首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Changes in the activities of sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (AGPase), UDP-glucose pyrophosphorylase (UGPase), alkaline inorganic pyrophosphatase, 3-phosphoglycerate (3-PGA) phosphatase and amylases were monitored in relation to accumulation of starch in developing pods of mung bean (Vigna radiata L.). With the advancement in the seed development, the contents of starch rose with a concomitant fall in the branch of inflorescence and podwall after 10 d after flowering. The activity of UDPase in all the three pod tissues remained higher than the activity of AGPase showing it to be an important enzyme controlling carbon flux. The activity of alkaline inorganic pyrophosphatase in developing seed in contrast to 3-PGA phosphatase correlated with starch accumulation rate. Activity of β-amylase increased in all the pod tissues till maturity. It appears that the cooperative action of SuSy, UGPase and AGPase controls the efficient partitioning of sucrose into ADP glucose and thereby regulate the seed sink strength of the mung bean.  相似文献   

2.
Activities of the sucrose-cleaving enzymes, acid and neutral invertase and sucrose synthase, were measured in pods and seeds of developing snap bean (Phaseolus vulgaris L.) fruits, and compared with 14C-import, elongation and dry weight accumulation. During the first 10 d post-anthesis, pods elongated rapidly with pod dry weight increase lagging behind by several days. The temporal patterns of acid invertase activity and import coincided closely during the first part of pod development, consonant with a central role for this enzyme in converting imported sucrose during pod elongation and early dry weight accumulation. Later, sucrose synthase became the predominant enzyme of dry weight accumulation and was possibly associated with the development of phloem in pod walls. Sucrose synthase activity in seeds showed two peaks, corresponding to two phases of rapid import and dry weight accumulation; hence, sucrose synthase was associated with seed sink growth. Acid invertase activities in seeds were low and did not show a noticeable relationship with import or growth. All neutral invertase activities, during pod and seed development, were too low for it to have a dominant role in sucrose cleavage. Changes in activities of certain sucrose-cleaving enzymes appear to be correlated with certain sink functions, including import, storage of reserves, and biosynthetic activities. The data supports the association of specific sucrose-cleaving enzymes with the specific processes that occur in the developing pods and seeds of snap bean fruits; for example, acid invertase with pod elongation and sucrose synthase with fruit dry matter accumulation.  相似文献   

3.
GENT  M. P. N. 《Annals of botany》1983,51(3):317-329
The dry weight of the whole fruit, the pod wall and an enclosedseed of randomly harvested soya beans is estimated from theexternal dimensions of the attached pod. The relations betweendimensions and dry weight are independent of cultivar and growthcondition and can be used on pods from 1 cm in length untilthe seeds reach their maximum fresh weight. Dimensions of tagged pods of three cultivars of field grownsoya beans differing in time to reach maturity were measuredevery 2–3 days from initial pod elongation until maturation.Dry weights for each pod were estimated from the dimensions,and the dry weight accumulation with time was fitted to thelogistic function to find the growth rate that best characterizedthe data for each pod. The final weight, the specific growthrate and the maximum growth rate of the whole fruit, the podwall and a single seed were subjected to analysis of variance. The most significant difference between pods of these cultivarswas the specific growth rate of individual seeds, which decreasedwith increasing maturity group. There were no differences ingrowth of the pod wall. However, most of the variation was betweenindividual pods within a cultivar, where the rate of dry weightaccumulation of the whole fruit, governed largely by the seedgrowth rate times the number of seeds, was highly correlatedwith the earlier growth of the pod wall. This suggests thatthe growth of individual whole fruit was determined early inpod development and was slightly influenced by factors appliedduring the period of rapid seed growth. Glycine max (L.) Merrill, Soya bean, seed growth analysis, specific growth rate  相似文献   

