首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
High levels of atmospheric nitrogen (N) deposition in Europe and North America were maintained throughout the 1990s, and global N deposition is expected to increase by a factor of 2.5 over the next century. Available soil N limits primary production in many terrestrial ecosystems, and some computer simulation models have predicted that increasing atmospheric N deposition may result in greater terrestrial carbon (C) storage in woody biomass. However, empirical evidence demonstrating widespread increases in woody biomass C storage due to atmospheric N deposition is uncommon. Increased C storage in soil organic matter due to chronic N inputs has rarely been reported and is often not considered in computer simulation models of N deposition effects. Since 1994, we have experimentally simulated chronic N deposition by adding 3 g N m−2 yr−1 to four different northern hardwood forests, which span a 500 km geographic gradient in Michigan. Each year we measured tree growth. In 2004, we also examined soil C content to a depth of 70 cm. When we compared the control treatment with the NO3 deposition treatment after a decade of experimentation, ecosystem C storage had significantly increased in both woody biomass (500 g C m−2) and surface soil (0–10 cm) organic matter (690 g C m−2). The increase in surface soil C storage was apparently driven by altered rates of organic matter decomposition, rather than an increase in detrital inputs to soil. Our results, for study locations stretching across hundreds of kilometers, support the hypothesis that chronic N deposition may increase C storage in northern forests, potentially contributing to a sink for anthropogenic CO2 in the northern Hemisphere.  相似文献   

2.
Plant diversity has a strong impact on a plethora of ecosystem functions and services, especially ecosystem carbon (C) storage. However, the potential context-dependency of biodiversity effects across ecosystem types, environmental conditions and carbon pools remains largely unknown. In this study, we performed a meta-analysis by collecting data from 95 biodiversity-ecosystem functioning (BEF) studies across 60 sites to explore the effects of plant diversity on different C pools, including aboveground and belowground plant biomass, soil microbial biomass C and soil C content across different ecosystem types. The results showed that ecosystem C storage was significantly enhanced by plant diversity, with stronger effects on aboveground biomass than on soil C content. Moreover, the response magnitudes of ecosystem C storage increased with the level of species richness and experimental duration across all ecosystems. The effects of plant diversity were more pronounced in grasslands than in forests. Furthermore, the effects of plant diversity on belowground plant biomass increased with aridity index in grasslands and forests, suggesting that climate change might modulate biodiversity effects, which are stronger under wetter conditions but weaker under more arid conditions. Taken together, these results provide novel insights into the important role of plant diversity in ecosystem C storage across critical C pools, ecosystem types and environmental contexts.  相似文献   

3.
Seasonally dry tropical forests (SDTF) are a widely distributed vegetation type in the tropics, characterized by seasonal rainfall with several months of drought when they are subject to fire. This study is one of the first attempts to quantify above- and belowground biomass (AGB and BGB) and above- and belowground carbon (AGC and BGC) pools to calculate their recovery after fire, using a chronosequence approach (six forests that ranged form 1 to 29 years after fire and mature forest). We quantified AGB and AGC pools of trees, lianas, palms, and seedlings, and BGB and BGC pools (Oi, Oe, Oa soil horizons, and fine roots). Total AGC ranged from 0.05 to nearly 72 Mg C ha−1, BGC from 21.6 to nearly 85 Mg C ha−1, and total ecosystem carbon from 21.7 to 153.5 Mg C ha−1; all these pools increased with forest age. Nearly 50% of the total ecosystem carbon was stored in the Oa horizon of mature forests, and up to 90% was stored in the Oa-horizon of early successional SDTF stands. The soils were shallow with a depth of <20 cm at the study site. To recover values similar to mature forests, BGC and BGB required <19 years with accumulation rates greater than 20 Mg C ha−1 yr−1, while AGB required 80 years with accumulation rates nearly 2.5 Mg C ha−1 yr−1. Total ecosystem biomass and carbon required 70 and 50 years, respectively, to recover values similar to mature forests. When belowground pools are not included in the calculation of total ecosystem biomass or carbon recovery, we estimated an overestimation of 10 and 30 years, respectively.  相似文献   

