首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate warming is likely inducing carbon loss from soils of northern ecosystems, but little evidence comes from large-scale observations. Here we used data from a repeated soil survey and remote sensing vegetation index to explore changes in soil organic carbon (SOC) stock on the Tibetan Plateau during the past two decades. Our results showed that SOC stock in the top 30 cm depth in alpine grasslands on the plateau amounted to 4.4 Pg C (1 Pg=1015 g), with an overall average of 3.9 kg C m−2. SOC changes during 1980s–2004 were estimated at −0.6 g C m−2 yr−1, ranging from −36.5 to 35.8 g C m−2 yr−1 at 95% confidence, indicating that SOC stock in the Tibetan alpine grasslands remained relatively stable over the sampling periods. Our findings are nonconsistent with previous reports of loss of soil C in grassland ecosystems due to the accelerated decomposition with warming. In the case of the alpine grasslands on the Tibetan Plateau studied here, we speculate that increased rates of decomposition as soils warmed during the last two decades may have been compensated by increased soil C inputs due to increased grass productivity. These results suggest that soil C stock in terrestrial ecosystems may respond differently to climate change depending on ecosystem type, regional climate pattern, and intensity of human disturbance.  相似文献   

2.
Holocene carbon burial by lakes in SW Greenland   总被引:3,自引:0,他引:3  
The role of the Arctic in future global change processes is predicted to be important because of the large carbon (C) stocks contained in frozen soils and peatlands. Lakes are an important component of arctic landscapes although their role in storing C is not well prescribed. The area around Kangerlussuaq, SW Greenland (66–68°N, 49–54°W) has extremely high lake density, with ∼20 000 lakes that cover about 14% of the land area. C accumulation rates and standing stock (kg C m−2), representing late- to mid-Holocene C burial, were calculated from AMS 14C-dated sediment cores from 11 lakes. Lake ages range from ∼10 000 cal yr  bp to ∼5400 cal yr  bp , and reflect the withdrawal of the ice sheet from west to east. Total standing stock of C accumulated in the studied lakes for the last ∼8000 years ranged from 28 to 71 kg C m−2, (mean: ∼42 kg C m−2). These standing stock determinations yield organic C accumulation rates of 3.5–11.5 g C m−2 yr−1 (mean: ∼6 g C m−2 yr−1) for the last 4500 years. Mean C accumulation rates are not different for the periods 8–4.5 and 4.5–0 ka, despite cooling trends associated with the neoglacial period after 4.5 ka. We used the mean C standing stock to estimate the total C pool in small lakes (<100 ha) of the Kangerlussuaq region to be ∼4.9 × 1013 g C. This C stock is about half of that estimated for the soil pool in this region (but in 5% of the land area) and indicates the importance of incorporating lakes into models of regional C balance at high latitudes.  相似文献   

3.
To evaluate the effects on CO2 exchange of clearcutting a mixed forest and replacing it with a plantation, 4.5 years of continuous eddy covariance measurements of CO2 fluxes and soil respiration measurements were conducted in a conifer-broadleaf mixed forest in Hokkaido, Japan. The mixed forest was a weak carbon sink (net ecosystem exchange, −44 g C m−2 yr−1), and it became a large carbon source (569 g C m−2 yr−1) after clearcutting. However, the large emission in the harvest year rapidly decreased in the following 2 years (495 and 153 g C m−2 yr−1, respectively) as the gross primary production (GPP) increased, while the total ecosystem respiration (RE) remained relatively stable. The rapid increase in GPP was attributed to an increase in biomass and photosynthetic activity of Sasa dwarf bamboo, an understory species. Soil respiration increased in the 3 years following clearcutting, in the first year mainly owing to the change in the gap ratio of the forest, and in the following years because of increased root respiration by the bamboo. The ratio of soil respiration to RE increased from 44% in the forest to nearly 100% after clearcutting, and aboveground parts of the vegetation contributed little to the RE although the respiration chamber measurements showed heterogeneous soil condition after clearcutting.  相似文献   

4.
In most studies concerning the carbon (C) exchange between soil and atmosphere only the topsoil (0–0.3 m) is taken into account. However, it has been shown that important amounts of stable soil organic carbon (SOC) are also stored at greater depth. Here, we developed a quantitative model to estimate the evolution of the distribution of SOC with depth between 1960 (database 'Aardewerk') and 2006 in northern Belgium. This temporal analysis was conducted under different land use, texture and drainage conditions. The results indicate that intensified land management practices seriously affect the SOC status of the soil. The increase in plough depth and a change in crop rotation result in a significant decrease of C near the surface for dry silt loam cropland soils, (i.e. 1.02 ± 0.23 kg C m−2 in the top 0.3 m between 1960 and 2006). In wet to extremely wet grasslands, topsoil SOC decreased significantly, indicating a negative influence of intensive soil drainage on SOC stock. This resulted in a decline of SOC between 1960 and 2006 in the top 1 m, ranging from 3.99 ± 2.57 kg C m−2 in extremely wet silt loam soils to 2.04 ± 2.08 kg C m−2 in wet sandy soils. A slight increase of SOC stock is observed under dry to moderately wet grasslands at greater depths corresponding to increased livestock densities in the region. The increase of SOC in the top 1 m under grassland ranges from 0.65 ± 1.39 kg C m−2 in well drained silt loam soils to 2.59 ± 6.49 kg C m−2 in moderately drained silt loam soils over entire period.  相似文献   

