首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
MOTIVATION: Position specific scoring matrices (PSSMs) corresponding to aligned sequences of homologous proteins are commonly used in homology detection. A PSSM is generated on the basis of one of the homologues as a reference sequence, which is the query in the case of PSI-BLAST searches. The reference sequence is chosen arbitrarily while generating PSSMs for reverse BLAST searches. In this work we demonstrate that the use of multiple PSSMs corresponding to a given alignment and variable reference sequences is more effective than using traditional single PSSMs and hidden Markov models. RESULTS: Searches for proteins with known 3-D structures have been made against three databases of protein family profiles corresponding to known structures: (1) One PSSM per family; (2) multiple PSSMs corresponding to an alignment and variable reference sequences for every family; and (3) hidden Markov models. A comparison of the performances of these three approaches suggests that the use of multiple PSSMs is most effective. CONTACT: ns@mbu.iisc.ernet.in.  相似文献   

2.
MOTIVATION: Many studies have shown that database searches using position-specific score matrices (PSSMs) or profiles as queries are more effective at identifying distant protein relationships than are searches that use simple sequences as queries. One popular program for constructing a PSSM and comparing it with a database of sequences is Position-Specific Iterated BLAST (PSI-BLAST). RESULTS: This paper describes a new software package, IMPALA, designed for the complementary procedure of comparing a single query sequence with a database of PSI-BLAST-generated PSSMs. We illustrate the use of IMPALA to search a database of PSSMs for protein folds, and one for protein domains involved in signal transduction. IMPALA's sensitivity to distant biological relationships is very similar to that of PSI-BLAST. However, IMPALA employs a more refined analysis of statistical significance and, unlike PSI-BLAST, guarantees the output of the optimal local alignment by using the rigorous Smith-Waterman algorithm. Also, it is considerably faster when run with a large database of PSSMs than is BLAST or PSI-BLAST when run against the complete non-redundant protein database.  相似文献   

3.
Sequence comparison methods based on position-specific score matrices (PSSMs) have proven a useful tool for recognition of the divergent members of a protein family and for annotation of functional sites. Here we investigate one of the factors that affects overall performance of PSSMs in a PSI-BLAST search, the algorithm used to construct the seed alignment upon which the PSSM is based. We compare PSSMs based on alignments constructed by global sequence similarity (ClustalW and ClustalW-pairwise), local sequence similarity (BLAST), and local structure similarity (VAST). To assess performance with respect to identification of conserved functional or structural sites, we examine the accuracy of the three-dimensional molecular models predicted by PSSM-sequence alignments. Using the known structures of those sequences as the standard of truth, we find that model accuracy varies with the algorithm used for seed alignment construction in the pattern local-structure (VAST) > local-sequence (BLAST) > global-sequence (ClustalW). Using structural similarity of query and database proteins as the standard of truth, we find that PSSM recognition sensitivity depends primarily on the diversity of the sequences included in the alignment, with an optimum around 30-50% average pairwise identity. We discuss these observations, and suggest a strategy for constructing seed alignments that optimize PSSM-sequence alignment accuracy and recognition sensitivity.  相似文献   

4.
MOTIVATION: The deluge of biological information from different genomic initiatives and the rapid advancement in biotechnologies have made bioinformatics tools an integral part of modern biology. Among the widely used sequence alignment tools, BLAST and PSI-BLAST are arguably the most popular. PSI-BLAST, which uses an iterative profile position specific score matrix (PSSM)-based search strategy, is more sensitive than BLAST in detecting weak homologies, thus making it suitable for remote homolog detection. Many refinements have been made to improve PSI-BLAST, and its computational efficiency and high specificity have been much touted. Nevertheless, corruption of its profile via the incorporation of false positive sequences remains a major challenge. RESULTS: We have developed a simple and elegant approach to resolve the problem of model corruption in PSI-BLAST searches. We hypothesized that combining results from the first (least-corrupted) profile with results from later (most sensitive) iterations of PSI-BLAST provides a better discriminator for true and false hits. Accordingly, we have derived a formula that utilizes the E-values from these two PSI-BLAST iterations to obtain a figure of merit for rank-ordering the hits. Our verification results based on a 'gold-standard' test set indicate that this figure of merit does indeed delineate true positives from false positives better than PSI-BLAST E-values. Perhaps what is most notable about this strategy is that it is simple and straightforward to implement.  相似文献   

5.

