首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in situ rates of oxygen consumption by benthic nitrifiers were estimated at 11 study sites in 4 streams. Two methods were used: an in situ respiration chamber method and a method involving conversion of nitrifying potential measurements to in situ rates. Estimates of benthic nitrogenous oxygen consumption (BNOC) rate ranged from 0–380 mmol of O2 m–2·day–1, and BNOC contributed between 0–85% of the total benthic oxygen consumption rate. The activity of nitrifiers residing in the sediments was influenced by O2 availability, temperature, pH, and substrate. Depending upon site, nitrification could approximate either first-order or zero-order kinetics with respect to ammonium concentration. The source of ammonium for benthic nitrifiers could be either totally from within the sediment or totally from the overlying water. Nitrate produced in the sediments could flux to the water above or be lost within the sediment. The sediments could act as a source (positive flux) or sink (negative flux) for both ammonium (–185 mmol·m–2·day–1 to +195 mmol·m–2·day–1) and nitrate (–135 mmol·m–2·day–1 to +185 mmol·m–2·day–1).This study provides evidence to suggest that measurements of down-stream mass flow changes in inorganic nitrogen forms may give poor estimates of in situ rates of nitrification in flowing waters.  相似文献   

2.
Urine production and N output were monitored in northern elephant seal (Mirounga angustirostris) pups progressing through 10 weeks of a natural postweaning fast. Urine output declind by 84% (to 69±12 ml·day–1) at 10 weeks (P<0.05). Glomerular filtration rate at 10 weeks was 51% of the 67±3 ml serum·min–1 observed during week 1 (P<0.05). Urine N excretion fell by 69% to 1.2±0.17 g·day–1, while urinary concentration increased (P<0.05). Serum urea declined from an initial 11 mmol·1–1 to 5–7 mmol·1–1 by 5 weeks. The fall in urinary N loss (and thus amino acid oxidation) was concomitant with depressed metabolic rate. Therefore, protein contributed little toward meeting energy demands (i.e., <4% of average metabolic rate) throughout fasting. These data indicate that fasting pups improve water conservation and minimize protein catabolism during prolonged natural fasts without an exogenous source of water.Abbreviations AA amino acid(s) - AMR average metabolic rate - ANOVA one-way analysis of variance - BMR basal metabolic rate - BUN blood urea nitrogen - EP end product - EWL evaporative water loss - [Gr]s serum creatinine concentration - GFR glomerular filtration rate - LBM lean body mass - LML Long Marine Laboratory - MR metabolic rate - NEFA non-esterified fatty acids - RMR resting metabolic rate - TCA tricarboxylic acid - U:C ulinary urea: creatinine concentration ratio  相似文献   

3.
Summary Alcaligenes sp. A 7-2 immobilized on granular clay has been applied in a percolator to degrade 4-chlorophenol in sandy soil. Good adsorption rates on granular clay were achieved using cell suspensions with high titres and media at pH 8.0. The influence of various parameters such as aeration rate, pH, temperature, concentration of 4-chlorophenol and size of inoculum on the degradation rate were investigated. During fedbatch fermentations under optimal culture conditions, concentrations of 4-chlorophenol up to 160 mg·1–1 could be degraded. Semicontinuous culture experiments demonstrated that the degradation potential in soil could be well established and enhanced by the addition of immobilized bacteria. Continuous fermentation was performed with varying 4-chlorophenol concentrations in the feed and different input levels. The maximum degradation rate was 1.64 g·1–1·day–1. Offprint requests to: H.-J. Rehm  相似文献   

4.
Estimates of bacterial production based on total trichloroacetic acid (TCA)-precipitable [methyl-3H]thymidine incorporation and frequency of dividing cell (FDC) techniques were compared to sediment respiration rates in Lake George, New York. Bacterial growth rates based on thymidine incorporation ranged from 0.024 to 0.41 day–1, while rates based on FDC ranged from 1.78 to 2.48 day–1. Respiration rates ranged from 0.11 to 1.8mol O2·hour–1·g dry weight sediment–1. Thymidine incorporation yielded production estimates which were in reasonable agreement with respiration rates. Production estimates based on FDC were 4- to 190-fold higher than those predicted from respiration rates.  相似文献   

