首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane tension underlies a range of cell physiological processes. Strong adhesion of the simple red cell is used as a simple model of a spread cell with a finite membrane tension-a state which proves useful for studies of both membrane rupture kinetics and atomic force microscopy (AFM) probing of native structure. In agreement with theories of strong adhesion, the cell takes the form of a spherical cap on a substrate densely coated with poly-L-lysine. The spreading-induced tension, sigma, in the membrane is approximately 1 mN/m, which leads to rupture over many minutes; and sigma is estimated from comparable rupture times in separate micropipette aspiration experiments. Under the sharpened tip of an AFM probe, nano-Newton impingement forces (10-30 nN) are needed to penetrate the tensed erythrocyte membrane, and these forces increase exponentially with tip velocity ( approximately nm/ms). We use the results to clarify how tapping-mode AFM imaging works at high enough tip velocities to avoid rupturing the membrane while progressively compressing it to a approximately 20-nm steric core of lipid and protein. We also demonstrate novel, reproducible AFM imaging of tension-supported membranes in physiological buffer, and we describe a stable, distended network consistent with the spectrin cytoskeleton. Additionally, slow retraction of the AFM tip from the tensed membrane yields tether-extended, multipeak sawtooth patterns of average force approximately 200 pN. In sum we show how adhesive tensioning of the red cell can be used to gain novel insights into native membrane dynamics and structure.  相似文献   

2.
You HX  Yu L  Qi X 《FEBS letters》2001,503(1):97-102
The enzymatic activity of glucosylceramidase depends on the presence of saposin C (Sap C) and acidic phospholipid-containing membranes. In order to delineate the mechanism underlying Sap C stimulation of the enzyme activity, it is important to understand how Sap C interacts with phospholipid membranes. We studied the dynamic process of Sap C interaction with planar phospholipid membranes, in real time, using atomic force microscopy (AFM). The phospholipid membrane underwent restructuring upon addition of Sap C. The topographic characteristics of the membrane restructuring include the appearance of patch-like new features, initially emerged at the edge of phospholipid membranes and extended laterally with time. Changes in the image contrast of the phospholipid membrane observed after the Sap C addition indicate that a new phase of lipid-protein structure has formed during membrane restructuring. The process of membrane restructuring is dynamic, commencing shortly after Sap C addition, and continuing throughout the duration of AFM imaging (about 30 min, sometimes over 1 h). This study demonstrated the potential of AFM real-time imaging in studying protein-membrane interactions.  相似文献   

3.
Membrane motions of LH receptors following binding of hormone agonists are consistent with hormone-driven aggregation. It is increasingly apparent that G protein-coupled receptors, including the LH receptor, are engaged in dynamic interactions with one another and other membrane components. These interactions are governed, in part, by a number of factors including whether the receptor has bound ligand, whether the receptor is capable of transducing a hormone-mediated signal, and the nature of the membrane environment within which the receptor is found. Microscopic methods, including laser-optical techniques, are ideally suited to probe dynamic events on cell membranes and provide an opportunity to examine interactions between receptors and other membrane components on viable cells. We and others have used a variety of techniques, some of which are summarized below, to examine functional and nonfunctional LH receptors on viable cells and the membrane environment of these receptors during cell signaling events.  相似文献   

4.
Membrane electropermeabilization relies on the transient permeabilization of the plasma membrane of cells submitted to electric pulses. This method is widely used in cell biology and medicine due to its efficiency to transfer molecules while limiting loss of cell viability. However, very little is known about the consequences of membrane electropermeabilization at the molecular and cellular levels. Progress in the knowledge of the involved mechanisms is a biophysical challenge. As a transient loss of membrane cohesion is associated with membrane permeabilization, our main objective was to detect and visualize at the single-cell level the incidence of phospholipid scrambling and changes in membrane order. We performed studies using fluorescence microscopy with C6-NBD-PC and FM1-43 to monitor phospholipid scrambling and membrane order of mammalian cells. Millisecond permeabilizing pulses induced membrane disorganization by increasing the translocation of phosphatidylcholines according to an ATP-independent process. The pulses induced the formation of long-lived permeant structures that were present during membrane resealing, but were not associated with phosphatidylcholine internalization. These pulses resulted in a rapid phospholipid flip/flop within less than 1 s and were exclusively restricted to the regions of the permeabilized membrane. Under such electrical conditions, phosphatidylserine externalization was not detected. Moreover, this electrically-mediated membrane disorganization was not correlated with loss of cell viability. Our results could support the existence of direct interactions between the movement of membrane zwitterionic phospholipids and the electric field.  相似文献   