Background

BLAST is a commonly-used software package for comparing a query sequence to a database of known sequences; in this study, we focus on protein sequences. Position-specific-iterated BLAST (PSI-BLAST) iteratively searches a protein sequence database, using the matches in round i to construct a position-specific score matrix (PSSM) for searching the database in round i?+?1. Biegert and S?ding developed Context-sensitive BLAST (CS-BLAST), which combines information from searching the sequence database with information derived from a library of short protein profiles to achieve better homology detection than PSI-BLAST, which builds its PSSMs from scratch.

Results

We describe a new method, called domain enhanced lookup time accelerated BLAST (DELTA-BLAST), which searches a database of pre-constructed PSSMs before searching a protein-sequence database, to yield better homology detection. For its PSSMs, DELTA-BLAST employs a subset of NCBI??s Conserved Domain Database (CDD). On a test set derived from ASTRAL, with one round of searching, DELTA-BLAST achieves a ROC5000 of 0.270 vs. 0.116 for CS-BLAST. The performance advantage diminishes in iterated searches, but DELTA-BLAST continues to achieve better ROC scores than CS-BLAST.

Conclusions

DELTA-BLAST is a useful program for the detection of remote protein homologs. It is available under the ??Protein BLAST?? link at http://blast.ncbi.nlm.nih.gov.

Reviewers

This article was reviewed by Arcady Mushegian, Nick V. Grishin, and Frank Eisenhaber.  相似文献   

6.
Profile-based sequence search procedures are commonly employed to detect remote relationships between proteins. We provide an assessment of a Cascade PSI-BLAST protocol that rigorously employs intermediate sequences in detecting remote relationships between proteins. In this approach we detect using PSI-BLAST, which involves multiple rounds of iteration, an initial set of homologues for a protein in a 'first generation' search by querying a database. We propagate a 'second generation' search in the database, involving multiple runs of PSI-BLAST using each of the homologues identified in the previous generation as queries to recognize homologues not detected earlier. This non-directed search process can be viewed as an iteration of iterations that is continued to detect further homologues until no new hits are detectable. We present an assessment of the coverage of this 'cascaded' intermediate sequence search on diverse folds and find that searches for up to three generations detect most known homologues of a query. Our assessments show that this approach appears to perform better than the traditional use of PSI-BLAST by detecting 15% more relationships within a family and 35% more relationships within a superfamily. We show that such searches can be performed on generalized sequence databases and non-trivial relationships between proteins can be detected effectively. Such a propagation of searches maximizes the chances of detecting distant homologies by effectively scanning protein "fold space".  相似文献   

7.
Abstract

Profile-based sequence search procedures are commonly employed to detect remote relationships between proteins. We provide an assessment of a Cascade PSI-BLAST protocol that rigorously employs intermediate sequences in detecting remote relationships between proteins. In this approach we detect using PSI-BLAST, which involves multiple rounds of iteration, an initial set of homologues for a protein in a ‘first generation’ search by querying a database. We propagate a ‘second generation’ search in the database, involving multiple runs of PSI-BLAST using each of the homologues identified in the previous generation as queries to recognize homologues not detected earlier. This non-directed search process can be viewed as an iteration of iterations that is continued to detect further homologues until no new hits are detectable. We present an assessment of the coverage of this ‘cascaded’ intermediate sequence search on diverse folds and find that searches for up to three generations detect most known homologues of a query. Our assessments show that this approach appears to perform better than the traditional use of PSI-BLAST by detecting 15% more relationships within a family and 35% more relationships within a superfamily. We show that such searches can be performed on generalized sequence databases and non-trivial relationships between proteins can be detected effectively. Such a propagation of searches maximizes the chances of detecting distant homologies by effectively scanning protein “fold space”.  相似文献   

8.
We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain.  相似文献   

9.

