首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 401 毫秒
1.
The murine T cell proliferative response to the carboxyl terminal cyanogen bromide cleavage fragment 81-104 of pigeon cytochrome c (cyt) has been studied. Two interesting properties of this response have been previously described. First, T cells from B10.A mice primed with pigeon cyt 81-104 show more vigorous proliferation when restimulated with moth cyt 81-103 than when stimulated with pigeon cyt 81-104; that is, the B10.A T cell response to pigeon shows heteroclitic restimulation by moth. Second, T cells primed with the acetimidyl derivative (Am) of pigeon cyt 81-104 did not cross-react with the unmodified cyt fragments, but Am-moth cyt 81-103 still stimulated Am-pigeon cyt 81-104 primed T cells better than the Am-pigeon cyt 81-104 fragment. These results raised the issue of whether the antigenic sites on the fragments responsible for the specificity of T cell priming in vivo differed from the residues that contributed to the heteroclitic response of pigeon (or Am pigeon)-primed T cells to moth cyt c fragments. In this paper, synthetic peptide antigens were tested in order to identify which residues caused the heterocliticity of the moth fragment and which residues were involved in the antigenic differentiation of native and derivatized fragments. The heterocliticity of the T cell response to moth fragment 81-103 was found to be due to the deletion of the penultimate residue (Ala103) from the pigeon fragment. However, the ability to cause heterocliticity was not uniquely a property of this deletion. T cells from animals primed with peptides containing substitutions at positions 100 or 102 were also heteroclitically stimulated by the moth-like antigen. The observation that T cells could not be primed for recognition of the changes in peptide sequence that caused heteroclitic stimulation suggests that T cells do not directly recognize determinants in this region. The antigenically significant site of derivatization for T cell priming was found to be Lys99. Furthermore, substitution of a Gln at position 99 also resulted in elicitation of yet a third set of T cell clones specific for the presence of that residue. That is, the specificity of the primed T cell population was found to be altered by changes at residue-99, but no such alterations in specificity were demonstrable when T cells primed with peptides altered at residue-103, residue-102, or residue-100 were compared. Overall, the results demonstrate that the antigen can be divided into two functionally distinct sites that are in close physical proximity.  相似文献   

2.
The specificity of the IgG fraction of the sera of several rabbits hyperimmunized with glutaraldehyde-polymerized pigeon cytochrome c was examined by fluorescence-quenching titration and a sensitive competitive plate-binding radioimmunoassay developed for the analysis of small amounts of antiserum. Four pigeon cytochrome c-specific Fab fragments were found to bind simultaneously to the immunogen. Competition assays, using an extensive set of naturally occurring, chemically prepared hybrid and enzymically modified cytochromes c, implicated in antibody binding all seven amino acid residues at which the immunogen differs from the homologous rabbit cytochrome c. Thus, rabbits produce small amounts of three antibody populations directed against the regions of serine 15, alanine 44, and glycine 89, respectively, on pigeon cytochrome c, and a large amount of the population which binds to an assembled topographic determinant composed of isoleucine 3, glutamine 100, alanine 103, and lysine 104. The latter four residues are from the amino-terminal and carboxyl-terminal alpha-helices, and cluster where the two helices cross each other on the back surface of the molecule. Antibodies against native pigeon cytochrome c reacted very poorly with the several cyanogen bromide-cleaved fragments of the molecule, consisting of residues 1 to 65, 1 to 80, 66 to 104, and 81 to 104.  相似文献   