5.
Senescent cells accumulate in various peripheral tissues during aging and have been shown to exacerbate age-related inflammatory responses. We recently showed that exposure to neurotoxic amyloid β (Aβ1–42) oligomers can readily induce a senescence phenotype in human brain microvascular endothelial cells (HBMECs). In the present work, we used atomic force microscopy (AFM) to further characterize the morphological properties such as cell membrane roughness and cell height and nanomechanical properties such as Young's modulus of the membrane (membrane stiffness) and adhesion resulting from the interaction between AFM tip and cell membrane in Aβ1–42 oligomer-induced senescent human brain microvascular endothelial cells. Morphological imaging studies showed a flatter and spread-out nucleus in the senescent HBMECs, both characteristic features of a senescent phenotype. Furthermore, the mean cell body roughness and mean cell height were lower in senescent HBMECs compared to untreated normal HBMECs. We also observed increased stiffness and alterations in the adhesion properties in Aβ1–42 oligomer-induced senescent endothelial cells compared to the untreated normal HBMECs suggesting dynamic reorganization of cell membrane. We then show that vascular endothelial growth factor receptor 1 (VEGFR-1) knockdown or overexpression of Rho GTPase Rac 1 in the endothelial cells inhibited senescence and reversed these nanomechanical alterations, confirming a direct role of these pathways in the senescent brain endothelial cells. These results illustrate that nanoindentation and topographic analysis of live senescent brain endothelial cells can provide insights into cerebrovascular dysfunction in neurodegenerative diseases such as Alzheimer's disease.  相似文献   

6.
Several fluorescent probes were evaluated as indicators of bacterial viability by flow cytometry. The probes monitor a number of biological factors that are altered during loss of viability. The factors include alterations in membrane permeability, monitored by using fluorogenic substrates and fluorescent intercalating dyes such as propidium iodide, and changes in membrane potential, monitored by using fluorescent cationic and anionic potential-sensitive probes. Of the fluorescent reagents examined, the fluorescent anionic membrane potential probe bis-(1,3-dibutylbarbituric acid)trimethine oxonol [DiBAC(inf4)(3)] proved the best candidate for use as a general robust viability marker and is a promising choice for use in high-throughput assays. With this probe, live and dead cells within a population can be identified and counted 10 min after sampling. There was a close correlation between viable counts determined by flow cytometry and by standard CFU assays for samples of untreated cells. The results indicate that flow cytometry is a sensitive analytical technique that can rapidly monitor physiological changes of individual microorganisms as a result of external perturbations. The membrane potential probe DiBAC(inf4)(3) provided a robust flow cytometric indicator for bacterial cell viability.  相似文献   