4.
Using biomass for charcoal production in sub-Saharan Africa (SSA) may change carbon stock dynamics and lead to irreversible changes in the carbon balance, yet we have little understanding of whether these dynamics vary by biome in this region. Currently, charcoal production contributes up to 7% of yearly deforestation in tropical regions, with carbon emissions corresponding to 71.2 million tonnes of CO2 and 1.3 million tonnes of CH4. With a projected increased demand for charcoal in the coming decades, even low harvest rates may throw the carbon budget off-balance due to legacy effects. Here, we parameterized the dynamic global vegetation model LPJ-GUESS for six SSA biomes and examined the effect of charcoal production on net ecosystem exchange (NEE), carbon stock sizes and recovery time for tropical rain forest, montane forest, moist savanna, dry savanna, temperate grassland and semi-desert. Under historical charcoal regimes, tropical rain forests and montane forests transitioned from net carbon sinks to net sources, that is, mean cumulative NEE from −3.56 ± 2.59 kg C/m2 to 2.46 ± 3.43 kg C/m2 and −2.73 ± 2.80 kg C/m2 to 1.87 ± 4.94 kg C/m2 respectively. Varying charcoal production intensities resulted in tropical rain forests showing at least two times higher carbon losses than the other biomes. Biome recovery time varied by carbon stock, with tropical and montane forests taking about 10 times longer than the fast recovery observed for semi-desert and temperate grasslands. Our findings show that high biomass biomes are disproportionately affected by biomass harvesting for charcoal, and even low harvesting rates strongly affect vegetation and litter carbon and their contribution to the carbon budget. Therefore, the prolonged biome recoveries imply that current charcoal production practices in SSA are not sustainable, especially in tropical rain forests and montane forests, where we observe longer recovery for vegetation and litter carbon stocks.  相似文献   

5.
利用最新的森林资源二类调查分布数据和野外样地调查资料,采用InVEST模型和空间统计分析等方法,研究了海南岛森林生态系统碳储量及其空间分布特征。结果表明:海南岛森林生态系统总碳储量为338.15 TgC,其中地上生物、地下生物、凋落物和土壤的碳储量分别为85.12、18.73、2.90 TgC和231.40 TgC,所占比重依次为25.17%、5.54%、0.86%和68.43%。海南岛森林生态系统平均碳密度为147.66 MgC/hm2,其中地上生物、地下生物、凋落物和土壤碳密度分别为37.17、8.18、1.27 MgC/hm2和101.04 MgC/hm2。不同市县森林生态系统碳储量分布在8.55—35.40 TgC的范围内,最高的是琼中县。不同植被类型中,橡胶林的碳储量最高,占全岛森林生态系统总碳储量的27.72%;热带山地雨林的碳密度最高,达到249.64 MgC/hm2。在海拔梯度上,森林生态系统碳密度呈现先增加后减少的变化特征,在海拔600—1300 m范围内的碳密度最高,碳密度为20...  相似文献   

6.
Carbon density and distribution of six Chinese temperate forests   总被引:2,自引:0,他引:2  
Quantifying forest carbon (C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem mod-eling. Forest inventory and allometric approaches were used to measure C density and allocation in six representative temper-ate forests of similar stand age (42–59 years old) and growing under the same climate in northeastern China. The forests were an aspen-birch forest, a hardwood forest, a Korean pine plantation, a Dahurian larch plantation, a mixed deciduous forest, and a Mongolian oak forest. There were no significant differences in the C densities of ecosystem components (except for detritus) although the six forests had varying vegetation compositions and site conditions. However, the differences were significant when the C pools were normalized against stand basal area. The total ecosystem C density varied from 186.9 tC hm-2 to 349.2 tC hm-2 across the forests. The C densities of vegetation, detritus, and soil ranged from 86.3–122.7 tC hm-2, 6.5–10.5 tC hm-2, and 93.7–220.1 tC hm-2, respectively, which accounted for 39.7%±7.1% (mean±SD), 3.3%±1.1%, and 57.0%±7.9% of the total C densities, respectively. The overstory C pool accounted for > 99% of the total vegetation C pool. The foliage bio-mass, small root (diameter < 5mm) biomass, root-shoot ratio, and small root to foliage biomass ratio varied from 2.08–4.72 tC hm-2, 0.95–3.24 tC hm-2, 22.0%–28.3%, and 34.5%–122.2%, respectively. The Korean pine plantation had the lowest foliage production efficiency (total biomass/foliage biomass: 22.6 g g-1) among the six forests, while the Dahurian larch plantation had the highest small root production efficiency (total biomass/small root biomass: 124.7 g g-1). The small root C density de-creased with soil depth for all forests except for the Mongolian oak forest, in which the small roots tended to be vertically dis-tributed downwards. The C density of coarse woody debris was significantly less in the two plantations than in the four natu-rally regenerated forests. The variability of C allocation patterns in a specific forest is jointly influenced by vegetation type, management history, and local water and nutrient availability. The study provides important data for developing and validating C cycling models for temperate forests.  相似文献   