3.
B10.A mice were immunized with either the carboxyl terminal peptide fragment 81-104 of pigeon cytochrome c or its acetimidyl derivative and an immune response was seen with strong preference for the immunogen. Strain distribution studies and blocking with an anti-Ia monoclonal antibody indicated that the same immune response (Ir) gene and restriction element were utilized in both responses. The specificity of the responses were evaluated by restimulating in vitro with a set of cytochrome c fragments from various species. Even though the derivatized and native fragments were poorly cross-reactive, the same phylogenetic pattern was seen when pigeon cytochrome c fragment 81-104 primed cells were tested with the set of underivatized fragments and when acetimidyl pigeon cytochrome c fragment 81-104 primed cells were tested with the same set of derivatized fragments. Primed cells from a 2nd major histocompatibility complex congenic strain of mice, B10.A(5R), displayed equivalent discrimination between derivatized and native forms but showed a markedly different phylogenetic pattern of cross-reactivity. These data indicate that the immune system recognizes 2 sites on the nominal antigen. One site, which accounts for the common hierarchy and is under Ir gene control, contains residues Gln-100, and possibly other carboxyl terminal residues. The 2nd site, which effects the distinction between native and derivatized fragments, contains at least 1 lysine other than at the carboxyl terminal. The implications of these data for theories of T cell recognition and Ir gene function are discussed.  相似文献   

4.
We recently demonstrated that the sequence 95-104 contains all the residues necessary for direct recognition of the I-Ek restricted pigeon cytochrome c determinant but that residues located in sequences to the amino-terminal side of residue 95 improve the ability of peptides containing the sequence 95-104 to stimulate Ag-specific T cell clones. In this study we use synthetic peptides with amino-terminal leader sequences containing residues that differ with respect to their conformational stabilizing effects, charge, and hydrophilicity to examine the mechanism by which they modulate T cell recognition. Our findings indicate that the role of these residues in T cell stimulation is not related to their ability to stabilize alpha-helical secondary structure, nor do they appear to be processed differently. The leader sequences do not differentially influence the ability of the peptides to be presented by APC displaying Ia molecules of related haplotype, i.e., E alpha kE beta k, E alpha kE beta b, and E alpha kE beta s, to T cells which recognize the pigeon cytochrome c determinant on such presenting cells. Because antigenic potency correlates with the inclusion of hydrophobic residues and positively charged residues in the leader sequences, we discuss our findings with reference to the possibility that they non-specifically enhance the interaction of the antigenic peptides with the APC membrane.  相似文献   

5.
Th cell recognition of globular proteins requires the uptake and intracellular processing of the native Ag by an APC to produce a peptide fragment containing the T cell antigenic determinant, which is recognized in conjunction with Ia. This report describes the time course of the processing and presentation of a soluble globular protein Ag, pigeon cytochrome c (Pc), and of the presentation of a C-terminal peptide fragment of Pc, residues 81 to 104 (Pc 81-104), which does not require processing. Splenic B cells, acting as APC, require 6 to 8 h incubation with native Pc to process and present it to an I-Ek-restricted Pc-specific T cell hybrid, resulting in the secretion of IL-2. Moreover, the time required for B cells to process Pc is the same whether the Ag is taken up by nonspecific fluid phase pinocytosis or by binding to surface Ig. Once processed, Ag is lost from the B cell surface by 8 to 12 h, although when provided with fresh Pc, the same B cells are still capable of processing and presenting. In contrast to native Pc, only 1 to 2 h are required for the peptide fragment Pc 81-104 to become associated with B cells in a stimulatory fashion, and this time is similar for live and paraformaldehyde-fixed B cells, which cannot internalize or process the peptide. Washed free of excess peptide after 2 h, B cells lose their ability to stimulate T cells by 8 to 12 h, with a time course indistinguishable from that for the loss of processed native Pc. Prolonged incubation of B cells with the peptide for 18 to 24 h results in a dramatic loss of the ability to present Pc 81-104. Even when provided with fresh Pc or Pc 81-104, these cells have diminished ability to present these Ag. This loss is selective, inasmuch as these B cells remain equivalent to untreated B cells in the presentation of an unrelated Ag, OVA, to an I-Ak-restricted specific T cell. However, the ability to present another I-Ek-restricted antigenic peptide of the D glycoprotein of HSV to its specific T cell is also diminished. Loss of activity is observed after incubation only with the peptide and not with the native protein and is not due to a depletion of the antigenic peptide from the incubation medium.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The B10.A T cell proliferative response to pigeon cytochrome c is largely directed to a single site in the molecule located at the carboxyl terminus within the amino acid sequence of residues 81 to 104. This study uses the pigeon cytochrome c-specific T cell clone A.E7 and synthetic peptide analogs to clarify the role of certain residues within this sequence in T cell recognition. By using the helically constrained amino acid, alpha-aminoisobutyric acid, alternated with alanine in an amino-terminal leader sequence, we generated a series of molecules of similar length and alpha-helical conformation but which contain increasing lengths of the native sequence. By comparing the stimulatory ability of this series of peptides, we have clearly identified that the isoleucyl residue at position 95 in pigeon cytochrome c is essential for T cell recognition. This series, when compared with a series containing the same native sequences but without the leader sequence, also showed that the presence of the leader sequence has a general effect on enhancement of T cell recognition. An analysis of the conformational preferences of the peptides using circular dichroism indicated that all of the peptides with leader sequences have a strong preference for the alpha-helical conformation in nonpolar solvents. However, the introduction of helix-breaking residues into these peptides, with a concomitant measured reduction in alpha-helix, did not affect their recognition by clone A.E7. This implies that factors other than conformational stabilization are responsible for the full potency of these peptides. Binding studies to phospholipid vesicles indicated that residues in the leader sequence and in the amino terminus of segment 81-104 beyond residue 95 were important in increasing the ability of the antigens to bind to membranes. These results suggest that the capacity to bind to membranes may be a significant factor in the dose response of T cells to exogenously presented peptides.  相似文献   

