首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Starch accumulation rate in leaves of vegetative soybeans is inversely related to the length of the daily photosynthetic period. However, it is not known whether a similar response would be observed during reproductive growth. Soybeans (Glycine max L. Merr. cv Amsoy 71) were grown to three stages of reproductive growth (beginning seed, mid seed-fill, and late seed-fill) under 12-hour daylengths, and then shifted to 6-hour photosynthetic periods (12-hour photoperiods) for 4 days. One and 4 days after treatment, a mid-canopy leaf was pulsed with 14CO2, and sampled for radiolabeled starch and water-soluble compounds at 0.5, 1, 3, 9, and 21 hours after labeling.

Plants exposed to the 6-hour photosynthetic periods at the beginning seed stage retained and incorporated significantly more label as starch than did those given 12-hour photosynthetic periods. However, plants exposed to the shortened photosynthetic periods at the late seed-fill stage partitioned less label into starch. Plants exposed at mid seed-fill gave a variable response.

Shortened photosynthetic periods resulted in preferential partitioning of recently fixed carbon to the seed at the expense of the pod wall. The results of these experiments suggest that the increased sink demand present during late reproductive growth may be of greater importance in control of leaf starch accumulation than is the length of the daily photosynthetic period.

  相似文献   

2.
Diurnal water balance of the cowpea fruit   总被引:9,自引:1,他引:8       下载免费PDF全文
The vascular network of the cowpea (Vigna unguiculata [L.] Walp.) fruit exhibits the anatomical potential for reversible xylem flow between seeds, pod, and parent plant. Feeding of cut shoots with the apoplast marker acid fuchsin showed that fruits imported regularly via xylem at night, less frequently in early morning, and only rarely in the afternoon. The dye never entered seeds or inner dorsal pod strands connecting directly to seeds. Root feeding (early morning) of intact plants with 32PO4 or 3H2O rapidly (20 min) labeled pod walls but not seeds, consistent with uptake through xylem. Weak subsequent (4 hours) labeling of seeds suggested slow secondary exchange of label with the phloem stream to the fruit. Vein flap feeding of subtending leaves with [14C]sucrose, 3H2O, and 32PO4 labeled pod and seed intensely, indicating mass flow in phloem to the fruit. Over 90% of the 14C and 3H of fruit cryopuncture phloem sap was as sucrose and water, respectively. Specific 3H activities of transpired water collected from fruits and peduncles were assayed over 4 days after feeding 3H2O to roots, via leaf flaps, or directly to fruits. The data indicated that fruits transpired relatively less xylem-derived (apoplastic) water than did peduncles, that fruit and peduncle relied more heavily on phloem-derived (symplastic) water for transpiration in the day than at night, and that water diffusing back from the fruit was utilized in peduncle transpiration, especially during the day. The data collectively support the hypothesis of a diurnally reversing xylem flow between developing fruit and plant.  相似文献   

3.
Injection of [14C]tryptophan into one seed in a soybean fruit resulted in recovery of radiolabel in a fraction that cochromatographed with indoleacetic acid (IAA) through three successive high performance liquid chromatography separations. Label was found in the putative IAA fraction in all of the fruit tissues sampled and in the blade of the leaf subtending the pod into which the radiolabeled tryptophan had been injected. This suggested that IAA or an IAA precursor was transported from seeds to other parts of the fruit and to subtending leaves.  相似文献   