7.
Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees ≥ 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

8.
Wet tropical forests play a critical role in global ecosystem carbon (C) cycle, but C allocation and the response of different C pools to nutrient addition in these forests remain poorly understood. We measured soil organic carbon (SOC), litterfall, root biomass, microbial biomass and soil physical and chemical properties in a wet tropical forest from May 1996 to July 1997 following a 7‐year continuous fertilization. We found that although there was no significant difference in total SOC in the top 0–10 cm of the soils between the fertilization plots (5.42±0.18 kg m?2) and the control plots (5.27±0.22 kg m?2), the proportion of the heavy‐fraction organic C in the total SOC was significantly higher in the fertilized plots (59%) than in the control plots (46%) (P<0.05). The annual decomposition rate of fertilized leaf litter was 13% higher than that of the control leaf litter. We also found that fertilization significantly increased microbial biomass (fungi+bacteria) with 952±48 mg kg?1soil in the fertilized plots and 755±37 mg kg?1soil in the control plots. Our results suggest that fertilization in tropical forests may enhance long‐term C sequestration in the soils of tropical wet forests.  相似文献   

9.
Our ability to model global carbon fluxes depends on understanding how terrestrial carbon stocks respond to varying environmental conditions. Tropical forests contain the bulk of the biosphere's carbon. However, there is a lack of consensus as to how gradients in environmental conditions affect tropical forest carbon. Papua New Guinea (PNG) lies within one of the largest areas of contiguous tropical forest and is characterized by environmental gradients driven by altitude; yet, the region has been grossly understudied. Here, we present the first field assessment of aboveground biomass (AGB) across three main forest types of PNG using 193 plots stratified across 3,100‐m elevation gradient. Unexpectedly, AGB had no direct relationship to rainfall, temperature, soil, or topography. Instead, natural disturbances explained most variation in AGB. While large trees (diameter at breast height > 50 cm) drove altitudinal patterns of AGB, resulting in a major peak in AGB (2,200–3,100 m) and some of the most carbon‐rich forests at these altitudes anywhere. Large trees were correlated to a set of climatic variables following a hump‐shaped curve. The set of “optimal” climatic conditions found in montane cloud forests is similar to that of maritime temperate areas that harbor the largest trees in the world: high ratio of precipitation to evapotranspiration (2.8), moderate mean annual temperature (13.7°C), and low intra‐annual temperature range (7.5°C). At extreme altitudes (2,800–3,100 m), where tree diversity elsewhere is usually low and large trees are generally rare or absent, specimens from 18 families had girths >70 cm diameter and maximum heights 20–41 m. These findings indicate that simple AGB‐climate‐edaphic models may not be suitable for estimating carbon storage in forests where optimal climate niches exist. Our study, conducted in a very remote area, suggests that tropical montane forests may contain greater AGB than previously thought and the importance of securing their future under a changing climate is therefore enhanced.  相似文献   

