both species and T. deltiger were found on Aphis nasturti, Aulacorthum solani, Macrosiphum euphorbiae and Myzus persicae, the four most important aphid potato in Belgium. Parasitism rate of A. nasturtii and, to a lesser extent, M. euphorbiae was low compared to A. solani and M. persicae. Parasitism of A. solani was particularly high, with 63.5% in 2000 and 89.2% in 2001, and this species was the preferred host of several Aphidiid species. The abundance of alternative hosts as other crops pest aphids or non-pest aphids on wild plants in agroecosystems could explains the efficacy of these species. The biological control of A. nasturtii and M. euphorbiae by parasitic hymenoptera was poorer, and several studies need to be undertaken to find suitable parasitic hymenoptera species effective on these aphids and agro-environmental measures able to promote them.  相似文献   

14.
Aribiotic resistance to the aphid Sitobion avenae was assessed in relation to levels of hydroxamic acids (Hx) in a wide genetic range of cultivars and species of Triticum. Within hexaploid and tetraploid Triticum material, total plant concentrations of Hx explained a significant proportion of the variation in intrinsic rate of increase (rm) of S. avenae. Significant correlations were also found between resistance to Rhopalosiphum padi and Hx levels. Although the concentrations of Hx in whole plants declined during seedling growth, concentrations of Hx in newly-emerging leaves remained high in plants of all ages, including in the emerging flag leaves of mature plants. When the mean relative growth rate of S. avenae over three days was used instead of rm and the control of environmental conditions was improved, a higher proportion of the variation in aphid performance was explained by Hx concentrations in six cultivars.  相似文献   

15.
Polymorphism of microsatellite loci of the nuclear genome was examined in 29 cultivars and accessions of wild potato (S. tuberosum, S. stoloniferum, S. demissum, and S. phureja). Nine SSR markers, most informative (PIC = 0.61–0.92) for genotyping of the cultivars of Russian breeding were selected. Polymorphism of the selected SSR loci was characterized, and prevailing, as well as unique SSR allele phenotypes were described. A total of 87 allele phenotypes were identified. The highest number of allele phenotypes was detected for the SSR1 (17), ST83/84 (12), and STRBCS1b (12) loci. The least numbers of allele phenotypes were typical of the ST47/48 (5) and STWIN12G (6) loci. Based on the microsatellite loci analyzed, for each of the cultivars examined, its allele formula was established. The latter can be uses as the cultivar molecular genetic passport. Diagnostic sets of most informative loci (SSR markers), enabling identification of the genotypes of all potato cultivars of Russian breeding examined, were determined  相似文献   

16.
The diversification of resistant potato varieties at a landscape level could slow adaptation by Phthorimaea operculella to potato resistance and promote sustainable crop protection. In this study, we assessed wild potato species as novel sources of foliage and tuber resistance against P. operculella. Tuber resistance was quantified for 136 and foliage resistance for 54 potato accessions representing 14 and nine potato species, respectively. Several accessions were highly resistant to moth damage in tubers and/or foliage. In particular, Solanum chiquidenum and Solanum sandemanii were highly resistant to damage in tubers. Several accessions of Solanum multiinterruptum and a small number of accessions of Solanum bukasovii, Solanum berthaultii, Solanum sparsipilum and Solanum wittmackii also had highly resistant tubers. Larval survival on foliage of S. bukasovii and S. chiquidenum was generally low. New resistance sources are listed, and insect performance on the plants is described with possible resistance mechanisms. The study also examined potential trade‐offs associated with resistance. Tuber resistance was negatively correlated with the number and weight of tubers produced per plant, but positively correlated with the length of dormancy across accessions, indicating that, although long dormancy is not a prerequisite for resistance, species and accessions with extended dormancy will have more resistant tubers. Tuber and foliage resistance were generally positively correlated across all accessions; however, among accessions from within a potato species, there were negative (S. berthaultii), positive (S. chiquidenum) and non‐significant (S. bukasovii) relations. These results indicate that, besides identifying novel resistance sources, an improved understanding of the mechanisms and inherent trade‐offs associated with tuber and foliage resistance will improve the efficiency of potato breeding programmes aimed at enhancing resistance against P. operculella.  相似文献   