4.
Drought is a major yield constraint in common bean (Phaseolus vulgaris L.). Pulse-chase (14)C-labelling experiments were performed using Pinto Villa (drought resistant) and Canario 60 (drought sensitive) cultivars, grown under optimal irrigation and water-deficit conditions. Starch and the radioactive label incorporated into starch were measured in leaves and pods at different time points, between the initiation of pod development and the production of mature pods. The water-stress treatment induced a higher starch accumulation in the drought-resistant cultivar pods than in those of the drought-sensitive cultivar. This effect was more noticeable during the early stages of pod development. Consistently, a reduction of starch content occurred in the leaves of the drought-resistant cultivar during the grain-filling stage. Furthermore, a synchronized accumulation of sucrose was observed in immature pods of this cultivar. These data indicate that carbohydrate partitioning is affected by drought in common bean, and that the modulation of this partitioning towards seed filling has been a successful strategy in the development of drought-resistant cultivars. In addition, our results suggest that, in the drought-resistant cultivar, the efficient carbon mobilization towards the seeds in response to water limitation is favoured by a mechanism that implies a more effective sucrose transport.  相似文献   

5.
The leaf and pod at the lowest reproductive node are responsiblefor providing approximately two-thirds of the carbon requiredby seeds ripening at that node. Leaflets and stipules of thisleaf furnish respectively 174 and 74 mg C to the seeds, 85 percent of these amounts consisting of photosynthetically fixedcarbon, the remainder carbon available from mobilization ofdry matter. The pod donates 154 mg C to its seeds, some of thisderived from the atmosphere, some from organic reserves establishedearly in pod life, but most from assimilation of carbon dioxidelost to the pod's interior by the respiring seeds. The pod is virtually totally committed in export to its seeds.Leaflets and stipules are less deeply committed; they exportassimilates some days before their subtended flower is pollinatedand they then maintain an active export to all regions of theplant whilst supplying the developing seeds. The stipules, inparticular, are very active in the nutrition of the root andfruits higher up the stem. Highest rates of export from leafand pod take place when the seeds show their greatest demandfor carbon, and at this time a relatively large proportion ofthe exported assimilates are diverted to the seeds.  相似文献   

6.
Photosynthesis, growth, and carbon partitioning of vigorous coppice shoots were compared with the slower growing intact shoots of Populus maximowiczii × nigra L. MN9 to determine the relationship between carbon partitioning and photosynthetic rate. Relative height growth rate of coppice shoots was 2.2 times that of intact shoots with net photosynthetic rate 1.9 times that of intact shoots. Coppice leaves exported a larger proportion of newly-fixed assimilate (11% compared with 6%) after a 4-h chase. The greater export from coppice leaves was correlated with a greater proportion of [14C]-labelled photosynthate deposited as starch in stems 4 cm below the point of label application. Coppice leaf assimilate levels were reduced to 15% that of leaves on intact plants, but coppice leaves had twice the concentration of labelled sucrose. Carbohydrates constituted 55% of the water-soluble [14C]-labelled photosynthate in leaves of coppice shoots compared with 40% in intact shoots. The results suggest that carbon allocation and partitioning in coppice shoots were altered towards production and export of new assimilate, and support the hypothesis that photosynthetic rate is responsive to sink demand for assimilates.  相似文献   

7.
This study examined whether increased K supply in conjunction with BAPcould increase lupin seed yield and harvest index by enlarging sink volume (podnumber), increasing assimilate and improving assimilate partitioning to filltheadditional pods induced by BAP treatment. Narrow-leafed lupin(Lupinusangustifolius, cv. Danja abs mutant) was grown inaglasshouse, in pots containing sandy soil with four K treatments (0, 15, 60 and120 mg K/kg soil). BAP (2 mM) was applied daily toallmain stem flowers throughout the life of each flower from opening to senesced.BAP application did not affect assimilate production (as measured by totalabove-ground biomass), but changed assimilate partitioning. On BAP-treatedplants, there were greater proportions of seed to pod wall dry weight on themain stem but smaller proportions on the branches, and an increased weightratioof seed to pod wall overall which meant more assimilate was used for seedgrowthrather than pod wall growth. BAP increased the number of pods per plant by35% and this more than compensated for the decreases in seeds per podandseed weight. Therefore, there was an increased harvest index (+11%)and seed yield per plant (+13%) in BAP-treated plants. BAP alsoincreased the number of pods with filled seeds (146%) on the main stemand main stem seed K+ concentration (from 0.81% to0.87%). Added K increased biomass but only slightly affected assimilatepartitioning. As applied K increased, relatively more assimilate was used forpod wall growth rather than seed growth. Added K increased seed yield per plantby about 14% due to increases in seed weight and the number of pods onthe main stem. Moreover, K+ concentration in seeds and shootsincreased with increasing level of applied K. Seed yield was enhanced more byBAP when K was supplied at high levels. Increasing K supply interactedpositively with added BAP by increasing narrow-leaf lupin seed yield andharvestindex through increases in assimilate supply and its partitioning into seeds.  相似文献   