10.
Amazonian forests continuously accumulate carbon (C) in biomass and in soil, representing a carbon sink of 0.42–0.65 GtC yr?1. In recent decades, more than 15% of Amazonian forests have been converted into pastures, resulting in net C emissions (~200 tC ha?1) due to biomass burning and litter mineralization in the first years after deforestation. However, little is known about the capacity of tropical pastures to restore a C sink. Our study shows in French Amazonia that the C storage observed in native forest can be partly restored in old (≥24 year) tropical pastures managed with a low stocking rate (±1 LSU ha?1) and without the use of fire since their establishment. A unique combination of a large chronosequence study and eddy covariance measurements showed that pastures stored between ?1.27 ± 0.37 and ?5.31 ± 2.08 tC ha?1 yr?1 while the nearby native forest stored ?3.31 ± 0.44 tC ha?1 yr?1. This carbon is mainly sequestered in the humus of deep soil layers (20–100 cm), whereas no C storage was observed in the 0‐ to 20‐cm layer. C storage in C4 tropical pasture is associated with the installation and development of C3 species, which increase either the input of N to the ecosystem or the C:N ratio of soil organic matter. Efforts to curb deforestation remain an obvious priority to preserve forest C stocks and biodiversity. However, our results show that if sustainable management is applied in tropical pastures coming from deforestation (avoiding fires and overgrazing, using a grazing rotation plan and a mixture of C3 and C4 species), they can ensure a continuous C storage, thereby adding to the current C sink of Amazonian forests.  相似文献   

11.
热带森林作为全球最为重要的陆地生态系统之一,在当前气候变化背景下,其碳循环动态对于全球碳平衡状况及碳收支估算具有重要的影响作用。本研究利用尖峰岭热带山地雨林长期样地(P8401、P8402、P8901)自1984~2013年的清查数据,分析生物量长期动态变化,并结合降水等环境因子,试图探求尖峰岭热带山地雨林固碳能力的影响机理。结果表明:海南岛尖峰岭热带山地雨林仍然具有一定的碳汇能力,碳汇速率平均为0.71±0.22 mg·C·hm-2·a-1,与世界其他地区热带森林碳汇能力相当,但其碳汇能力却存在逐渐减少的趋势。碳汇能力的减少主要源于干旱和台风暴雨导致死亡生物量的显著增加,但不同样地间存在明显的差异,说明极端气候事件对热带森林固碳能力的影响同时也受局地环境条件和森林自身状况的影响,急需开展更多点上热带森林固碳能力对气候变化的影响研究,以减少热带森林在全球碳循环中估算中的不确定性。  相似文献   

12.
陆地生态系统碳密度格局研究概述   总被引:25,自引:0,他引:25       下载免费PDF全文
 准确了解陆地生态系统中碳密度的时空格局及其影响因子和作用机制,对于估算和预测不同类型生态系统中的植被和土壤的碳存储能力、判定碳汇、制定缓解全球变化的合理政策措施,具有重要意义。该文综述了现有研究中发现的世界陆地生态系统碳密度空间分布的地带性规律及中国陆地生态系统碳密度格局的独特特点。在全球尺度上,植被碳密度分布与植物生物量格局基本一致,除北方森林外其余大部分随纬度升高而减小;土壤碳密度则随纬度升高而增大。陆地生态系统中北方森林和热带森林的总体碳密度最高,不同的是,前者的碳主要集中在土壤中,而后者则集中在植被中。但在区域尺度上,由于气候、地形及人类活动影响,这种规律性可能会发生变化甚至不起作用。水热条件、土壤养分、生物多样性、气候和大气CO2浓度的变化以及土地利用与覆盖变化等是碳密度空间格局形成和发生变化的驱动因子。在某一特定区域,它们通过直接或间接提高植被净初级生产力,抑制呼吸和分解作用来增加陆地生态系统碳密度。综合分析特定时空条件下各因子对碳存储量的影响是解释碳密度分布现状,预测碳密度格局变化的关键,但目前的研究对各项驱动因子的作用机制、影响强度及多个因子间的相互作用仍不是很清楚,需要加强该方面的研究力度。碳密度研究中的数据获取、机理分析和过程模拟等方面仍存在很大的不确定性,因此有必要建立规范统一的碳密度测量估算系统和更为精准有效的估算模型,进行多尺度、多精度水平的综合研究。  相似文献   