4.
J.S. Tsay  W.L. Kuo  C.G. Kuo 《Phytochemistry》1983,22(7):1573-1576
The levels of free sugars, starch and enzymes involved in starch metabolism—sucrose synthetase, UDP and ADP glucose pyrophosphorylase, phosphorylase and starch synthetase—were assayed during seed development of three cultivars of mung bean (Vigna radiata). Free sugars and starch increased with increasing seed weight. Changes in levels of sucrose synthetase, UDP- and ADP-glucose pyrophosphorylases, and phosphorylase were paralleled by changes in starch accumulation. After the maximum activity levels of these enzymes had been reached, maximum activities of soluble starch synthetase and starch granule-bound starch synthetase occurred. There were high activities of sucrose synthetase and phosphorylase at maximum rates of starch accumulation. Thus, starch could be synthesized via the ADP glucose pathway in mung bean seeds. However, phosphorylase may account for the starch accumulation in the early stages of mung bean seed development.  相似文献   

5.
6.
Cotton is one of the most important crops for its natural textile fibers in the world. However, it often suffered from drought stress during its growth and development, resulting in a drastic reduction in cotton productivity. Therefore, study on molecular mechanism of cotton drought-tolerance is very important for increasing cotton production. To investigate molecular mechanism of cotton drought-resistance, we employed RNA-Seq technology to identify differentially expressed genes in the leaves of two different cultivars (drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6) of cotton. The results indicated that there are about 13.38% to 18.75% of all the unigenes differentially expressed in drought-resistant sample and drought-sensitive control, and the number of differentially expressed genes was increased along with prolonged drought treatment. DEG (differentially expression gene) analysis showed that the normal biophysical profiles of cotton (cultivar J-13) were affected by drought stress, and some cellular metabolic processes (including photosynthesis) were inhibited in cotton under drought conditions. Furthermore, the experimental data revealed that there were significant differences in expression levels of the genes related to abscisic acid signaling, ethylene signaling and jasmonic acid signaling pathways between drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6, implying that these signaling pathways may participate in cotton response and tolerance to drought stress.  相似文献   

7.
Summary Experiments were conducted to determine if changes in the accumulation and partitioning of dry matter (DM) and nitrogen (N) in soybean [Glycine max (L.) Merr.] were associated with agronomic improvements and to assess the degree of genetic variation present for these traits. Fifteen maturity group II soybean genotypes including three ancestral cultivars, three modern cultivars, and nine agronomically superior plant introductions (PI's) were grown in replicated tests at four locations in the eastern U.S. The DM and N of stems, pod walls, and seeds were determined at maturity, and the apparent harvest indices (HI) and the apparent nitrogen harvest indices (NHI) were calculated. Pod DM partitioning was calculated as the ratio of seed DM to total pod DM and pod N partitioning was the ratio of seed N to total pod N. The mean DM accumulation of the modern cultivars was significantly greater than that of the ancestral cultivars and PI's. The apparent HI and the pod DM partitioning of both the modern and ancestral cultivars were significantly higher than that of the PI's. The three modern cultivars demonstrated the highest N accumulation. As a group, the modern cultivars consistently showed maximal accumulation and partitioning of DM and N suggesting that these physiological traits are associated with agronomic improvement. No individual PI was found to possess DM or N accumulation or partitioning which significantly exceeded the best modern cultivar or ancestral cultivar, indicating that genotypes with accumulation or partitioning characteristics which exceed available germplasm may be difficult to identify. Seed yield was correlated (P<0.05) with both DM (r=0.61) and N (r=0.57) accumulation.  相似文献   