7.
Previous experiments have demonstrated that the immune response of MHC congenic mice to pigeon cytochrome c is under Ir gene control. Expression of I-E-encoded gene products influences both the magnitude and fine specificity of the Th cell response to pigeon cytochrome c and phylogenetic derivatives. Results of those experiments implicate both determinant selection and repertoire selection as mechanisms of Ir gene control in this system. In this report we have compared the TCR expressed in pigeon cytochrome c-reactive Th cells from B10.A(I-Ek), B10.A(5R) (I-Eb), and B10.S(9R) (I-Es) mice. The B10.A(5R) strain is a low responder to pigeon cytochrome c, but in response to moth cytochrome c this strain produces T cells which respond to pigeon or moth cytochrome c on B10.A APC. These cells are phenotypically identical to the predominant clonal phenotype seen in the B10.A response to pigeon cytochrome c. In this report, we show that the B10.A and B10.A(5R) pigeon cytochrome c-reactive T cells express essentially identical T cell receptors. These results, coupled with recent studies reporting a relatively low affinity for I-Eb molecules by pigeon cytochrome c peptides compared with moth cytochrome c peptides, strongly argue that the immune response defect in the B10.A(5R) strain is due to a defect in Ag presentation (determinant selection). In contrast, B10.A and B10.S(9R) strains are high responders to pigeon cytochrome c. Both strains produce T cell clones which are capable of responding to cytochrome c presented by either B10.A or B10.S(9R) APC in vitro. We show that, even in T cells with this MHC restriction degeneracy, the TCR expressed in the two strains are different. Because the APC of both strains can clearly present the cytochrome c Ag, we conclude that the differential expression of the TCR in the responses is due to a T cell repertoire selection difference in the two strains. Thus, for the response to one Ag in three MHC congenic strains, there exists evidence that both determinant selection and repertoire selection can be mechanisms of Ir gene control of an immune response.  相似文献   