13.
Mean annual temperature (MAT) is an influential climate factor affecting the bioavailability of growth‐limiting nutrients nitrogen (N) and phosphorus (P). In tropical montane wet forests, warmer MAT drives higher N bioavailability, while patterns of P availability are inconsistent across MAT. Two important nutrient acquisition strategies, fine root proliferation into bulk soil and root association with arbuscular mycorrhizal fungi, are dependent on C availability to the plant via primary production. The case study presented here tests whether variation in bulk soil N bioavailability across a tropical montane wet forest elevation gradient (5.2°C MAT range) influences (a) morphology fine root proliferation into soil patches with elevated N, P, and N+P relative to background soil and (b) arbuscular mycorrhizal fungal (AMF) colonization of fine roots in patches. We created a fully factorial fertilized root ingrowth core design (N, P, N+P, unfertilized control) representing soil patches with elevated N and P bioavailability relative to background bulk soil. Our results show that percent AMF colonization of roots increased with MAT (r2 = .19, p = .004), but did not respond to fertilization treatments. Fine root length (FRL), a proxy for root foraging, increased with MAT in N+P‐fertilized patches only (p = .02), while other fine root morphological parameters did not respond to the gradient or fertilized patches. We conclude that in N‐rich, fine root elongation into areas with elevated N and P declines while AMF abundance increases with MAT. These results indicate a tradeoff between P acquisition strategies occurring with changing N bioavailability, which may be influenced by higher C availability with warmer MAT.  相似文献   

14.
Lightning is a major agent of disturbance, but its ecological effects in the tropics are unquantified. Here we used ground and satellite sensors to quantify the geography of lightning strikes in terrestrial tropical ecosystems, and to evaluate whether spatial variation in lightning frequency is associated with variation in tropical forest structure and dynamics. Between 2013 and 2018, tropical terrestrial ecosystems received an average of 100.4 million lightning strikes per year, and the frequency of strikes was spatially autocorrelated at local‐to‐continental scales. Lightning strikes were more frequent in forests, savannas, and urban areas than in grasslands, shrublands, and croplands. Higher lightning frequency was positively associated with woody biomass turnover and negatively associated with aboveground biomass and the density of large trees (trees/ha) in forests across Africa, Asia, and the Americas. Extrapolating from the only tropical forest study that comprehensively assessed tree damage and mortality from lightning strikes, we estimate that lightning directly damages c. 832 million trees in tropical forests annually, of which c. 194 million die. The similarly high lightning frequency in tropical savannas suggests that lightning also influences savanna tree mortality rates and ecosystem processes. These patterns indicate that lightning‐caused disturbance plays a major and largely unappreciated role in pantropical ecosystem dynamics and global carbon cycling.  相似文献   

15.
Tropical forests play a critical role in the global carbon (C) cycle, storing ~45% of terrestrial C and constituting the largest component of the terrestrial C sink. Despite their central importance to the global C cycle, their ecosystem‐level C cycles are not as well‐characterized as those of extra‐tropical forests, and knowledge gaps hamper efforts to quantify C budgets across the tropics and to model tropical forest‐climate interactions. To advance understanding of C dynamics of pantropical forests, we compiled a new database, the Tropical Forest C database (TropForC‐db), which contains data on ground‐based measurements of ecosystem‐level C stocks and annual fluxes along with disturbance history. This database currently contains 3568 records from 845 plots in 178 geographically distinct areas, making it the largest and most comprehensive database of its type. Using TropForC‐db, we characterized C stocks and fluxes for young, intermediate‐aged, and mature forests. Relative to existing C budgets of extra‐tropical forests, mature tropical broadleaf evergreen forests had substantially higher gross primary productivity (GPP) and ecosystem respiration (Reco), their autotropic respiration (Ra) consumed a larger proportion (~67%) of GPP, and their woody stem growth (ANPPstem) represented a smaller proportion of net primary productivity (NPP, ~32%) or GPP (~9%). In regrowth stands, aboveground biomass increased rapidly during the first 20 years following stand‐clearing disturbance, with slower accumulation following agriculture and in deciduous forests, and continued to accumulate at a slower pace in forests aged 20–100 years. Most other C stocks likewise increased with stand age, while potential to describe age trends in C fluxes was generally data‐limited. We expect that TropForC‐db will prove useful for model evaluation and for quantifying the contribution of forests to the global C cycle. The database version associated with this publication is archived in Dryad (DOI: 10.5061/dryad.t516f ) and a dynamic version is maintained at https://github.com/forc-db .  相似文献   