8.
Detached chickpea inflorescences bearing pods at 20 days after flowering (DAF) were cultured for 5 days in complete liquid medium supplemented separately with asparate, myo-inositol, alpha-ketoglutarate and phytic acid. Effect of these metabolites on sugar interconvestion and starch and protein accumulation in developing pods was studied. Substituting asparate (62.5 mM) for glutamine in culture medium decreased relative proportion of sucrose in all pod tissues but increased the level of sugars, starch and protein in pod wall and cotyledons. In cotyledons, whereas myo-inositol (75 mM) reduced the accumulation of starch without affecting protein level, alpha-ketoglutarate (44 mM) increased both starch and protein accumulation. Both myo-inositol and alpha-ketoglutarate increased relative proportion of sucrose in cotyledons. Phytic acid (1 mM) decreased in cotyledons 14C incorporation from glucose into EtOH extract (principally constituted by sugars), amino acids and proteins but increased the same into starch. In cotyledons, phytic acid also increased 14C incorporation from glutamate into amino acids but this increase was negatively correlated with protein synthesis. Phytic acid decreased the relative distribution of 14C from glucose and glutamate into sucrose from pod wall but enhanced the same into EtOH extract from embryo. Based on the results, it is suggested that mode of metabolic response to exogenously supplied metabolites widely differs in pod tissues of chickpea.  相似文献   

9.
Field studies were conducted in 1981 and 1982 to ascertain the effects of pod removal on senescence of nodulating and nonnodulating isolines of soybean (Glycine max [L.] Merr. cv Harosoy) plants. Specifically, the test hypothesis was that nodules act as a nitrogen source and a carbohydrate sink which would in turn prevent or delay senescence in the absence of pods. Senescence was judged by changes in metabolite levels, in dry matter accumulation, and by visual observation.

For both nodulated and nonnodulated plants, pod removal had no effect on the magnitude or rate of dry matter and reduced-N accumulation by whole plants. Phosphorus accumulation was significantly less in both nodulated- and nonnodulated-depodded plants, compared with respective control plants with pods. These data suggested a role for pods in phosphorus uptake. Accumulation of dry matter, reduced N, and phosphorus ceased at approximately the same time for all treatments.

Pod removal did affect partitioning of plant constitments, with leaves and stems of depodded plants serving as a major alternate sink for accumulation of dry matter, reduced N, phosphorus, and nonstructural carbohydrates (primarily starch). While depodded plants eventually lost a significant amount of leaves, leaf drop was delayed relative to plants with pods; and depodded plants still retained some green leaves at 2 weeks past grain maturity of control (podded) plants.

The results indicated that senescence patterns of soybean plants were the same for nodulated and nonnodulated plants, and that pods did not control the initiation of senescence, but rather altered the partitioning of plant constituents and the visual manifestations of senescence.

  相似文献   

10.
This work was carried out to characterize starch accumulation and activities of key enzymes during grain filling in two wheat cultivars differing in starch content. The results showed that the starch accumulation rate (SAR) and activities of sucrose synthase, ADP-glucose pyrophosphorylase, soluble starch synthase, granule-bound starch synthase, and starch branching enzyme in the cultivar with a high starch content were significantly higher than those in the cultivar with a low starch content. The simulation with Richards’ equation showed that it was average starch accumulation rate but not active starch accumulation duration that determined starch accumulation. As compared with the cultivar with a low starch content, plants of the cultivar with a high starch content maintained the higher SAR and greater activities of related enzymes during mid and late grain filling stages. Consequently, the cultivar with a high starch content had advantages over that with a low starch content in terms of the amount of starch accumulation at mid and late grain filling stages.  相似文献   

11.
The soybean pod borer, Maruca vitrata is one of the key insect pests of tropical legumes. It damages tender leaf axils, flower buds, flowers and pods by webbing and boring clusters of flowers and pods. In this study, we investigated the survival and life table parameters of M. vitrata on several leguminous crops; soybean (cvs. Daewon, Poongsannamool and Socheongja), azuki bean (cv. Hongeon), mung bean (cv. Sanpo), and cowpea (cv. Jangchae), compared to artificial diet to assess the antibiosis resistance to M. vitrata. The life‐variables of M. vitrata were significantly affected by the tested legume cultivars. None of the larvae fed cowpea cultivar Jangchae survived. The azuki bean cultivar Hongeon and mung bean cultivar Sanpo were found susceptible to M. vitrata, whereas cowpea cultivar Jangchae and soybean cultivar Daewon showed antibiosis resistance to M. vitrata. Further studies should examine the chemicals associated with leguminous crop cultivars and its mechanism to develop a control method against M. vitrata.  相似文献   