Background

Development of sensitive sequence search procedures for the detection of distant relationships between proteins at superfamily/fold level is still a big challenge. The intermediate sequence search approach is the most frequently employed manner of identifying remote homologues effectively. In this study, examination of serine proteases of prolyl oligopeptidase, rhomboid and subtilisin protein families were carried out using plant serine proteases as queries from two genomes including A. thaliana and O. sativa and 13 other families of unrelated folds to identify the distant homologues which could not be obtained using PSI-BLAST.

Methodology/Principal Findings

We have proposed to start with multiple queries of classical serine protease members to identify remote homologues in families, using a rigorous approach like Cascade PSI-BLAST. We found that classical sequence based approaches, like PSI-BLAST, showed very low sequence coverage in identifying plant serine proteases. The algorithm was applied on enriched sequence database of homologous domains and we obtained overall average coverage of 88% at family, 77% at superfamily or fold level along with specificity of ∼100% and Mathew’s correlation coefficient of 0.91. Similar approach was also implemented on 13 other protein families representing every structural class in SCOP database. Further investigation with statistical tests, like jackknifing, helped us to better understand the influence of neighbouring protein families.

Conclusions/Significance

Our study suggests that employment of multiple queries of a family for the Cascade PSI-BLAST searches is useful for predicting distant relationships effectively even at superfamily level. We have proposed a generalized strategy to cover all the distant members of a particular family using multiple query sequences. Our findings reveal that prior selection of sequences as query and the presence of neighbouring families can be important for covering the search space effectively in minimal computational time. This study also provides an understanding of the ‘bridging’ role of related families.  相似文献   

10.
In this study, we show that it is possible to increase the performance over PSI-BLAST by using evolutionary information for both query and target sequences. This information can be used in three different ways: by sequence linking, profile-profile alignments, and by combining sequence-profile and profile-sequence searches. If only PSI-BLAST is used, 16% of superfamily-related protein domains can be detected at 90% specificity, but if a sequence-profile and a profile-sequence search are combined, this is increased to 20%, profile-profile searches detects 19%, whereas a linking procedure identifies 22% of these proteins. All three methods show equal performance, but the best combination of speed and accuracy seems to be obtained by the combined searches, because this method shows a good performance even at high specificity and the lowest computational cost. In addition, we show that the E-values reported by all these methods, including PSI-BLAST, underestimate the true rate of false positives. This behavior is seen even if a very strict E-value cutoff and a limited number of iterations are used. However, the difference is more pronounced with a looser E-value cutoff and more iterations.  相似文献   

11.
Detection of homologous proteins by an intermediate sequence search   总被引:2,自引:0,他引:2  
We developed a variant of the intermediate sequence search method (ISS(new)) for detection and alignment of weakly similar pairs of protein sequences. ISS(new) relates two query sequences by an intermediate sequence that is potentially homologous to both queries. The improvement was achieved by a more robust overlap score for a match between the queries through an intermediate. The approach was benchmarked on a data set of 2369 sequences of known structure with insignificant sequence similarity to each other (BLAST E-value larger than 0.001); 2050 of these sequences had a related structure in the set. ISS(new) performed significantly better than both PSI-BLAST and a previously described intermediate sequence search method. PSI-BLAST could not detect correct homologs for 1619 of the 2369 sequences. In contrast, ISS(new) assigned a correct homolog as the top hit for 121 of these 1619 sequences, while incorrectly assigning homologs for only nine targets; it did not assign homologs for the remainder of the sequences. By estimate, ISS(new) may be able to assign the folds of domains in approximately 29,000 of the approximately 500,000 sequences unassigned by PSI-BLAST, with 90% specificity (1 - false positives fraction). In addition, we show that the 15 alignments with the most significant BLAST E-values include the nearly best alignments constructed by ISS(new).  相似文献   