16.
《植物生态学报》2016,40(4):327
Aims
Forest carbon storage in Nei Mongol plays a significant role in national terrestrial carbon budget due to its large area in China. Our objectives were to estimate the carbon storage in the forest ecosystems in Nei Mongol and to quantify its spatial pattern.
Methods
Field survey and sampling were conducted at 137 sites that distributed evenly across the forest types in the study region. At each site, the ecosystem carbon density was estimated thorough sampling and measuring different pools of soil (0-100 cm) and vegetation, including biomass of tree, grass, shrub, and litter. Regional carbon storage was calculated with the estimated carbon density for each forest type.
Important findings
Carbon storage of vegetation layer in forests in Nei Mongol was 787.8 Tg C, with the biomass of tree, litter, herbaceous and shrub accounting for 93.5%, 3.0%, 2.7% and 0.8%, respectively. Carbon density of vegetation layer was 40.4 t·hm-2, with 35.6 t·hm-2 in trees, 2.9 t·hm-2 in litter, 1.2 t·hm-2 in herbaceous and 0.6 t·hm-2 in shrubs. In comparison, carbon storage of soil layer in forests in Nei Mongol was 2449.6 Tg C, with 79.8% distributed in the first 30 cm. Carbon density of soil layer was 144.4 t·hm-2. Carbon storage of forest ecosystem in Nei Mongol was 3237.4 Tg C, with vegetation and soil accounting for 24.3% and 75.7%, respectively. Carbon density of forest ecosystems in Nei Mongol was 184.5 t·hm-2. Carbon density of soil layer was positively correlated with that of vegetation layer. Spatially, both carbon storage and carbon density were higher in the eastern area, where the climate is more humid. Forest reserves and artificial afforestations can significantly improve the capacity of regional carbon sink.  相似文献   

17.
内蒙古森林生态系统碳储量及其空间分布   总被引:2,自引:0,他引:2       下载免费PDF全文
内蒙古森林面积居全国第一位, 林木蓄积量居第五位, 准确地估算该区域森林碳储量对于评估中国森林碳储量以及制定森林资源管理措施均具有重要意义。该研究基于内蒙古森林资源野外样方调查和室内分析, 评估了内蒙古森林生态系统的固碳现状, 估算了内蒙古森林生态系统不同林型和不同碳库(乔木、灌木、草本、凋落物和土壤碳库)的碳密度大小, 揭示了其空间分布特征。在此基础上估算了内蒙古森林碳储量大小及空间格局。结果表明: 1)内蒙古森林植被层碳储量为787.8 Tg C, 乔木层、凋落物层、草本层和灌木层分别占植被层总碳储量的93.5%、3.0%、2.7%和0.8%。内蒙古森林植被层平均碳密度为40.4 t·hm-2, 其中, 乔木层、凋落物层、草本层和灌木层的碳密度分别为35.6 t·hm-2、2.9 t·hm-2、1.2 t·hm-2和0.6 t·hm-2。2)内蒙古森林土壤层(0-100 cm)碳储量为2449.6 Tg C, 其中0-30 cm的土壤碳储量最高, 占总碳储量的79.8%。0-10 cm、10-20 cm和20-30 cm的土壤碳储量分别占0-30 cm土壤碳储量的38.8%、34.1%和27.1%。内蒙古森林土壤平均碳密度为144.4 t·hm-2。黑桦(Betula davurica)林土壤碳密度最高, 云杉(Picea asperata)林最小。土壤碳密度随土壤深度的增加而降低。3)内蒙古森林生态系统碳储量为3237.4 Tg C, 植被层和土壤层碳储量分别占森林生态系统碳储量的24.3%和75.7%。落叶松(Larix gmelinii)林总碳储量最高, 其次为白桦(Betula platyphylla)林、夏栎(Quercus robur)林、黑桦林、榆树(Ulmus pumila)疏林和山杨(Populus davidiana)林。内蒙古森林生态系统平均碳密度为184.5 t·hm-2。土壤碳密度与植被碳密度呈显著正相关关系。4)内蒙古森林生态系统碳储量和碳密度的空间分布总体上为东部地区高、西部地区低的趋势。在降水量充沛的东部地区和降水偏少的中西部地区, 有针对性地开展森林保护区建设和人工造林, 可显著提升区域的碳汇能力。  相似文献   