12.
The control of photosynthetic starch/sucrose formation in leaves of soybean (Glycine max L. Merr.) cultivars was studied in relation to stage of plant development, photosynthetic photoperiod, and nitrogen source. At each sampling, leaf tissue was analyzed for starch content, activities of sucrose-metabolizing enzymes, and labeling of starch and sucrose (by 14CO2 assimilation) in isolated cells. In three of the four varieties tested, nodulated plants had lower leaf starch levels and higher activities of sucrose phosphate synthetase (SPS), and isolated mesophyll cells incorporated more carbon (percentage of total 14CO2 fixed) into sucrose and less into starch as compared to nonnodulated (nitrate-dependent) plants. The variation among cultivars and nitrogen treatments observed in the activity of SPS in leaf extracts was positively correlated with labeling of sucrose in isolated cells (r = 0.81) and negatively correlated with whole leaf starch content (r = −0.66). The results suggested that increased demand for assimilates by nodulated roots may be accommodated by greater partitioning of carbon into sucrose in the mesophyll cells. We have also confirmed the earlier report (Chatterton, Silvius 1979 Plant Physiol 64: 749-753) that photoperiod affects partitioning of fixed carbon into starch. Within two days of transfer of nodulated soybean Ransom plants from a 14-hour to a 7-hour photoperiod, leaf starch accumulation rates doubled, and this effect was associated with increased labeling of starch and decreased labeling of sucrose in isolated cells. Concurrently, activities of SPS, sucrose synthase, and uridine diphosphatase in leaves were decreased.  相似文献   

13.
本文报道了蚕豆现蕾至饱荚期不同时间土壤水分亏缺情况下的光合特性、光合产量及蚕豆水分亏缺敏感期。蚕豆现蕾后给予土壤干旱处理,光合速率、叶绿素含量、叶面积、气孔开度、生物产量及籽粒产量下降,但气孔密度和呼吸速率增加。水分亏缺使叶片光饱和点由50kLx降至30kLx,气孔开度日变化呈单峰(9—11时)曲线。始荚至盛荚期对土壤干旱最敏感,此期是蚕豆灌水的关键时期。  相似文献   

14.
Huber SC  Rufty TW  Kerr PS 《Plant physiology》1984,75(4):1080-1084
Studies were conducted to identify the existence of diurnal rhythms in sucrose phosphate synthase (SPS) activity in leaves of three soybean (Glycine max L. [Merr.]) and two tobacco (Nicotiana tabacum L.) cultivars and the effect of photoperiod (15 versus 7 hours) on carbohydrate partitioning and the rhythm in enzyme activity. Acclimation of all the genotypes tested to a short day (7 hours) photoperiod resulted in increased rates of starch accumulation, whereas rates of translocation, foliar sucrose concentrations, and activities of SPS were decreased relative to plants acclimated to long days (15 hours). Under the long day photoperiod, two of the three soybean cultivars (`Ransom' and `Jupiter') and one of the two tobacco cultivars (`22NF') studied exhibited a significant diurnal rhythm in SPS activity. With the soybean cultivars, acclimation to short days reduced the activity of SPS (leaf fresh weight basis) and tended to dampen the amplitude of the rhythm. With the tobacco cultivars, photoperiod affected the shape of the SPS-activity rhythm. The mean values for SPS activity (calculated from observations made during the light period) were correlated positively with translocation rates and were correlated negatively with starch accumulation rates. Overall, the results support the postulate that SPS activity is closely associated with starch/sucrose levels in leaves, and that acclimation to changes in photoperiod may be associated with changes in the activity of SPS.  相似文献   