5.
Fractional rates (%/day) of muscle protein synthesis and degradation of the genotypes Dw/Dw and dw/dw of male White Plymouth Rock chickens were determined by measuring the output of N-methylhistidine (N-MH) in the excreta at 2, 4, and 8 weeks of age. The fractional growth rate of dw/dw was significantly lower (P<0.05) than that of Dw/Dw at 2 weeks of age but not at 4 and 8 weeks of age. No significant differences in the degradation rate (K d; %/day) were found at any age. A significant difference (P<0.05) between genotypes in the rate of synthesis (K s; %/day) was found at 2 weeks of age (Dw/Dw=11.8, dw/dw=9.9) but not at 4 and 8 weeks of age. These results suggest that the dw gene has a depressing effect on the synthesis rate of muscle protein, and the difference between genotypes in the growth rate at the early stage is a reflection of this effect.  相似文献   

6.
Summary Water and sodium turnovers of 6–7 week old gentoo penguin chicks and breeding adults were measured using isotopically labelled water and sodium. Influx rates for chicks averaged 188 ml·kg-1·day-1 and 13.9 mmol·kg-1·day-1 for water and sodium, respectively. Chicks consumed an estimated 228 g·kg-1·day-1 fresh food or 886 kJ kg-1 day. These values correspond to 761 g·day-1 or 2945 kJ·day-1 for a gentoo chick mid-way through the growth period. Flux rates for adults attending chicks ranged from 199 to 428 ml·kg-1·day-1 for water and from 15 to 36 mmol·kg-1·ay-1 for sodium.  相似文献   

7.
Objective The purpose was to investigate the calcium required for calpain-mediated degradation of selected cardiac myofibril proteins modified by diabetes, sulfhydryl (SH) and hydrophobic reagents.Methods: After 20 weeks of streptozotocin-induced (55 mg·kg–1) diabetes, calcium sensitive calpain (1.5 U·ml–1) degradation rates of purified cardiac myofibrillar proteins (1 mg·ml–1) were measured,in vitro, and compared to degradation rates for N-ethylmaleimide (NEM) and 2-ptoluidinylnapthalene-6-sulfonate (TNS) treated samples.Results: Diabetes (blood glucose of 550±32 mg·dl–1) reduced the yield of purified myofibrillar protein with minimal change in fibril protein composition. Total SH group reactivities (nmol·mg–130min) were 220±21, 163±17 and 156±24 for control, diabetic and NEM-treated (0.5mM) myofibrils (p0.05). Calpain degradation rates were faster for all diabetic and SH modified myofibrillar proteins (p0.05), with a 45 and 35% reduction in the pCa50 for a 37 kDa protein of diabetic and NEM-treated fibril complexes. For control myofibrils, both 100 and 200 uM TNS, reduced calpain degradation rates to a similar extent for all substrate proteins. In contrast, diabetic and NEM-treated samples showed a further reduction in calpain degradation rates with increasing TNS from 100 to 200 divi.Conclusion Our results support the hypothesis that in diabetes the calcium requirements for calpain degradation rates are reduced and dependent upon sulfhydryl group status and Ca2+-induced hydrophobic interactions, implicating a 37 kDa myofbillar-complexed protein.  相似文献   

8.
Summary In this study, we examined the effects of exposure of heart fatty acid-binding protein (h-FABP) to chemically generated O2 or OH · with respect to its oleate binding and to its electrophoretic properties. Purified rat h-FABP at 40 M scavenged as much as 30% O2 and 85% OH ·. On the other hand, when 2 nmol (4 M) FABP were exposed to free radicals, the maximum oleate binding capacity as measured by Scatchard analysis was reduced only by 14% and 27% for O2 and OH ·, respectively. The electrophoretic pattern of free radical-exposed FABP was not markedly different when examined either by the non-denaturing or by denaturing PAGE, suggesting the absence of any degradation or aggregation of FABP by O2 or OH ·. It is hypothesized that O2 or OH · in physiological concentration may not alter the function of FABP markedly in the ischemic-reperfused myocardium.Abbreviations h-FABP Heart Fatty Acid Binding Protein - NEFA Non-Esterified Fatty Acids - O2 Superoxide anions - OH· hydroxyl radicals - OCI hypohalite radicals - H2O2 hydrogen peroxide - HPLC High Pressure Liquid Chromatography  相似文献   