7.
Growth temperature-induced compositional changes in membranes of Fusarium oxysporum provided a test system for study of the relationship between physical properties and composition. Growth at 15 degrees C was characterized by a decrease in phospholipid content relative to sterol content, a shift in phospholipid composition from phosphatidylcholine to phosphatidylethanolamine and a marked enhancement in the amount of polyunsaturated fatty acids in the phospholipid and triglyceride classes. Uptake of a spin labelled analog of stearic acid during growth and subsequent solution of the probe in the membranes allowed estimation of viscosity and molecular order of the membranes of live cells and of isolated membrane preparations. Less than 1/20 of the intracellular label was accessible to sodium ascorbate while none was released by sodium dodecyl sulfate. All of the label in live cells was reduced by in vivo respiratory activity above 20 degrees C but this process could be reversed or avoided by added ferricyanide. A cholestane spin probe was also incorporated into the membranes. The probes were not reduced as readily in isolated membranes and hence fluidity of the membranes could be assessed over a wide temperature range. At low temperatures (-10 degrees C) a nonlethal, liquid-solid phase transition was indicated in isolated membrane lipids while at higher (lethal) temperatures (40-45 degrees C), discontinuities appeared in Arrhenius plots of rotational correlation time. Activation energies for isotropic rotation of the stearate probes in the membranes changed markedly in this temperature range and this effect correlated closely with loss of viability of conidial cells. Correlation times for stearate probes showed little variation with growth temperature nor were any breaks in Arrhenius plots of this parameter detected in the range 0-35 degrees C in whole cells or isolated membranes. The data indicated control of membrane physical properties within close tolerances throughout the physiological temperature range regardless of growth temperature. It was concluded that this homeostatic phenomenon was due to the counteractive effects of sterol/phospholipid ratio, phospholipid composition and fatty acid polyunsaturation since the condensing and fluidizing components of the isolated total membranes vary in a reciprocal manner.  相似文献   

8.
Observing a biological event as it unfolds in the living cell provides unique insight into the nature of the phenomenon under study. Capturing live cell data differs from imaging fixed preparations because living plants respond to the intense light used in the imaging process. In addition, live plant cells are inherently thick specimens containing colored and fluorescent molecules often removed when the plant is fixed and sectioned. For fixed cells, the straightforward goal is to maximize contrast and resolution. For live cell imaging, maximizing contrast and resolution will probably damage the specimen or rapidly bleach the probe. Therefore, the goals are different. Live cell imaging seeks a balance between image quality and the information content that comes with increasing contrast and resolution. That "lousy" live cell image may contain all the information needed to answer the question being posed--provided the investigator properly framed the question and imaged the cells appropriately. Successful data collection from live cells requires developing a specimen-mounting protocol, careful selection and alignment of microscope components, and a clear understanding of how the microscope system generates contrast and resolution. This paper discusses general aspects of modern live cell imaging and the special considerations for imaging live plant specimens.  相似文献   

9.
Muller DJ 《Biochemistry》2008,47(31):7986-7998
Cellular membranes are vital for life. They confine cells and cytosolic compartments and are involved in virtually every cellular process. Cellular membranes form cellular contacts and focal adhesions, anchor the cytoskeleton, generate energy gradients, transform energy, transduce signals, move cells, and actively form compartments to assemble different membrane proteins into functional entities. But how do cellular membranes perform these tasks? What do the machineries of cellular membranes look like, and how are they controlled and guided? Atomic force microscopy (AFM) allows the observation of biological surfaces in their native environment at a signal-to-noise ratio superior to that of any optical microscopic technique. With a spatial resolution approaching approximately 1 nm, AFM can identify the supramolecular assemblies, characteristic structure, and functional conformation of native membrane proteins. In recent years, AFM has evolved from imaging applications to a multifunctional "laboratory on a tip" that allows observation and manipulation of the machineries of cellular membranes. In the force spectroscopy mode, AFM detects interactions between two single cells at molecular resolution. Force spectroscopy can also be used to probe the local elasticity, chemical groups, and receptor sites of live cells. Other applications locate molecular interactions driving membrane protein folding, assembly, and their switching between functional states. It is also possible to examine the energy landscape of biomolecular reactions, as well as reaction pathways, associated lifetimes, and free energy. In this review, we provide a flavor of the fascinating opportunities offered by the use of AFM as a nanobiotechnological tool in modern membrane biology.  相似文献   

10.
The surface topography of red blood cells (RBCs) was investigated under near-physiological conditions using atomic force microscopy (AFM). An immobilization protocol was established where RBCs are coupled via molecular bonds of the membrane glycoproteins to wheat germ agglutinin (WGA), which is covalently and flexibly tethered to the support. This results in a tight but non-invasive attachment of the cells. Using tapping-mode AFM, which is known as gentle imaging mode and therefore most appropriate for soft biological samples like erythrocytes, it was possible to resolve membrane skeleton structures without major distortions or deformations of the cell surface. Significant differences in the morphology of RBCs from healthy humans and patients with systemic lupus erythematosus (SLE) were observed on topographical images. The surface of RBCs from SLE patients showed characteristic circular-shaped holes with approx. 200 nm in diameter under physiological conditions, a possible morphological correlate to previously published changes in the SLE erythrocyte membrane.  相似文献   