8.
A method for recording respiration rates of attached singlesoybean pods is described. By means of such records source-sinkrelations can be observed over an extended period of time ifphotosynthesis of leaves is recorded simultaneously. It is shownthat there are direct influences on respiration, such as changesin temperature and indirect effects which influence primarilythe assimilate influx into the pods, e.g. light and competitionbetween pods. The shading of a single leaf next to the pod has only a smalleffect because the pod is supplied by more than one leaf. Bygirdling the plants, the export-import conditions can be studiedon a single leaf as source and a single pod as sink. The resultsshow that a trifoliate fully-grown leaf produces more assimilatethan can be used by a single pod. If only one pod is growingwithin the girdled area then starch is accumulated and the photosyntheticrate of the leaf is greatly reduced. The respiration rate ofthe pod is only slightly increased, in spite of the abundantavailability of assimilates. It appears therefore, that thefilling rate of pods is determined mainly by the capacity ofthe pod to off-load the phloem, and cannot be increased beyonda certain level by additional sucrose influx. Our results show that, using this method, the source-sink relationscan be recorded qualitatively over time periods of 3–4weeks. Key words: Source-sink relations, pod respiration, Glycine max, pod filling, photosynthesis  相似文献   

9.
Behboudian  M.H.  Ma  Q.  Turner  N.C.  Palta  J.A. 《Photosynthetica》2000,38(1):155-157
The rate of photosynthesis (P N) in leaves and pods as well as carbon isotope content in leaves, pod walls, and seeds was measured in well-watered (WW) and water-stressed (WS) chickpea plants. The P N, on an area basis, was negligible in pods compared to leaves and was reduced by water stress (by 26%) only in leaves. WS pod walls and seeds discriminated less against 13CO2 than did the controls. This response was not observed for leaves as is usually the case. Pod walls and seeds discriminated less against 13CO2 than did leaves in both WW and WS plants. Measurement of carbon isotope composition in pods may be a more sensitive tool for assessing the impact of water stress on long-term assimilation than is the instantaneous measurement of gas exchange rates.  相似文献   

10.
When arrival of shoot supplied carbohydrate to the nodulated root system of soybean was interrupted by stem girdling, stem chilling, or leaf removal, nodule carbohydrate pools were utilized, and a marked decline in the rates of CO2 and H2 evolution was observed within approximately 30 minutes of treatment. Nodule excision studies demonstrated that the decline in nodulated root respiration was associated with nodule rather than root metabolism, since within 3.5 hours of treatment, nodules respired at less than 10% of the initial rates. Apparently, a continuous supply of carbohydrate from the shoot is required to support nodule, but not root, function. Depletion of nodular carbohydrate pools was sufficient to account for the (diminishing) nodule respiration of girdled plants. Of starch and soluble sugar pools within the whole plant, only leaf starch exhibited a diurnal variation which was sufficient to account for the respiratory carbon loss of nodules over an 8 hour night. Under 16 hour nights, or in continuous dark, first the leaf starch pools were depleted, and then nodule starch reserves declined concomitant with a decrease in the rates of CO2 and H2 evolution from the nodules. Nodule soluble sugar levels were maintained in dark treated plants but declined in girdled plants. The depletion of starch in root nodules is an indicator of carbohydrate limitation of nodule function.  相似文献   