8.
The capacity of paraformaldehyde-fixed human antigen-presenting cells (APC) to induce responses by autologous, freshly isolated peripheral blood T4 cells was examined and was compared with their ability to stimulate allogeneic T4 cell DNA synthesis. Fixation of glass-adherent cells (AC) with as little as 0.06% paraformaldehyde abolished leucine incorporation, whereas fixation with 0.75% paraformaldehyde caused death of greater than 98% of the AC. Control APC were able to take up and present the soluble antigens streptokinase-streptodornase (SK-SD), tetanus toxoid, or tuberculin-purified protein derivative to autologous Ia-depleted T4 cells. Fixation with greater than 0.06% paraformaldehyde eliminated such ability. When AC were incubated with antigen overnight and were then fixed, however, they were able to present nominal antigen to autologous T4 cells in a genetically restricted manner that was blocked by monoclonal antibodies directed against monomorphic determinants on class II major histocompatibility complex (MHC) molecules. Despite the ability to present nominal antigen, paraformaldehyde-fixed AC were unable to induce allogeneic T4 cell proliferation. Similar results were observed when non-T cells or spleen cells were used as stimulators. The inability of fixed APC to stimulate allogeneic T4 cell DNA synthesis was not reversed by increasing the number of fixed APC or by the addition of control AC autologous to the responding cells. Moreover, interleukins 1 and 2 either alone or in combination also failed to permit maximal T cell proliferation in response to fixed allogeneic APC. The differential effects of fixation on nominal antigen and alloantigen presentation could not be explained by the loss of membrane thymocyte stimulatory activity on fixed AC. These results indicate that antigen-bearing fixed APC are competent to stimulate proliferation by antigen-reactive T4 cells, but are deficient at inducing allogeneic T4 cell DNA synthesis. The differential sensitivity of these two Ia-restricted functions of APC to chemical denaturation (reductive methylation) by paraformaldehyde suggests that the allodeterminants and restriction elements for nominal antigen on MHC class II molecules can be functionally dissociated.  相似文献   

9.
An examination of the proliferative response to pigeon cytochrome c fragments 1 to 65 and 1 to 80 by T cells from mice that are low responders to the native molecule revealed that some of the strains could respond to antigenic determinants on these fragments. T cell clones derived from B10.A(3R) and B10.A(4R) mice were used to characterize the antigenic determinants on fragment 1 to 65. All of the clones recognized syngeneic A beta:A alpha Ia molecules as their restriction element. Three B10.A(3R) clones and six B10.A(4R) clones recognized fragment 39 to 65. Another four B10.A(4R) clones responded to fragment 1 to 38. By stimulating with a series of cytochrome c fragments from different species, as well as a synthetic peptide, it was possible to localize the antigenic determinant(s) recognized by the B10.A(3R) clones to residues 45 to 58. Each clone showed a unique pattern of responsiveness to the various fragments, suggesting a diversity of T cell receptors specific for the same peptide. One B10.A(3R) clone could be stimulated by many of the 1 to 65 fragments in association with allogeneic B10.SM presenting cells and by tuna fragment 1 to 65 in association with B10.M presenting cells, although the rank order of potency for several of the fragments was different than that observed with syngeneic antigen-presenting cells. In addition, the clone was poorly reactive to a synthetic peptide containing a conservative substitution, serine for threonine, at position 49. The implications of these results for subsite dissection (agretope and epitope) of the antigenic determinant recognized by this clone are discussed.  相似文献   

10.
Protection and deprotection of horse cytochrome c   总被引:1,自引:0,他引:1  
The last step in the semisynthesis of horse cytochrome c analogues (formation of the bond 65-66) requires the conformation of the complex between two complementary fragments, (1-65) lactone and (66-104). The fragments can be obtained from a limited degradation with cyanogen bromide. The amino component in this reaction can also be obtained from organo chemical synthesis in which the C-terminal fragment (81-104) is required in a selectively protected form. The latter is available from a cyanogen bromide degradation of ubiquitously protected cytochrome c. The details of the protection/deprotection reaction and the properties of nonadecamethylsulfonylethyloxycarbonyl cytochrome c are described.  相似文献   