18.
《Ecological Indicators》2008,8(5):686-690
Coarse and fine woody materials (CWD and FWD) are substantial forest ecosystem carbon (C) stocks. There is a lack of understanding how these detritus C stocks may respond to climate change. This study used a nation-wide inventory of CWD and FWD in the United States to examine how these C stocks vary by latitude. Results indicate that the highest CWD and FWD C stocks are found in forests with the highest latitude, while conversely the lowest C stocks are found in the most southerly forests. CWD and FWD respond differently to changes in latitude with CWD C stocks decreasing more rapidly as latitude decreased. If latitude can be broadly assumed to indicate temperature and potential rate of detrital decay, it may be postulated that CWD C stocks may be at the highest risk of becoming a net C source if temperatures increase. The latitude at which CWD and FWD C stocks roughly equal each other (equilibrium point) may serve as an indicator of changes in C stock equilibrium under a global warming scenario. Given the complex relationships between detrital C stocks, biomass production/decay, and climatic variables, further research is suggested to refine this study's indicator.  相似文献   

19.
Global climate change is affecting carbon cycling by driving changes in primary productivity and rates of carbon fixation, release and storage within Earth's vegetated systems. There is, however, limited understanding of how carbon flow between donor and recipient habitats will respond to climatic changes. Macroalgal‐dominated habitats, such as kelp forests, are gaining recognition as important carbon donors within coastal carbon cycles, yet rates of carbon assimilation and transfer through these habitats are poorly resolved. Here, we investigated the likely impacts of ocean warming on coastal carbon cycling by quantifying rates of carbon assimilation and transfer in Laminaria hyperborea kelp forests—one of the most extensive coastal vegetated habitat types in the NE Atlantic—along a latitudinal temperature gradient. Kelp forests within warm climatic regimes assimilated, on average, more than three times less carbon and donated less than half the amount of particulate carbon compared to those from cold regimes. These patterns were not related to variability in other environmental parameters. Across their wider geographical distribution, plants exhibited reduced sizes toward their warm‐water equatorward range edge, further suggesting that carbon flow is reduced under warmer climates. Overall, we estimated that Laminaria hyperborea forests stored ~11.49 Tg C in living biomass and released particulate carbon at a rate of ~5.71 Tg C year?1. This estimated flow of carbon was markedly higher than reported values for most other marine and terrestrial vegetated habitat types in Europe. Together, our observations suggest that continued warming will diminish the amount of carbon that is assimilated and transported through temperate kelp forests in NE Atlantic, with potential consequences for the coastal carbon cycle. Our findings underline the need to consider climate‐driven changes in the capacity of ecosystems to fix and donate carbon when assessing the impacts of climate change on carbon cycling.  相似文献   

20.
Climate warming is predicted to considerably affect variations in soil organic carbon (SOC), especially in alpine ecosystems. Microbial necromass carbon (MNC) is an important contributor to stable soil organic carbon pools. However, accumulation and persistence of soil MNC across a gradient of warming are still poorly understood. An 8-year field experiment with four levels of warming was conducted in a Tibetan meadow. We found that low-level (+0–1.5°C) warming mostly enhanced bacterial necromass carbon (BNC), fungal necromass carbon (FNC), and total MNC compared with control treatment across soil layers, while no significant effect was caused between high-level (+1.5–2.5°C) treatments and control treatments. The contributions of both MNC and BNC to soil organic carbon were not significantly affected by warming treatments across depths. Structural equation modeling analysis demonstrated that the effect of plant root traits on MNC persistence strengthened with warming intensity, while the influence of microbial community characteristics waned along strengthened warming. Overall, our study provides novel evidence that the major determinants of MNC production and stabilization may vary with warming magnitude in alpine meadows. This finding is critical for updating our knowledge on soil carbon storage in response to climate warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号