11.
A technique for permanently capturing a replica impression of biological cells has been developed to facilitate analysis using nanometer resolution imaging tools, namely the atomic force microscope (AFM). The method, termed Bioimprint™, creates a permanent cell 'footprint' in a non-biohazardous Poly (dimethylsiloxane) (PDMS) polymer composite. The transfer of nanometer scale biological information is presented as an alternative imaging technique at a resolution beyond that of optical microscopy. By transferring cell topology into a rigid medium more suited for AFM imaging, many of the limitations associated with scanning of biological specimens can be overcome. Potential for this technique is demonstrated by analyzing Bioimprint™ replicas created from human endometrial cancer cells. The high resolution transfer of this process is further detailed by imaging membrane morphological structures consistent with exocytosis. The integration of soft lithography to replicate biological materials presents an enhanced method for the study of biological systems at the nanoscale.  相似文献   

12.
Diphenyl-1-pyrenylphosphine (DPPP), which reacts with lipid hydroperoxides stoichiometrically to yield fluorescent product DPPP oxide, was used as a fluorescent probe for lipid peroxidation in live cells. DPPP was successfully incorporated into U937 cells. Incorporation of DPPP into the cell membrane was confirmed by fluorescence microscopy. Reaction of DPPP with hydroperoxides was examined by monitoring increase in fluorescence intensity of the cell. It was found that lipid-soluble hydroperoxides such as methyl linoleate hydroperoxide preferably react with DPPP, whereas hydrogen peroxide did not react with DPPP located in the membrane. Linear correlation between increase in fluorescence intensity and the amount of methyl linoleate hydroperoxide applied to the cell was observed. DPPP gave little effect on cell proliferation, cell viability or cell morphology for at least 3 d. DPPP oxide, fluorescent product of DPPP, was quite stable in the membrane of living cells for at least 2 d. Fluorescence of DPPP-labeled cells was measured after treating with diethylmaleate (DEM), or 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH), or culturing with low serum content. These reagents and culture condition induced dose- and/or time-dependent increase in fluorescence. Addition of vitamin E effectively suppressed increase in fluorescence. When DPPP-labeled cells and DCFH-DA-labeled cells were treated with NO, H(2)O(2), AAPH, and DEM to compare the formation of hydoperoxides in the membrane and cytosol, distinct patterns of peroxide formation were observed. These results indicate that fluorescent probe DPPP is eligible for estimation of lipid peroxidation proceeding in the membrane of live cells, and use of this probe is especially advantageous in long-term peroxidation of the cell.  相似文献   

13.
Microvilli are a common structure found on epithelial cells that increase the apical surface thus enhancing the transmembrane transport capacity and also serve as one of the cell's mechanosensors. These structures are composed of microfilaments and cytoplasm, covered by plasma membrane. Epithelial cell function is usually coupled to the density of microvilli and its individual size illustrated by diseases, in which microvilli degradation causes malabsorption and diarrhea. Atomic force microscopy (AFM) has been widely used to study the topography and morphology of living cells. Visualizing soft and flexible structures such as microvilli on the apical surface of a live cell has been very challenging because the native microvilli structures are displaced and deformed by the interaction with the probe. PeakForce Tapping® is an AFM imaging mode, which allows reducing tip–sample interactions in time (microseconds) and controlling force in the low pico‐Newton range. Data acquisition of this mode was optimized by using a newly developed PeakForce QNM‐Live Cell probe, having a short cantilever with a 17‐µm‐long tip that minimizes hydrodynamic effects between the cantilever and the sample surface. In this paper, we have demonstrated for the first time the visualization of the microvilli on living kidney cells with AFM using PeakForce Tapping. The structures observed display a force dependence representing either the whole microvilli or just the tips of the microvilli layer. Together, PeakForce Tapping allows force control in the low pico‐Newton range and enables the visualization of very soft and flexible structures on living cells under physiological conditions. © 2015 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd.  相似文献   