17.
Abstract:  The effect of a genetically modified eggplant line expressing oryzacystatin on Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) was examined. The transgenic eggplant reduced the net reproductive rate ( R 0), the instantaneous rate of population increase ( r ), and the finite rate of population increase ( λ ) of both aphids species compared with a control eggplant line. The mean generation time ( T ) of the aphids was unaffected by the transgenic plants. Age-specific mortality rates of M. persicae and M. euphorbiae were higher on transgenic plants. These results indicate that expression of oryzacystatin in eggplant has a negative impact on population growth and mortality rates of M. persicae and M. euphorbiae and could be a source of plant resistance for pest management of these aphids.  相似文献   

18.
Potato virus Y (PVY) is the most important viral pathogen of cultivated potato (Solanum tuberosum) from a commercial perspective, causing severe losses in both tuber quality and yield worldwide. Specific accessions of wild potato species exhibit resistance against PVY but efforts to transfer the trait to cultivated material have not yielded widely adopted varieties. Because amino acid substitutions at specific domains of host factor eIF4E-1 often confer resistance to various crops, we sequenced the associated genes expressed in wild potato plants. A novel eIF4E-1 variant, designated here as Eva1, was identified in S. chacoense, S. demissum, and S. etuberosum. The protein contains amino acid substitutions at ten different positions when compared to its cultivated potato (S. tuberosum) homolog. In the yeast two-hybrid system, Eva1 failed to bind VPg, a viral protein required for infectivity. Overexpression of the associated cDNA conferred PVY resistance to transgenic potato plants silenced for the native eIF4E-1 gene. Because the gene sources of Eva1 are sexually compatible with potato, the molecular strategies described can be employed to develop 'intragenic' potato cultivars.  相似文献   

19.
Novel potyvirus resistance specificities were found in eight tested wild potato species (clones): hypersensitive resistance (HR) to potato Y potyvirus (PVY) strain groups PVYO in Solanum megistacrolobum and S. polyadenium and PVYN in S. stoloniferum; HR to potato V potyvirus (PW) in S. maglia, S. polyadenium, S. stoloniferum, S. sparsipilum and S. sucrense, HR to potato A potyvirus (PVA) strain group 1 in S. sucrense, and extreme resistance (ER) to PVA in S. polyadenium. S. commersonii and S. stoloniferum expressed HR to tobacco etch potyvirus (TEV) which has not been reported previously in potato species. The studied clone of S. stoloniferum expressed HR to all potyviruses and potyvirus strains tested. The clone of S. stoloniferum (2n = 48; nuclear DNA content (2C) = 3.6 pg) and S. chacoense (2n = 24; 2C=1.9 pg) were crossed and one hybrid (2n = 36; 2C = 2.9 pg) was obtained. The hybrid expressed HR to all tested potyviruses except PVA, which indicated that HR to PVA was controlled by a gene which is different from the genes (or gene) controlling HR to PVYO, PVYN, PVV and TEV in S. stoloniferum. On the other hand, S. chacoense and the hybrid expressed ER to cucumber mosaic cucumovirus (CMV), whereas S. stoloniferum was susceptible to CMV. All tested wild species and the six tested potato cultivars (S. tuberosum subsp. tuberosum) expressed HR to PVV. Expression of HR following infection with PVYN induced systemic acquired resistance (SAR) in S. chacoense. HR to PVYN in S. sparsipilum and S. sucrense and to PVYO in potato cv. Pito was efficiently expressed at lower temperatures (16/18°C) indicated by the development of distinct necrotic lesions and/or vein necrosis in inoculated leaves, whereas the HR was rendered less effective at higher temperatures (19/24°C) which was indicated by the development of systemic infection with leaf-drop and mosaic symptoms.  相似文献   

20.
Naccobus aberrans is a major pest of the potato crop in the Andean regions of Argentina, Bolivia, and Perú. It is endemic in northwest Argentina and is also found in lowlands. The resistance of eleven Andean potato landraces and three accessions of the wild tuber-bearing species Solanum acaule, S. infundibuliforme, and S. megistacrolobum were evaluated against a population of N. aberrans from Coctaca, Jujuy province, while Solanum tuberosum ssp. tuberosum 'Spunta', 'Kennebec', and 'Frital INTA' were evaluated against a population from the southeast of Buenos Aires province. The presence, the number of galls, and the number of individuals were recorded. In addition, a reproduction factor was calculated and races were determined. Results showed that the N. aberrans population from Coctaca corresponded to race 2 and the population from the lowlands belonged to the sugar beet group. Landrace Azul, one genotype of S. megistacrolobum, and two genotypes of S. acaule showed resistance towards the race from Coctaca while no infection was recorded in potato cultivars with the Naccobus race from the lowland area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号