15.
Tungro virus infection stimulates proline accumulation in leaves of rice ( Oryza sativa L.), especially in a sensitive cultivar, Taichung Native 1. Disease-induced proline accumulation increases with the severity of the disease. Proline also accumulates in senescing, detached healthy rice leaves. The magnitude of proline accumulation in these leaves was further accentuated by ABA and retarded by kinetin. In the absence of drought stress, virus infection induces severe symptoms (stunting) in a drought tolerant cultivar (Lalnakanda 41) when compared to cultivars with intermediate (MW 10) and high sensitivity (Cauvery) to drought. Thus tungro virus mimics water stress in inducing proline accumulation in rice leaves. In both cases a common factor, ABA, may mediate proline accumulation. In drought stress, proline accumulation is associated with tolerance, while in virus stress, proline accumulation is connected with sensitivity. It is, therefore, clear that proline cannot always act to relieve physiological stress.  相似文献   

16.
以抗旱性弱的‘兴芋-1’和抗旱性强的‘兴芋-2’芭蕉芋品种为材料,通过盆栽试验,研究了干旱及复水对芭蕉芋干物质以及N、P、K积累与分配的影响,以明确干旱条件下芭蕉芋干物质的构成特点及N、P、K吸收分配特性,为芭蕉芋节水高效栽培提供理论依据。结果表明:(1)干旱胁迫显著抑制了芭蕉芋的生长,降低了根茎、茎和叶中干物质积累及其在根茎中的分配,而促进了根中干物质积累与分配。(2)干旱胁迫显著降低了芭蕉芋对N、P、K的吸收和积累,且N、K的降幅大于P,同时也改变了N、P、K在各器官中的分配比例。(3)干旱胁迫条件下,N优先向芭蕉芋叶中分配,而P和K优先向根和叶中分配,同时这些变化存在品种差异,抗旱性强的‘兴芋-2’受影响程度小于抗旱性弱的‘兴芋-1’,但‘兴芋-2’根茎中K的分配率降幅大于‘兴芋-1’。(4)复水后芭蕉芋茎、叶恢复效果优于根茎,P吸收积累的恢复效果优于N和K,但短期复水的补偿效应仍不足以弥补干旱胁迫的伤害。研究发现,干旱胁迫增加了芭蕉芋根、叶中矿质元素的分配比例,增强其渗透调节能力,提高其耐旱性;干旱条件下抗旱性强的芭蕉芋品种‘兴芋-2’的K利用率低于抗旱性弱的品种‘兴芋-1’。  相似文献   

17.
以不同耐旱性的2个大豆品种(高耐旱JP-6、低耐旱JP-16)为研究材料,采用高效液相色谱和实时荧光定量PCR技术,分析不同时间持续干旱胁迫下,大豆叶片和根系中异黄酮的积累变化及关键酶基因的表达情况.结果表明:大豆根部异黄酮含量显著高于叶部,而异黄酮关键酶基因的表达量则在叶片中更高,耐旱品种JP-6根部的异黄酮积累量更大.随着干旱胁迫持续时间的增加,不同耐旱品种的异黄酮合成与积累变化规律存在显著差异:强耐旱品种JP-6的根和叶中,异黄酮积累量均呈现先下降后升高的趋势;而弱耐旱品种JP-16则相反,异黄酮积累量在不同部位中均呈现先上升后降低的趋势;除JP-6叶中C4H4CLIFS2等异黄酮合成上游基因外,其他不同品种、不同部位的关键酶基因表达量均随着干旱胁迫持续时间的增加,呈现先下降后上升的趋势.大豆叶片是异黄酮的主要合成部位,大豆根部也存在少量的异黄酮合成.弱耐旱大豆根部的异黄酮合成和最终积累量均较低,强耐旱品种则较高.根部异黄酮积累量高的大豆品种,其耐旱性更强.  相似文献   