9.
Summary The effects of immobilizing materials on the activity of nitrifying bacteria and removal of ammonium nitrogen (NH4-N) from waste-water by immobilized nitrifying bacteria were investigated using six urethane prepolymers. With a urethane prepolymer containing 2.27% free isocyanate, a high activity yield of nitrifying bacteria was obtained. There was a drastic improvement over the conventional method of immobilization by acrylamide in the activity yield. Inorganic synthetic waste-water was treated at a high loading rate of 0.24 kg N·m–3·day–1. The NH4-N concentration of the effluent could be reduced to 2 mg·1–1 or less and the removal was 90%. The life of the pellets in terms of activity was at least 120 days. Offprint requests to: T. Sumino  相似文献   

10.
Summary Daily rates of gross and net primary production were calculated in the Scotia-Weddell Sea sector of the Southern Ocean during spring 1988 (EPOS, Leg 2) on the basis of kinetic experiments, which combine radiotracer technology and classic biochemical procedures, and by taking into account the light regime, the physical structure of the water column, the vertical distribution of chlorophyll a, and the protozoan grazing pressure. From these calculations, three distinct sub-areas were identified: the Closed Pack Ice Zone (CPIZ), characterized by the lowest average gross primary production (0.36 gC · m–2 · day–1); the Marginal Ice Zone (MIZ) with a maximum mean value of 1.76 gC · m–2 · day–1; and the Open Ocean Zone off the ice edge (OOZ) with an intermediate mean value of 0.87 gC · m–2 · day–1. Net primary production fluctuated nearly in the same proportions, averaging 0.55, 0.2 and 1.13 gC · m–2 · day–1 in the OOZ, CPIZ and MIZ respectively, representing 53% of the total photo-assimilated carbon under heavy ice cover (CPIZ) and 64% in the two other areas. Available light, strongly dependent on the ice cover, was shown to control the level of primary production in the sea ice associated sub-areas, whilst protozoa grazing on phytoplankton determined the moderate primary production level characteristic of the well illuminated OOZ area.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

11.
Mathematical model parameters for the methanogenic degradation of propylene glycol were estimated in a sequential manner by means of an optimization technique. Model parameters determined from an initial experimental data set using one bioreactor were then verified with the results from a second bioreactor. The proposed methodology is a useful tool to obtain model parameters for continuous flow reactors with completely mixed regime. Abbrevations: S – substrate concentration (mg COD l–1); S in – influent substrate concentration (mg COD l–1); D L – dilution rate (day–1); – stoichiometric coefficients (ND); nx – number of microbial species (ND); X S – fixed biomass concentration (mg biomass l–1); X L – suspended biomass concentration of (mg biomass l–1); k d – decay rate of biomass (day–1); b S – specific detachment rate of biofilm (day–1); – specific growth rate of biomass (day–1); m – maximum specific growth rate of biomass (day–1); K S – half saturation constant (mg COD l–1); K I – inhibition constant (mg COD l–1).  相似文献   

12.
An isolate of Isochrysis galbana rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been grown as a chemostat culture at 20° C and pH 8.00 controlled by CO2 injection. From a low dilution rate (D) of 0.0024 h–1 to 0.0377 h–1, close to maximum growth, a decrease in EPA content from 5.21% dry weight (d.w.) to 2.80% d.w. was observed, although the percentage of EPA in the total fatty acids increased. Lipids were fractionated, EPA being the major fatty acid found in the glycolipid fraction, whereas in the neutral lipid fraction were mainly palmitic and palmitoleic acids. At the same time, the biomass concentration also decreased from 1015 mg·l–1 to 202 mg·l–1 over the range of Ds mentioned. Nonetheless, EPA productivity had a maximum value of 15.26 mg·l–1·day–1 at D=0.0208 h–1.Correspondence to: E. Molina Grima  相似文献   