11.
The molecular basis of class II MHC allelic control of T cell responses.   总被引:3,自引:0,他引:3  
To identify the molecular basis for the effects of MHC molecule polymorphism on T cell responses, we have combined functional T cell response testing with measurements of peptide binding to the class II MHC molecules on transfected cells. Our studies identify a small subset of spatially localized polymorphic residues of the E alpha E beta dimer (strand residue beta 29, and helix residues beta 72 and beta 75) regulating cytochrome c peptide presentation by two distinct mechanisms. The first effect is on quantitative control of net peptide binding. The replacement of the valine found at position beta 29 in E beta k with the glutamic acid found in E beta b results in a selective loss of pigeon cytochrome peptide but not moth cytochrome peptide binding to the resultant mutant E alpha E beta k molecule. Reciprocally, the replacement of glutamic acid at beta 29 in E beta b with valine results in a gain of pigeon peptide binding. These changes in binding parallel changes in T cell responses in vitro to these peptide-E alpha E beta combinations and mirror the in vivo immune response gene phenotypes of mice expressing E alpha E beta k and E alpha E beta b. E alpha E beta s molecules, which have a beta 29 glutamic acid, are nevertheless able to bind and present pigeon cytochrome peptides, and this is due to changes in helix residues beta 72 and beta 75 that compensate for the negative effect of the beta 29 glutamic acid. The second activity is a critical change in the conformation of the peptide bound to the same extent by distinct MHC molecules, as revealed by changes in T cell responses to moth cytochrome peptides presented by two E alpha E beta molecules differing only at position beta 29. Both of these effects can be ascribed to a single polymorphic residue modeled to be inaccessible to TCR contact (beta 29), providing a striking demonstration of how MHC molecule polymorphism can modify T cell-dependent immune responses without direct physical participation in the receptor recognition event.  相似文献   

12.
To gain a better understanding of the diversity of epitopes on a protein, the specificities of 103 monoclonal antibodies to a model antigen, horse cytochrome c(cyt c), were analyzed. The antibodies were generated in in vitro monoclonal, secondary antibody responses against horse cyt c coupled to hemocyanin in splenic fragment cultures. For this assay, horse cyt c-primed murine B lymphocytes were transferred to irradiated, hemocyanin-primed recipients. A panel of seven mammalian cyts c differing at one to six residues out of 104 and cyanogen bromide-cleaved fragments of horse cyt c containing residues 1-65, 1-80, and 66-104 was used to examine the specificities of the antibodies. Twenty-two distinct reactivity patterns were observed, even though the majority of the monoclonal antibodies were found to bind in the three previously identified antigenic regions of the molecule about residues 44-47, 60-62, and 89-92. The results indicate that each of the three antigenic regions consists of multiple overlapping epitopes. Few of the antibodies directed to any given antigenic region bound polypeptide fragments inclusive of the epitope sequences, demonstrating that some antibodies were more conformationally dependent than others. Only 13% of the antibodies bound to cyanogen bromide-cleaved polypeptide fragments that together encompassed the entire length of the protein. Considering the large number of antibodies analyzed and the reoccurrence of 13 of the 22 clonotypes in different lymphocyte donors, it is likely that the antibody specificities tabulated herein approach yet do not completely enumerate the total inventory of the horse cyt c-specific B cell repertoire. The remarkable diversity for epitope recognition within antigenic regions observed here is likely to pertain to protein antigens in general, and strongly supports the widely held notion that the entire surface of a protein is potentially antigenic. The restriction of the epitopes of horse cyt c to three antigenic regions where the amino acid sequences of the mammalian cyts c differ probably results from tolerance of the mice to their own cyt c.  相似文献   

13.
Horse cytochrome c (cyt c) and two large, overlapping cyanogen bromide-cleaved fragments (1-80 and 66-104), together encompassing the entire length of the polypeptide chain, were examined for their abilities to stimulate into antibody production individual secondary B lymphocytes primed against the intact protein. T cell help was provided against the carrier protein, hemocyanin, to which cyt c and its peptides were conjugated by using glutaraldehyde. All the B cells activated by both of the fragments elicited antibodies that reacted with intact cyt c in enzyme-linked immunosorbent assay, whereas only a fraction of the antibodies elicited by the intact protein reacted with the peptides. However, in general, antibodies reactive with the polypeptide fragments, whether elicited by the intact protein or by the fragments, could not be effectively inhibited from binding plate-bound cyt c in enzyme-linked immunosorbent assay in the presence of soluble native cyt c. This indicates that these antibodies are specific for denatured forms of cyt c that apparently arise during the chemical coupling of cyt c to carrier molecules for immunization and/or during emulsification of the immunogen in adjuvant. Whereas, at most, 5% of the secondary B cells specific for native cyt c could be activated by the 1-80 fragment, even fewer were activated by the 66-104 fragment. Therefore, it is unlikely that smaller peptides which fail to assume native conformation would be effective. Antibodies elicited in vivo in a primary response to the 1-80 fragment also failed to bind native cyt c. These results suggest that linear peptides intended to mimic epitopes on globular proteins, and which have not been engineered to adopt native conformation, will not be very effective either as primary or as secondary vaccines for B cell activation.  相似文献   