12.
The recognition of remote protein homologies is a major aspect of the structural and functional annotation of newly determined genomes. Here we benchmark the coverage and error rate of genome annotation using the widely used homology-searching program PSI-BLAST (position-specific iterated basic local alignment search tool). This study evaluates the one-to-many success rate for recognition, as often there are several homologues in the database and only one needs to be identified for annotating the sequence. In contrast, previous benchmarks considered one-to-one recognition in which a single query was required to find a particular target. The benchmark constructs a model genome from the full sequences of the structural classification of protein (SCOP) database and searches against a target library of remote homologous domains (<20 % identity). The structural benchmark provides a reliable list of correct and false homology assignments. PSI-BLAST successfully annotated 40 % of the domains in the model genome that had at least one homologue in the target library. This coverage is more than three times that if one-to-one recognition is evaluated (11 % coverage of domains). Although a structural benchmark was used, the results equally apply to just sequence homology searches. Accordingly, structural and sequence assignments were made to the sequences of Mycoplasma genitalium and Mycobacterium tuberculosis (see http://www.bmm.icnet. uk). The extent of missed assignments and of new superfamilies can be estimated for these genomes for both structural and functional annotations.  相似文献   

13.
BeoBLAST is an integrated software package that handles user requests and distributes BLAST and PSI-BLAST searches to nodes of a Beowulf cluster, thus providing a simple way to implement a scalable BLAST system on top of relatively inexpensive computer clusters. Additionally, BeoBLAST offers a number of novel search features through its web interface, including the ability to perform simultaneous searches of multiple databases with multiple queries, and the ability to start a search using the PSSM generated from a previous PSI-BLAST search on a different database. The underlying system can also handle automated querying for high throughput work. AVAILABILITY: Source code is available under the GNU public license at http://bioinformatics.fccc.edu/  相似文献   

14.
15.
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase predominantly active in the nervous system where it regulates several processes such as neuronal migration, cytoskeletal dynamics, axonal guidance, and neurotransmission.We constructed a position specific scoring matrix (PSSM) based on a dataset of sites shown to be phosphorylated both in vivo and in vitro by Cdk5. This dataset was curated manually through an exhaustive search of published experimental data. We then used this PSSM to perform a search in the mouse proteome through Scansite, a web-based tool for matching sequence patterns in large databases. Considering a stringent cut-off score of 0.5, we identified 354 new putative sites present in 291 proteins. In order to assess the robustness of our results, ten random subsets (of 80 sites each) of the original dataset were used to construct new PSSMs, which were then used as input for a new Scansite search, leading to the recovery of 81% of the 354 sites by at least 5 PSSMs.In order to reduce the number of false positives in our sequence-based approach, we evaluated which of these predicted sites were phosphorylated in vivo as determined by multiple phosphoproteomics studies carried out through mass spectrometry and available in the PhosphoSitePlus database. This step resulted in a very promising list of 132 putative phosphorylation sites for Cdk5, of which, 51 are specifically phosphorylated in brain tissue, and some are involved in functions regulated by Cdk5 such as axonal growth, synaptic plasticity and neurotransmission. Other phosphorylation sites in our list suggest that Cdk5 might regulate processes through mechanisms not previously recognized such as the control of mRNA splicing.  相似文献   

16.
Pairwise sequence alignment is a central problem in bioinformatics, which forms the basis of various other applications. Two related sequences are expected to have a high alignment score, but relatedness is usually judged by statistical significance rather than by alignment score. Recently, it was shown that pairwise statistical significance gives promising results as an alternative to database statistical significance for getting individual significance estimates of pairwise alignment scores. The improvement was mainly attributed to making the statistical significance estimation process more sequence-specific and database-independent. In this paper, we use sequence-specific and position-specific substitution matrices to derive the estimates of pairwise statistical significance, which is expected to use more sequence-specific information in estimating pairwise statistical significance. Experiments on a benchmark database with sequence-specific substitution matrices at different levels of sequence-specific contribution were conducted, and results confirm that using sequence-specific substitution matrices for estimating pairwise statistical significance is significantly better than using a standard matrix like BLOSUM62, and than database statistical significance estimates reported by popular database search programs like BLAST, PSI-BLAST (without pretrained PSSMs), and SSEARCH on a benchmark database, but with pretrained PSSMs, PSI-BLAST results are significantly better. Further, using position-specific substitution matrices for estimating pairwise statistical significance gives significantly better results even than PSI-BLAST using pretrained PSSMs.  相似文献   