13.
It was found that production of superoxide (O2 – ·) is crucial for normal morphogenesis of etiolated wheat seedlings in the early stages of plant development. The development of etiolated wheat seedlings was shown to be accompanied with cyclic changes in the rate of O2 – · production both in the entire intact seedling and in its separated organs (leaf, coleoptile). First increase in the rate of O2 – · production was clearly observed in the period from two to four days of seedling development, then the rate of O2 – · production decreased to the initial level, and then it increased again for two days to a new maximum. An increase in O2 – · production in the period of the first four days of seedling development correlates with an increase in DNA and protein contents in the coleoptile. The second peak of increased rate of O2 – · production observed on the sixth or seventh day of seedling development coincides with a decrease in DNA and protein contents and apoptotic internucleosomal nuclear DNA fragmentation in the coleoptile. Incubation of seedlings in the presence of the antioxidant BHT (ionol) strongly affects their development but it does not influence the increase in DNA and protein contents for the initial four days of seedling life, and it slows down the subsequent age-dependent decrease in protein content and fully prevents the age-dependent decrease in DNA content in the coleoptile. A decrease in the O2 – · amount induced by BHT distorts the seedling development. BHT retards seedling growth, presumably by suppression of cell elongation, and it increases the life span of the coleoptile. It seems that O2 – · controls plant growth by cell elongation at the early stages of seedling development but later O2 – · controls (induces) apoptotic DNA fragmentation and protein disintegration.  相似文献   

14.
Ammonia-nitrogen excretion in Daphnia pulex   总被引:3,自引:2,他引:1  
Ammonia-nitrogen excretion rates were measured in natural summer and cultured populations of Daphnia pulex from Silver Lake, Clay County, Minnesota, USA during 1973. The mean rate of ammonia-nitrogen excretion for the summer populations was 0.20 µg N animal–1 day–1 or 5.11 µg N mg–1 dry body weight day–1 (N = 80) measured at 15°, 20°, and 25°C. These rates appear to be temperature and weight dependent, but they are probably affected by factors other than temperature and dry body weight. Ammonia-nitrogen excretion rates of Daphnia pulex cultured on Chlamydomonas reinhardi yielded the following relationship with temperature: Log10E = (0.061) T 1.773, where E is µg N animal–1 day–1 and T is temperature °C. The ammonia-nitrogen excretion on a mg–1 dry body weight day–1 basis was related to temperature according to the following similar expression Log10E = (0.043) T + 0.153, where E is µg N mg–1 dry body weight day–1, and T is temperature °C. The length-weight relationship of Daphnia pulex for the summer populations (N = 1583) was log10W = (0.526) Log10L + 1.357, where W is weight in µg and L is length in mm.  相似文献   

15.
The effects of bioventing, nutrient addition and inoculation with an oil-degrading bacterium on biodegradation of diesel oil in unsaturated soil were investigated. A mesocosm system was constructed consisting of six soil compartments each containing 6 m3 of naturally contaminated soil mixed 11 with silica sand, resulting in a diesel oil content of approximately 2000 mg kg–1. Biodegradation was monitored over 112 days by determining the actual diesel oil content of the soil and by respirometric tests. The best agreement between calculations of degradation rates based upon the two methods was in July, when venting in combination with nutrient addition resulted in degradation rates of 23 mg kg–1 day–1 based on actual oil concentration in the soil and 33 mg kg–1 day–1 calculated from respirometric data. In September, these rates decreased to 9 and 1.4 mg kg–1 day–1, and in October the degradation rates were 5 and 0.7 mg kg–1 day–1 based upon the two methods. The average ambient temperature during the respirometric tests was 14,10 and 2°C in July, September and October, respectively. The combination of venting and nutrient addition resulted in an average residual oil content of the soil of 380 mg kg–1. Neither venting alone nor inoculation enhanced oil degradation. The respiratory quotient averaged 0.40. The oil composition changed following degradation resulting in the unresolved complex mixture constituting up to 96% of the total oil content at the end of the experimental period.  相似文献   