14.
A noncovalent complex of the apoprotein (1-104) and cyanogen bromide heme fragment containing residues 1 to 65, (1-65) H, has been prepared from horse heart cytochrome c. Conditions under which the redundant portions of the ferrous complex can be removed by limited trypsin digestion have been devised. The complementing fragments have been isolated from the derived complexes and four apofragments and one heme fragment have been identified in the amino acid sequence of cytochrome c. They are (39-104), (40-104), (54-104), (56-104), and (1-53)H. The formation of an ordered ferric complex composed of one heme fragment and one apofragment for the cases (1-53)H (39-104), (1-53)H-(40-104), (1-53)H-(54-104), and (1-53)H-(56-104) has been demonstrated by the quenching of the tryptophan 59 fluorescence and the regain of biological activity in a cytochrome b2 assay. The apparent dissociation constant has been estimated as less than 3 X 10(-7) M in all the aforementioned cases. Thus, the region (between residues 38 and 57) of the amino acid sequence permissible for cleavage without disruption of the ordered structure indicated by the present in vitro experiments corresponds to that (between residues 38 and 57) evolutionally deleted in the three-dimensional structure of Pseudomonas aeruginosa cytochrome c551 discovered by Dickerson et al. (Dickerson, R.E., Timkovich, R., and Almassy, R.J. (1976) J. Mol. Biol. 100, 473-491).  相似文献   

15.
An analysis of the fine specificities of the primary and hyperimmune antibody responses of B10.A mice to pigeon cytochrome c showed that both were qualitatively very similar. Small amounts of antibody appeared to be directed against the regions of serine 15 and/or glutamic acid 44. The remaining antibodies (greater than 70%) bound to the same complex topographic determinant (including residues 3, 103, and 104) on the back surface of pigeon cytochrome c which had been found to dominate the rabbit antibody response to this protein, and to be involved in Ia-restricted T cell stimulation. The mouse antibodies reacted very poorly with fragmented forms of the immunogen or with tobacco hornworm moth cytochrome c, even though both of these antigens had been shown previously to strongly stimulate pigeon cytochrome c-primed T cells. The specificities of the primary IgG responses of seven other mouse strains were found to be very similar, but not identical, to that of B10.A mice. The cytochrome c-specific antibodies in the hyperimmune serum were shown to bind to determinants involving residues that vary between pigeon and mouse cytochromes c. Comparison of the binding of the antibodies to the immunogen and to the corresponding host protein enabled the calculation of the proportion of the overall binding energy contributed by the variant residues. This was as low as 19 to 35% for the primary response, rose to 25 to 46% for the hyperimmune mouse antibodies, and reached 40 to 63% for hyperimmune rabbit antibodies. The remaining energy of interaction (37 to 81%) was necessarily contributed by the surface of the protein surrounding the variant residues, which is the same for the immunogen and the host protein. These results illustrate the relatively subtle differences in binding affinities which can distinguish self from non-self recognition by antibody molecules.  相似文献   