11.
Zhao  Duli  Oosterhuis  D.M. 《Photosynthetica》1999,36(1-2):279-290
During ontogeny of Gossypium hirsutum L. floral buds (squares), increases in area and dry mass (DM) of floral bracts and the subtending sympodial leaf followed a sigmoid growth curve with increasing square age. The maximum growth rates of the bract area and bract DM occurred between 15 and 20 d after square first appearance (3 mm in diameter). Net photosynthetic rate (PN) of the sympodial leaf at first fruiting branch position of main-stem node 10 reached a maximum when the subtended square developed into a white flower. Floral bracts had much lower PN and higher dark respiration than the subtending leaf. The amount of 14CO2 fixation by the bracts of a 20-d-old square was only 22 % of the subtending leaf, but 56 % of 14C-assimilate in the floral bud was accumulated from the bracts, 27 % from the subtending leaf, and only 17 % from the main-stem leaf at 6 h after 14C feeding these source s. Hence floral bracts play an important role in the carbon supply of developing cotton squares. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

12.
Pod set in soybean is related to carbon partitioning and may be, at least partially, regulated by abscisic acid (ABA) concentrations. The studies reported here examine the relationship between carbon and ABA partitioning, reproductive abscission and ABA metabolism. The partitioning of radiolabeled ABA and photoassimilates from leaves to flowers and endogenous ABA concentrations were determined in shaded and unshaded reproductive structures. Aluminum foil was gently placed over individual soybean reproductive structures for 48 hours at 0, 4, 12, 17, and 22 days after anthesis (DAA). Shading of flowers at 12, 17, and 22 DAA resulted in significantly reduced concentration of ABA. However, shading had no effect on the catabolism of exogenously supplied [3H] ABA. The shading treatment on the first four of the five dates reduced partitioning of photoassimilates and ABA from the subtending leaf to the flower. Shading of reproductive structures also caused a significant reduction in the amount of assimilate exported from the subtending leaf, at 17 DAA. We conclude that shade-induced premature reproductive abscission in soybean is not stimulated by high levels of ABA within reproductive structures, but that ABA may inhibit abscission of reproductive structures by playing a role in preferential assimilate partitioning.  相似文献   

13.
This study investigated the factor of the physiological characteristics causing the reduction of yield of soybean plants (Glycine max (L.) Merr.) by drought stress, by monitoring changes in stem diameter and pod thickness, and photosynthetic activity, partitioning of 13C-labeled photosynthate. Drought stress reduced the whole plant dry weight due to the decrease in leaf and pod dry matter accumulation; however, this stress did not have a significant effect on stem growth. Leaf photosynthesis was also severely decreased by drought stress in the early stage of stress treatment as leaf water potential decreased. Imposition of stress decreased pod thickness, but stem diameter increased. The adverse effect of drought stress on pod thickness was more evident at night than during the day. The stem diameter also shrank during the day and expanded at night, but the nocturnal increase in stem diameter during drought stress treatment was greater for stressed plants compared with well-watered controls. Drought stress significantly promoted 13C partitioning from the fed leaf to other parts of the plant; the stem was the largest beneficiary. Soluble carbohydrates accumulated in various plant parts under the influence of the stress, but starch concentration declined in all organs except the stem. These results indicated that stem growth was promoted by drought stress compared to pod growth at the early grain-filling stage.  相似文献   

14.
Seed development largely depends on the long‐distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source‐to‐sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this ‘Push‐and‐Pull’ approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source‐to‐sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1‐overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild‐type plants. Together, the results demonstrate that the SUT1‐overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Pushand‐Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.  相似文献   