16.
Light dependent sediment-water exchange rates of dissolved reactive silicon (DRSi) and phosphorus (DRP) were studied on field station Archipel (3 m water depth) in Lake Grevelingen (SW Netherlands). Bell jars, either light or darkened, were fixed permanently over a productive microflora mat of mainly Navicula spp.; sediment-water exchange was monitored over an 11 days period. Gross primary production values in the mat amounted to 1000 mg C·m–2·day–1.In the dark bell jar, DRSi and DRP release rates from the sediment were ca. 275 and 85 mg·m–2·day–1, respectively. Release rates in the light bell jars were on average only 15% of these values. Parallel bell jar experiments under different environmental conditions indicate a direct relationship between the primary production figures and nutrient sediment-water exchange rates.Communication nr. 369 of the Delta Institute for Hydrobiological Research, Yerseke, the Netherlands. This paper was presented at the first International Workshop on phosphorus fractionation, availability and release of the Sediment Phosphorus Group, held in Vienna, 23–26 March, 1986.  相似文献   

17.
The growth of the anaerobic acetogenic bacterium Acetobacterium woodii DSM 1030 was investigated in fructose-limited chemostat cultures. A defined medium was developed which contained fructose, mineral salts, cysteine · HCl and Ca pantothenate (1 mg · 1–1) supplied in a vitamin supplement. Growth at high dilution rates was dependent on the presence of CO2 in the gas phase. The max was found to be 0.16 h–1 and the fructose maintenance requirement was 0.1 to 0.13 mmol fructose · (g dry wt)–1 · h–1. A growth yield of 61 g dry wt · (mol fructose)–1, corrected for the cell maintenance requirement and for incorporation of fructose carbon into cell biomass, was determined from the fructose consumption. A corresponding growth yield of 69 g dry wt · (mol fructose)–1 was calculated from the acetate production assuming that fructose fermentation was homoacetogenic. A YATP of 12.2 to 13.8 g dry wt · (mol ATP)–1 was calculated from these growth yields using a value of 5 mol ATP · (mol fructose)–1 as an estimate of the amount of ATP synthesised from fructose fermentation. The addition of yeast extract (0.5 g · 1–1) to the medium did not influence the max or cell yield. After prolonged growth under fructose-limited conditions the requirement of the culture for CO2 in the gas phase was reduced.Abbreviations YE yeast extract - IC inorganic carbon - D fermenter dilution rate : h–1 - MX maintenance requirement for X: mmol X · (g dry wt)–1 · h–1 - X may be fructose (Fruct), fructose consumed in energy metabolism (Fruct [E]), acetate (Ac) - ATP CO2, NH inf4 sup+ or Pi - qX specific rate of utilisation or consumption of X: mmol X · (g dry wt)–1 · h–1 - V fermenter volume: litre - rC · Cell, fermenter cell carbon production: mmol C · h–1 - YX yield of cells on X: g dry wt · (mol X)–1 - Y infx supmax the yield corrected for cell maintenance: g dry wt · (mol X)–1 - SATP stoichiometry of ATP synthesis from fructose: mol ATP · (mol frucose)–1 - x cell concentration: g dry wt · 1–1 - specific growth rate : h–1 - max maximum specific growth rate: h–1  相似文献   

18.
Newrkla  P.  Gunatilaka  A. 《Hydrobiologia》1982,91(1):531-536
Benthic community respiration rates of profundal sediments of Fuschlsee (37.6 mg · O2 · m–2 · h–1 — eutrophic), Mondsee (40.19 mg · O2 · m–2 · h–1 — eutrophic) and Attersee (11.5 mg · O2 · m–2 · h–1 — oligo-mesotrophic) were measuredin situ, and in cores. By exposing the sediments to different oxygen levels in the laboratory it was found that benthic community metabolism reduced with decreasing oxygen concentrations. The slope of the regression lines, relating oxygen uptake rates to oxygen concentrations, differed significantly for the different sites investigated. These results were closely related to the trophic conditions of the lakes.  相似文献   