14.
We have developed an imaging system that combines the soft compliance of an optical trap with the sensitivity of single particle tracking to image forces on/in live cells using a single molecule probe. The probe used is a single (or few) molecule of interest that is conjugated with a single 40 nm colloidalgold probe. The colloidal gold/membrane protein complex, freely diffusing on a live cell, is held in a laser trap while the cell is scanned underneath. Computer control allows for synchronization of the cell scan and capture of the probe position. Resistance to the dragging of the probe images a fine structure of barriers in the membrane of live cells.  相似文献   

15.
AIMS: To study the fundamental mechanisms of toxicity of the fruity aroma compound gamma-decalactone, that lead to alterations in cell viability during its biotechnological production by yeast cells; Yarrowia lipolytica that is able to produce high amounts of this metabolite was used here as a model. METHODS AND RESULTS: Lactone concentrations above 150 mg l-1 inhibited cell growth, depolarized the living cells and increased membrane fluidity. Infrared spectroscopic measurements revealed that the introduction of the lactone into model phospholipid bilayers, decreased the phase transition temperature. Moreover, the H+-ATPase activity in membrane preparations was strongly affected by the presence of the lactone. On the other hand, only a slight decrease in the intracellular pH occurred. CONCLUSIONS: We propose that the toxic effects of gamma-decalactone on yeast may be initially linked to a strong interaction of the compound with cell membrane lipids and components. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings may enable the elaboration of strategies to improve yeast cell viability during the process of lactones bioproduction.  相似文献   

16.
Growth temperature-induced compositional changes in membranes of Fusarium oxysporum provided a test system for study of the relationship between physical properties and composition. Growth at 15 °C was characterized by a decrease in phospholipid content relative to sterol content, a shift on phospholipid composition from phosphatidylcholine to phosphatidylethanolamine and a marked enhancement in the amount of polyunsaturated fatty acids in the phospholipid and triglyceride classes.Uptake of a spin labelled analog of stearic acid during growth and subsequent solution of the probe in the membranes allowed estimation of viscosity and molecular order of the membranes of live cells and of isolated membrane preparations. Less than 120 of the intracellular label was accessible to sodium ascorbate while none was released by sodium dodecyl sulfate. All of the label in live cells was reduced by in vivo respiratory activity above 20 °C but this process could be reversed or avoided by added ferricyanide. A cholestane spin probe was also incorporated into the membranes. The probes were not reduced as readily in isolated membranes and hence fluidity of the membranes could be assessed over a wide temperature range. At low temperatures (?10 °C) a nonlethal, liquid-solid phase transition was indicated in isolated membrane lipids while at higher (lethal) temperatures (40–45 °C), discontinuities appeared in Arrhenius plots of rotational correlation time. Activation energies for isotropic rotation of the stearate probes in the membranes changed markedly in this temperature range and this effect correlated closely with loss of viability of conidial cells. Correlation times for stearate probes showed little variation with growth temperature nor were any breaks in Arrhenius plots of this parameter detected in the range 0–35 °C in whole cells or isolated membranes. The data indicated control of membrane physical properties within close tolerances throughout the physiological temperature range regardless of growth temperature. It was concluded that this homeostatic phenomenon was due to the counteractive effects of sterol/phospholipid ratio, phospholipid composition and fatty acid polyunsaturation since the condensing and fluidizing components of the isolated total membranes vary in a reciprocal manner.  相似文献   

17.
There is currently a significant interest in understanding how cells and tissues respond to mechanical stimuli, but current approaches are limited in their capability for measuring responses in real time in live cells or viable tissue. A protocol was developed with the use of a cell actuator to distend live cells grown on or tissues attached to an elastic substrate while imaging with confocal and atomic force microscopy (AFM). Preliminary studies show that tonic stretching of human bronchial epithelial cells caused a significant increase in the production of mitochondrial superoxide. Moreover, using this protocol, alveolar epithelial cells were stretched and imaged, which showed direct damage to the epithelial cells by overdistention simulating one form of lung injury in vitro. A protocol to conduct AFM nano-indentation on stretched cells is also provided.  相似文献   