17.
We describe a new algorithm for protein classification and the detection of remote homologs. The rationale is to exploit both vertical and horizontal information of a multiple alignment in a well-balanced manner. This is in contrast to established methods such as profiles and profile hidden Markov models which focus on vertical information as they model the columns of the alignment independently and to family pairwise search which focuses on horizontal information as it treats given sequences separately. In our setting, we want to select from a given database of "candidate sequences" those proteins that belong to a given superfamily. In order to do so, each candidate sequence is separately tested against a multiple alignment of the known members of the superfamily by means of a new jumping alignment algorithm. This algorithm is an extension of the Smith-Waterman algorithm and computes a local alignment of a single sequence and a multiple alignment. In contrast to traditional methods, however, this alignment is not based on a summary of the individual columns of the multiple alignment. Rather, the candidate sequence is at each position aligned to one sequence of the multiple alignment, called the "reference sequence." In addition, the reference sequence may change within the alignment, while each such jump is penalized. To evaluate the discriminative quality of the jumping alignment algorithm, we compare it to profiles, profile hidden Markov models, and family pairwise search on a subset of the SCOP database of protein domains. The discriminative quality is assessed by median false positive counts (med-FP-counts). For moderate med-FP-counts, the number of successful searches with our method is considerably higher than with the competing methods.  相似文献   

18.
Protein homology detection by HMM-HMM comparison   总被引:22,自引:4,他引:18  
MOTIVATION: Protein homology detection and sequence alignment are at the basis of protein structure prediction, function prediction and evolution. RESULTS: We have generalized the alignment of protein sequences with a profile hidden Markov model (HMM) to the case of pairwise alignment of profile HMMs. We present a method for detecting distant homologous relationships between proteins based on this approach. The method (HHsearch) is benchmarked together with BLAST, PSI-BLAST, HMMER and the profile-profile comparison tools PROF_SIM and COMPASS, in an all-against-all comparison of a database of 3691 protein domains from SCOP 1.63 with pairwise sequence identities below 20%.Sensitivity: When the predicted secondary structure is included in the HMMs, HHsearch is able to detect between 2.7 and 4.2 times more homologs than PSI-BLAST or HMMER and between 1.44 and 1.9 times more than COMPASS or PROF_SIM for a rate of false positives of 10%. Approximately half of the improvement over the profile-profile comparison methods is attributable to the use of profile HMMs in place of simple profiles. Alignment quality: Higher sensitivity is mirrored by an increased alignment quality. HHsearch produced 1.2, 1.7 and 3.3 times more good alignments ('balanced' score >0.3) than the next best method (COMPASS), and 1.6, 2.9 and 9.4 times more than PSI-BLAST, at the family, superfamily and fold level, respectively.Speed: HHsearch scans a query of 200 residues against 3691 domains in 33 s on an AMD64 2GHz PC. This is 10 times faster than PROF_SIM and 17 times faster than COMPASS.  相似文献   

19.
Koike R  Kinoshita K  Kidera A 《Proteins》2007,66(3):655-663
Dynamic programming (DP) and its heuristic algorithms are the most fundamental methods for similarity searches of amino acid sequences. Their detection power has been improved by including supplemental information, such as homologous sequences in the profile method. Here, we describe a method, probabilistic alignment (PA), that gives improved detection power, but similarly to the original DP, uses only a pair of amino acid sequences. Receiver operating characteristic (ROC) analysis demonstrated that the PA method is far superior to BLAST, and that its sensitivity and selectivity approach to those of PSI-BLAST. Particularly for orphan proteins having few homologues in the database, PA exhibits much better performance than PSI-BLAST. On the basis of this observation, we applied the PA method to a homology search of two orphan proteins, Latexin and Resuscitation-promoting factor domain. Their molecular functions have been described based on structural similarities, but sequence homologues have not been identified by PSI-BLAST. PA successfully detected sequence homologues for the two proteins and confirmed that the observed structural similarities are the result of an evolutional relationship.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号