15.
Koch KE  Schrader LE 《Plant physiology》1984,75(4):1040-1043
Partitioning and translocation of 14C-photosynthates were examined during flowering and seed maturation in soybean (Glycine max [L.]Merr.) plants to quantify allocation to sugars, amino acids, organic acids, and starch and to study transport of C and N from leaves to reproductive sinks. The trifoliolate leaf at the eighth node was exposed to steady state levels of 14CO2 for 2 hours, followed by immediate extraction and identification of radioactive assimilates in the fed leaf blade, tissues of the transport path (e.g. petiole and stem), and fruits if they were present. About one-third of the total 14C recovered from the leaf blades was in starch until late pod-filling, after which the proportion dropped to 16%. Sugars comprised 70% to 86% of the recovered 14C from soluble assimilates of the source leaf, with highest proportions occurring during late flowering and early pod-filling. Amino acids accounted for 8% to 17% of the 14C recovered from the soluble fraction, and were most evident during early flowering and mid to late pod-filling. The 14C-organic acids comprised from 3% to 14% of the soluble 14C-assimilates in leaves. Petioles consistently contained a higher percentage of recovered radioactivity in sugars (87-97%) and a lower percentage in amino acids (3-12%) than did leaf blades. 14C-Amino acids in petioles attained their highest levels during mid and late pod-filling, while 14C-organic acids comprised 2% or less of the recovered radioactivity after pod initiation. The distribution of 14C-assimilates in the internode below the source leaf was similar to that found in petioles. A comparison of the above data to calculated C and N requirements for seed development suggests that 14C-amino acids derived from current photosynthesis and translocated from source leaves supply at least 12% to 48% of the seed N depending on the stage of pod-filling.  相似文献   

16.
Translocation of carbon and nitrogen within a single source-sink unit, comprising a trifoliated leaf, the axillary pod and the subtending internode, and from this unit to the rest of the plant was examined in soybean (Glycine max L. cv. Akishirome) plant by feeding 13CO2 and 15NO3. The plants were grown at two levels of nitrogen in the basal medium, i.e. low-N (2 g N m–2) and high-N (35 g N m–2) and a treatment of depodding was imposed by removing all the pods from the plant, except the pod of the source sink unit, 13 days after flowering. The plants at high-N accumulated more biomass in its organs compared to low-N and pod removal increased the weight of the vegetative organs. When the terminal leaflet of the source-sink unit was fed with 13CO2, almost all of the radioactive materials were retained inside the source-sink unit and translocation to rest of the plants was insignificant under any of the treatments imposed. Out of the13C exported by the terminal leaflet, less than half went into the axillary pod, as the lateral leaflets claimed equal share and very little material was deposited in the petiole. Pod removal decreased 13C export at high-N , but not at low-N. Similar to 13C, the source-sink unit retained all the 15N fed to the terminal leaflet at high-N. At low-N, the major part of 15N partitioning occurred in favour of the rest of the plant outside the source-sink unit, but removal of the competitve sinks from the rest of the plants nullified any partitioning outside the unit. Unlike the situation in 13C, no partitioning of 15N occurred in favour of the lateral leaflets from the terminal leaflet inside the unit. It is concluded that sink demand influences partitioning of both C and N and the translocation of carbon is different from that of nitrogen within a source-sink unit. The translocation of the N is more adjustive to a demand from other sink units compared to the C.  相似文献   

17.
Assimilate partitioning was studied in the common pea (Pisum sativum L.) by feeding 14CO2 to whole plants and measuring radioactivity in different organs 48 hours after labeling. Two experimental protocols were used. For the first, one reproductive node was darkened with an aluminum foil, to prevent photosynthesis during labeling. The aim was to study assimilate translocation among nodes. The second was carried out to assess any priority among sinks. Whole plants were shaded, during labeling, to reduce carbon assimilation. Various developmental stages between the onset of flowering and the final stage in seed abortion of the last pod were chosen for labeling. When all photosynthetic structures at the first reproductive node were darkened at any stage of development after the formation of the first flower, the first pod was supplied with assimilates from other nodes. In contrast, later developed pods, when photosynthetic structures at their node were darkened, received assimilates from other nodes only when they were beyond their final stage in seed abortion. Reducing illumination to 30% did not change distribution of assimilated carbon between vegetative and reproductive structures, nor among pods. It appears that the relative proportion of 14C allocated to any one pod, compared to other pods, depends on the dry weight of that pod as a proportion of the total reproductive dry weight. When the plant was growing actively, following the start of the reproductive phase until a few days before the end of flowering, the top of the plant (i.e., all the organs above the last opened flower) had a higher sink strength and a higher relative specific activity than pods, suggesting that it was a more competitive sink for assimilates. The pattern of assimilate distribution described here provides an explanation for pod and seed abortion.  相似文献   