18.
In this study, we found that phospholipids containing an eicosapentaenyl group form a novel membrane microdomain at the cell division site of a Gram-negative bacterium, Shewanella livingstonensis Ac10, using chemically synthesized fluorescent probes. The occurrence of membrane microdomains in eukaryotes and prokaryotes has been demonstrated with various imaging tools for phospholipids with different polar headgroups. However, few studies have focused on the hydrocarbon chain-dependent localization of membrane-resident phospholipids in vivo. We previously found that lack of eicosapentaenoic acid (EPA), a polyunsaturated fatty acid found at the sn-2 position of glycerophospholipids, causes a defect in cell division after DNA replication of S. livingstonensis Ac10. Here, we synthesized phospholipid probes labeled with a fluorescent 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD) group to study the localization of EPA-containing phospholipids by fluorescence microscopy. A fluorescent probe in which EPA was bound to the glycerol backbone via an ester bond was found to be unsuitable for imaging because EPA was released from the probe by in vivo hydrolysis. To overcome this problem, we synthesized hydrolysis-resistant ether-type phospholipid probes. Using these probes, we found that the fluorescence localized between two nucleoids at the cell center during cell division when the cells were grown in the presence of the eicosapentaenyl group-containing probe (N-NBD-1-oleoyl-2-eicosapentaenyl-sn-glycero-3-phosphoethanolamine), whereas this localization was not observed with the oleyl group-containing control probe (N-NBD-1-oleoyl-2-oleyl-sn-glycero-3-phosphoethanolamine). Thus, phospholipids containing an eicosapentaenyl group are specifically enriched at the cell division site. Formation of a membrane microdomain enriched in EPA-containing phospholipids at the nucleoid occlusion site probably facilitates cell division.  相似文献   

19.
Studying the structure and dynamics of proteins in live cells is essential to understanding their physiological activities and mechanisms, and to validating in vitro characterization. Improvements in labeling and imaging technologies are starting to allow such in vivo studies; however, a number of technical challenges remain. Recently, we developed an electroporation-based protocol for internalization, which allows biomolecules labeled with organic fluorophores to be introduced at high efficiency into live E. coli (Crawford et al. in Biophys J 105 (11):2439–2450, 2013). Here, we address important challenges related to internalization of proteins, and optimize our method in terms of (1) electroporation buffer conditions; (2) removal of dye contaminants from stock protein samples; and (3) removal of non-internalized molecules from cell suspension after electroporation. We illustrate the usability of the optimized protocol by demonstrating high-efficiency internalization of a 10-kDa protein, the ω subunit of RNA polymerase. Provided that suggested control experiments are carried out, any fluorescently labeled protein of up to 60 kDa could be internalized using our method. Further, we probe the effect of electroporation voltage on internalization efficiency and cell viability and demonstrate that, whilst internalization increases with increased voltage, cell viability is compromised. However, due to the low number of damaged cells in our samples, the major fraction of loaded cells always corresponds to non-damaged cells. By taking care to include only viable cells into analysis, our method allows physiologically relevant studies to be performed, including in vivo measurements of protein diffusion, localization and intramolecular dynamics via single-molecule Förster resonance energy transfer.  相似文献   

20.
Podosomes are mechanosensitive attachment/invasion structures that form on the matrix-adhesion interface of cells and protrude into the extracellular matrix to probe and remodel. Despite their central role in many cellular processes, their exact molecular structure and function remain only partially understood. We review recent progress in molecular scale imaging of podosome architecture, including our newly developed localisation microscopy technique termed HAWK which enables artefact-free live-cell super-resolution microscopy of podosome ring proteins, and report new results on combining fluorescence localisation microscopy (STORM/PALM) and atomic force microscopy (AFM) on one setup, where localisation microscopy provides the location and dynamics of fluorescently labelled podosome components, while the spatial variation of stiffness is mapped with AFM. For two-colour localisation microscopy we combine iFluor-647, which has previously been shown to eliminate the need to change buffer between imaging modes, with the photoswitchable protein mEOS3.2, which also enables live cell imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号