19.
Summary The plasma levels of four osmoregulatory hormones and their target ion-transport systems in the lower intestines of the domestic fowl were determined in order to elucidate their interrelationship and their setpoints in relation to NaCl intake. White Plymouth Rock hens were adapted to six intake levels of NaCl (0.20±0.02–24.7±1.9 mmoles Na+·kg bw–1·day–1) for 6 weeks. The Na+ absorption and the Cl secretion of colon and coprodeum were characterized in vitro by the effects of hexoses, amino acids, amiloride, and theophylline on the short-circuit current (SCC) and electrical potential difference (PD). The NaCl-conserving system of the adult chicken is set at low intake levels of NaCl as the 80% range (quantitized by non-linear, logistic regression analyses) of the change in the plasma [ALDO], the amiloride-inhibitable Na+ absorption of coprodeum and colon ( SCC), occurred from 0.18 to 2.3, from 0.9 to 4.3, and from 1.2 to 7.3 mmoles Na+·kg bw–1·day–1, respectively. These results demonstrate that the amiloride-inhibitable Na+ absorption of coprodcum is more closely linked to plasma [ALDO] than that of colon. The aminoacid-Na+ coabsorption of colon increased over exactly the same range of Na+ intake as the colonic amiloride-inhibitable Na+ absorption decreased, whereas the hexose-Na+ coabsorption increased at higher levels of Na+ intake, from 2 to 11 mmoles Na+·kg bw–1·day–1. Both these Na+ absorption types had reached their maximums at 24.7 mmoles Na+·kg bw–1·day–1, whereas the plasma [AVT] and plasma [PRL], although significantly increased, apparently had not; their 80% range of change occurred from 9.9 to 99 mmoles Na+·kg bw–1·day–1, and the main changes in plasma osmolity were predicted to occur from 5.4 to 107 mmoles Na+·kg bw–1·day–1. These results suggest that these colonic and hormonal variables conserve osmotically-free water and operate at high NaCl intake. The theophylline-induced colonic Cl secretion did not change with NaCl intake, whereas the stimulation of SCC in coprodeum decreased with increasing NaCl intake: The main change occurred between 0 and 3.2 mmoles Na+·kg bw–1·day–1. Thus, all ion-transport capacity disappears in coprodeum with increased dietary NaCl intake, whereas colon maintains its ion-transport capacity (although the nature of the Na+ transport changes). It is suggested that hormones defending the extracellular volume and composition are regulated close to zero input and output of both NaCl and water, regardless of whether they are NaCl conserving or free-water conserving. Therefore, changes in their stable plasma concentrations occur at the extremes of tolerable range of NaCl intake.Abbreviation AA aminoacids - ALDO aldosterone - AMI amiloride - AVT arginine vasotocin - bw body weight - CS corticosterone - HEX hexoses - INDO indomethacin - PD potential difference - PRL prolactin - R resistance - SCC short-circuit current - SD standard deviation - SEM standard error of mean - THEO theophylline  相似文献   

20.
Summary The effects of pCO2 and pCH4 in the interval 0–1 bar on rates of acetate degradation and methane formation by methanogens as well as methane yields were studied in enrichment cultures in batch and continuous fermentations.In batch fermentations the rate of acetate utilization by methanogens was 1,000–1,500 mg/l · d at low levels of pCO2. CO2 was inhibitory and degradation rates were around 350 mg/l · d in 1 bar CO2. The degradation of acetate was almost linear. In continuous culture maximum rates of acetate utilization around 2,500 mg/l · d were obtained and the acetate concentration in the substrate was reduced by 98–99%.The yields of methane on acetate substrates were close to the theoretical value (1 mole CH4 per mole HAc) in the interval pCO2-0–0.5 bar. In 1 bar CO2 yields decreased by 20–30%.CH4 was found to be only slightly inhibitory; the inhibiting effects of 1 bar CH4 on acetate degradation rates were comparable to the effects of 0.3 bar CO2. Also gas sparging and rapid mixing had small effects compared with a non-sparged, slowly mixed culture.The redox potential was usually around –200 mV during fermentations and no connection was found between acetate degradation rate, Eh and pCO2.Acetate and propionate degradation were the reactions most sensitive to pCO2 and to obtain maximum rates as well as maximum methane yields pCO2-levels around 0.2 bar were found to be optimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号