18.
Oxygen sensitivity and partitioning of carbon was measured in a mutant line of Flaveria linearis that lacks most of the cytosolic fructose-1,6-bisphosphatase found in wild-type lines. Photosynthesis of leaves of the mutant line was nearly insensitive to O2, as found before. The mutant plants partitioned 2.5 times less carbon into sucrose than the wild type in a pulse chase experiment, with the extra carbon going mainly to starch but also to amino acids. From 10 to 50 min postlabeling, radioactivity chased out of the amino acid fraction to starch in both lines. In the middle of the light period, starch grains were larger in the mutant than in the wild type and covered 30% of the chloroplast area as seen with an electron microscope. Starch grains were found in both mesophyll and bundle sheath chloroplasts in both lines in these C3-C4 intermediate plants. At the end of the dark period, the starch levels were considerably reduced from what they were in the middle of the light in both lines. The concentration of sucrose was higher in the mutant line despite the lack of cytosolic fructose-1,6-bisphosphatase. The amino acid fraction accounted for about 30% of all label following a 10-min chase period. In the mutant line, most of the label was in the glycine + serine fraction, with 10% in the alanine fraction. In wild-type leaves, 35% of the label in amino acids was in alanine. These results indicate that this mutant survives the reduced cytosolic fructose-1,6-bisphosphatase activity by partitioning more carbon to starch and less to sucrose during the day and remobilizing the excess starch at night. However, these results raise two other questions about this mutant. First, why is the sucrose concentration high in a plant that partitions less carbon to sucrose, and second, why is alanine heavily labeled in the wild-type plants but not in the mutant plants?  相似文献   

19.
Carbon allocation to the source leaf, export and partitioning to the sink were studied in mungbean supplied by additional carbon from the source leaves subjected to high CO2 concentrations (600 and 900 cm3 m-3) in three metabolic and functional source-sink combinations. The plants were pruned to a source-path-sink system. With CO2 enrichment there was an appreciable increase in net photosynthetic CO2 uptake in earlier formed and physiologically younger leaves. Most of the carbon fixed as a result of enrichment was translocated out of the source leaf within one diurnal cycle. The carbon remaining in the source leaf was unchanged. Partitioning of extra carbon into starch or sugar depended upon the amount of extra carbon synthesized. The unloading of the extra carbon into sinks depended on whether it was used for growth or stored. Under increased carbon content, the leaf as a sink was able to reorganize its metabolic reactions more rapidly to maintain the required gradient for unloading than the pod acting as the sink.  相似文献   

20.
Measurements on plants in a temperature gradient tunnel showthat diurnal accumulation of starch in illuminated leaves wasgreatly reduced at temperatures below 8 °C, whereas sucrosesynthesis was less affected under similar conditions. High chillingsensitivity for leaf starch accumulation was observed in a numberof chilling resistant temperate species. Enzymes of sucroseand fructan metabolism from mature leaves of Lolium temulentumwere less strongly inhibited at low temperatures than enzymesinvolved in starch synthesis. These results are discussed inrelation to carbon partitioning in species which grow and aremetabolically active at chilling temperatures. Lolium temulentum, starch, sucrose, fructan, temperature, enzyme activity, carbon partitioning  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号