16.
The effect of radiation on three discrete Ag-presentation functions in resting B cells was examined: 1) Ag uptake and processing, 2) expression of processed Ag in the context of functional class II molecules, and 3) provision of necessary co-stimulatory, or "second," signals. Analysis of radiation's effect on B cell presentation of intact vs fragmented Ag or its effect on presentation by Ag-pulsed B cells indicated that damage to Ag uptake and processing could not account for the bulk of the radiation-induced Ag-presentation defect. Experiments with phosphatidylinositol hydrolysis as an indirect measure of TCR occupancy suggested that irradiation caused a fairly rapid (within 1 to 2 h) decrease in the ability of the B cell APC to display a stimulatory combination of Ag and class II molecule. Ag dose-response analyses demonstrated that when presenting a fragment of the Ag pigeon cytochrome c to a T cell clone, 3000 rad-treated B cell APC were able to stimulate approximately 50% as much phosphatidylinositol turnover as unirradiated B cells. It was also found that, in contrast to their inability to initiate T cell proliferation, and similarly to chemically cross-linked splenocytes, heavily irradiated resting B cells plus Ag induced a state of Ag hyporesponsiveness in T cell clones. This effect on T cells had the same Ag- and MHC-specificity as did receptor occupancy required for proliferation, indicating that heavily irradiated resting B cells bear functional class II molecules. Co-culture of T cells with allogeneic B cells and syngeneic heavily irradiated B cells or chemically cross-linked splenic APC plus Ag resulted in T cell proliferation and interfered with the induction of the hyporesponsive state. This co-stimulatory function was radiosensitive in resting allogeneic B cells. Together, these data support the hypothesis that the major functional consequences of radiation to resting B cell APC are a reduction in the effective display of Ag plus class II molecules and, probably what is more important, a loss in the ability to provide APC-derived co-stimulatory signals.  相似文献   

17.
The B10.A T cell proliferative response to pigeon cytochrome c is mainly directed against a single antigenic determinant located at the carboxy-terminal end of the molecule. In the present experiments, we used synthetic peptide analogs of the carboxy-terminal sequence of moth cytochrome c to explore the structural requirements for antigenic potency. The minimum-sized peptide capable of stimulating a full response varied with the T cell clone, but within the limits of the biological systems studied, was shown to be moth fragment 97-103. Addition of more amino acids at the amino terminal end increased the antigenic potency in uneven increments, with a large contribution being made at residue 95. Analysis of amino acid substitutions at this position provided no evidence that it contained a residue that directly contacted the T cell receptor. Instead, good agreement with an analysis that made use of helix-coil transition theory suggested that this residue, as well as others, increased antigenic potency by contributing to the stabilization of the secondary structure of the molecule in an alpha-helical configuration. The maximum effect of chain length on antigenic potency appeared to stop at residue 93, in agreement with the theoretical analysis. However, addition of several more amino-terminal residues to residue 93 showed one additional significant increment of increased potency. This was almost entirely accounted for by a single lysine located four amino acids beyond the glutamic acid at residue 93 (approximately one turn of an alpha-helix away). To experimentally test whether alpha-helix-forming tendencies could account for the increased potency of the larger analogs, the degree of helix formation in trifluoroethanol was assessed by circular dichroism measurements. A good correlation was found between antigenic potency and percentage of alpha-helix for peptides of increasing chain length from moth 95-103 up to moth 86-90; 94-103. These results suggest that secondary structure may play an important role in determining the potency of antigenic determinants involved in the activation of T lymphocytes.  相似文献   

18.
The present studies were undertaken to characterize the antigen-processing requirements involved in the responses to T cells to soluble antigen (antigen specific), to allogeneic cell surface MHC determinants (alloreactive), and to syngeneic MHC determinants (autoreactive). T cell clones were used that have dual cross-reactive specificities either 1) for self MHC plus soluble antigen and for allogeneic MHC products or 2) for syngeneic MHC and for allogeneic MHC, in order to permit comparison of the processing requirements for responses of the same T cell to distinct antigenic stimuli. The proliferative responses of antigen-specific, Ia-restricted T cell clones to soluble antigens were sensitive to treatment of antigen-presenting cells (APC) with 125 to 250 microM chloroquine, a lysosomotropic agent previously shown to inhibit the processing of soluble antigens. In contrast, the same T cell clones were only minimally affected in their ability to respond to similarly chloroquine-treated APC expressing allogeneic MHC products. The responses of autoreactive T cell clones to syngeneic stimulating cells and their cross-reactive responses to allogeneic cells were both resistant to chloroquine treatment of stimulating cells. The failure of chloroquine to inhibit antigen presentation to autoreactive T cell clones suggests that these clones are specific for self Ia not associated with in vitro processed foreign antigen. Thus, chloroquine sensitivity distinguishes the in vitro antigen-processing requirements for presentation of the soluble antigens tested from the requirements for presentation of syngeneic or allogeneic cell surface MHC determinants to the same T cells.  相似文献   