18.
Understanding how growth and development of durum wheat cultivars respond to drought could provide a basis to develop crop improvement programmes in drought-affected tropical and subtropical countries. A greenhouse experiment was conducted to study the responses of five durum wheat cultivars to moisture stress at different developmental phases. Phenology, total dry matter (TDM), relative growth rate (RGR), leaf area ratio (LAR), net assimilation rate (NAR), leaf weight ratio (LWR), specific leaf area (SLA) and shoot:root ratio were compared. Pre-anthesis moisture stress delayed phenological development, whereas post-anthesis moisture stress accelerated it. TDM accumulation rate was different between drought-resistant and susceptible cultivars. RGR and its components changed with age and moisture availability. Drought-resistant cultivars had a high RGR in favourable periods of the growing season and a low RGR during moisture stress. In contrast, the drought-susceptible cultivar (Po) showed an opposite trend. LAR explained the differences in RGR (r=0.788) best, whereas the relationship between NAR and RGR was not significant. Even though both LWR and SLA were important factors determining the potential growth rate, LWR was of major importance to describe cultivar differences in LAR, and consequently in RGR. The drought-resistant cultivars Omrabi-5 and Boohai showed vigorous root development and/or a low shoot:root ratio. It is concluded that biomass allocation is the major factor explaining variation in RGR among the investigated durum wheat cultivars.  相似文献   

19.
The objectives of this study were to determine if the partitioning of recently fixed carbon between starch and water-soluble compounds could be altered by increasing the pod load in the leaf axil, and if the presence of source leaves acropetal to such a node would influence the partitioning of carbon within the subtending leaf. Soybeans (Glycine max L. Merr. cv Hodgson 78) were grown to full-bloom in a controlled environment chamber, and then deflowered at all nodes except the eighth. This treatment resulted in an 83% increase in the number of pods at the eighth node. At 24 days after flowering, one-half of the treated plants were girdled above the untreated node. Forty-two hours later, the eighth trifoliolate was pulsed with 14CO2 and sampled for radiolabeled starch and water-soluble compounds (WSC) at 0.5, 2, 4, 8, 12, and 24th after labeling.

When no girdling was applied above the increased pod load at the eighth node more label was accumulated by the pod walls (+6.9%) and seeds (+6.3%) when compared to the controls. Starch accumulation was not altered in the labeled leaf of the nongirdled plants. When the stem was girdled above the eighth node, significantly less starch was retained in the labeled leaf. Girdling also resulted in an increase in label accumulation by the pod walls (+5.4%) and seeds (+6.6%). These data suggest that the plant will change the distribution patterns of assimilate to supply added sink demand before altering the partitioning of recently fixed carbon in the subtending leaf.

  相似文献   

20.
Crop growth and disease epidemics in sprayed and non-sprayed bean plots, artificially infected with rust (Uromyces appendiculatus) 3 weeks after emergence. were assessed weekly in two cultivars, at two locations for two seasons. Disease intensity was regulated by the application of a fungicide at 5 spray frequencies. Fungicide application influenced leaf area index (LAI) and reduced rust intensity. The fungicide had no significant effect on other diseases and dead leaf area. Fungicide application increased seed yield (SY) by increased numbers of pods per plant (PP). Rust severity was strongly correlated with pustule density but the overall relationships among rust assessment parameters depended on cultivar and location. Seed yield and pods per plant were highly correlated with LAI. The relationships between LAI and seeds per pod or seed weight depended on cultivar and location. Overall rust assessment parameters (rust severity and pustule density) showed close, negative relationships with seed yield. seed weight and pods per plant but not with seeds per pod. The relationships obtained in the partially resistant line 6-R-395 were less definite than those in the susceptible line Mexican 142. The yield parameters seed yield and pods per plant, showed strong positive relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号