19.
We describe the N epsilon-acetimidylation of horse heart cytochrome c with retention of biological activity, the cleavage of the modified protein by CNBr, the separation of the fragments, and their further side-chain protection. We describe the manipulation of the amino acid sequences of the fragments by stepwise semisynthetic methods. We have prepared fragments corresponding to residues 66-78 and 66-79 of the protein, as well as the [Asp66] analogue of fragment 66-79. We have prepared the natural sequence and the [o-fluoro-Phe82] analogue of the fragment corresponding to residues 81-104 of the protein, and the [N epsilon-trifluoroacetyl-Lys79], the [N epsilon-dinitrophenyl-Lys79] and the [S-acetamidomethyl-Cys79] analogues of fragment 79-104, and the [N epsilon-Cbz-Lys81] analogue of fragment 80-104. We have coupled back the fragments of natural sequence to form a semisynthetic fragment corresponding to residues 66-104 of the protein. Modified fragments were also coupled to give analogues of the 66-104-residue sequence. In every case the homoserine residue representing methionine-80 was removed from the C-terminus of the 66-80-residue fragment and replaced by methionine on the N-terminus of the 81-104 residue fragment during the preparation of the fragments for coupling. The semisynthetic fragments are ready for specific deprotection and further coupling. We have coupled one such fragment to the (1-65)-peptide to produce semisynthetic [Hse65]cytochrome c. The product has satisfactory characteristics on chemical analysis, and on assay of its biological activity.  相似文献   

20.
The activation of helper T lymphocytes has been proposed to result from the sum of low-affinity interactions between the specific immune receptor, as well as nonpolymorphic receptors such as L3T4 on the T cell surface, and nominal antigen and Ia displayed in a multivalent array on the antigen-presenting cell surface. The present work takes advantage of a T cell hybridoma specific for pigeon cytochrome c in the context of I-Ek, which responds to tobacco hornworm moth cytochrome c at one hundredth the concentration of the homologous antigen, to determine if the T cell's requirement for L3T4 and Ia is directly related to its functional affinity for antigen. The results demonstrate that the T cell's activation by pigeon cytochrome c was blocked by antibodies directed to L3T4 and to I-Ek, even at antigen concentrations twofold to fourfold above those required for maximal responses. In contrast, the response to tobacco hornworm moth cytochrome c was not as affected by these antibodies under equivalent superoptimal conditions. The same phenomenon was observed for the T cell's activation by the carboxyl-terminal peptide fragments of the two cytochromes c, which do not require processing, indicating that the differences were not due to the relative efficiency of processing and/or presentation of the antigens. Although both I-Ek- and L3T4-specific antibodies blocked the T cell response to pigeon cytochrome, antibodies to I-Ak had no effect, even though I-Ak had been considered to be a ligand for L3T4. Thus, either Ia does not bind L3T4 or, if it does, I-Ek must be a sufficient ligand for L3T4 for T cells that recognize their antigen in the context of I-Ek. These studies provide more definitive evidence that the T cell's requirement for the functions of Ia and of L3T4 is dependent on the T cell's functional affinity for its antigenic determinant. This data is consistent with a model of T cell activation in which, given a high enough affinity of the T cell receptor for the processed antigen, the requirement for other components of a stimulatory complex, such as Ia and L3T4, may diminish to undetectable levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号