5.
In a high Arctic polar semidesert ecosystem (ambient N deposition c. 0.1 g N m−2 a−1), the effects of N enrichment on the diversity of soil microfungi and on N content and availability in organic and mineral soils were determined. Three N (total: 0, 0.5, 5 g N m−2 a−1) and two P (total 0, 1 g m−2 a−1) treatments were applied, since P may limit response to N in this ecosystem. Organic and mineral soils were sampled in June and August in the second year of treatment for microfungi, pH, moisture content, and total N and P. In the third year, soils were resampled for extractable and total N and P. The fungi isolated were typical of high pH soils in the High Arctic and Antarctic. The species richness and diversity of soil microfungi were very low, with ranges as follows: Shannon diversity, 0.56–1.5; richness, 2–6; evenness, 0.79–0.9. There was no significant effect of treatment on the frequency of occurrence of different taxa of soil microfungi. Time of sampling also had no significant impact on fungal assemblages, although different, more diverse communities were isolated from organic, rather than mineral, soils. Nitrate-N in organic soil decreased significantly when P was added alone, but not when P and N were added together. Addition of 0.5 g N m−2 a−1, a rate deposition already occurring in Greenland and Iceland, appeared to exceed N demand even when P limitation was relieved. There was no apparent soil acidification as a result of the N treatments.  相似文献   

6.
We present data on the accumulation of carbon and nitrogen into an open oceanic ombrotrophic bog, SW Sweden, with high levels of anthropogenic nitrogen deposition. The aim was to investigate if this peatland currently acts as a sink for atmospheric carbon. Peat cores were sampled from the top peat layer in five different vegetation types. Small pines were used to date the cores. The cores bulk density and carbon and nitrogen content were determined. A vegetation-classified satellite image was used to estimate the areal extent of the vegetation types and to scale up these results to bog level. The rate of current carbon input into the upper oxic acrotelm was 290 g m−2 yr−1, and there were no significant differences in accumulation rates among the vegetation types. This organic matter input to the acrotelm was almost completely decomposed before it was deposited for storage in the deeper peat layers (the catotelm) and only a small fraction (≪1%) or 0.012 g m−2 yr−1 of the carbon would be left, assuming a residence time of 100 years in the acrotelm. Nitrogen accumulation rates differed between the vegetation classes, and the average input via primary production varied from 5.33 to 16.8 g m−2 yr−1. Current nitrogen input rates into the catotelm are much lower, 0–0.059 g m−2 yr−1, with the highest accumulation rates in lawn-dominated communities. We suggest that one of the main causes of the low carbon input rates is the high level of nitrogen deposition, which enhances decomposition and changes the vegetation from peat-forming Sphagnum -dominance to dominance by dwarf shrubs and graminoids.  相似文献   

7.
Although there are many indications that N cycling in grassland ecosystems changes under elevated atmospheric CO2 partial pressure (pCO2), most information has been obtained in short‐term studies. Thus, N budgets were established for four years under ambient and 60 Pa pCO2 at two levels of N fertilization in two contrasting model ecosystems: Trifolium repens L. (white clover) and Lolium perenne L. (perennial ryegrass) were planted in soil in boxes in the Swiss FACE experiment. While T. repens showed an 80% increase in harvested biomass with no change in biomass allocation under elevated atmospheric pCO2 compared to ambient conditions, L. perenne showed an increase only in the biomass of the roots. During the four years of the experiment, the systems gained N both from N retained in the soil and from stubble/stolon and roots left after the final harvest; in total between 11 and 86 gN m−2. Nitrogen retention in the soil was between 4 and 64 g m2. The L. perenne system gained the most N and retained the most N in the soil at high N fertilization and elevated atmospheric pCO2. The input of new C and N into the soil correlated well in the L. perenne systems but not in the T. repens systems. Elevated atmospheric pCO2 led neither to an increase in N retention in the soil nor did it reduce the loss of N from the soil. In the L. perenne systems, N fertilization played the main role in both the retention of N and the sequestration of C, while in the T. repens systems symbiotic N2 fixation may have controlled N retention in the soil.  相似文献   

8.
Ecosystem flux measurements using the eddy covariance (EC) technique were undertaken in 4 subsequent years during summer for a total of 562 days in an arctic wet tundra ecosystem, located near Cherskii, Far-Eastern Federal District, Russia. Methane (CH4) emissions were measured using permanent chambers. The experimental field is characterized by late thawing of permafrost soils in June and periodic spring floods. A stagnant water table below the grass canopy is fed by melting of the active layer of permafrost and by flood water. Following 3 years of EC measurements, the site was drained by building a 3 m wide drainage channel surrounding the EC tower to examine possible future effects of global change on the tundra tussock ecosystem. Cumulative summertime net carbon fluxes before experimental alteration were estimated to be about +15 g C m−2 (i.e. an ecosystem C loss) and +8 g C m−2 after draining the study site. When taking CH4 as another important greenhouse gas into account and considering the global warming potential (GWP) of CH4 vs. CO2, the ecosystem had a positive GWP during all summers. However CH4 emissions after drainage decreased significantly and therefore the carbon related greenhouse gas flux was much smaller than beforehand (475 ± 253 g C-CO2-e m−2 before drainage in 2003 vs. 23 ± 26 g C-CO2-e m−2 after drainage in 2005).  相似文献   

9.
SUMMARY 1. Population dynamics and production of Jesogammarus annandalei , an endemic amphipod in Lake Biwa, were examined from April 1997 to June 1998. The life cycle of this species was 1 year with the new generation beginning in early autumn. They preferred low temperature (<12 °C) and their spatial distribution varied seasonally and accordingly.
2. In deep water, the abundance of J. annandalei ranged from 200 to 63 000 m−2 and decreased towards summer and the biomass (0.01∼3.6 g C m−2) was on average comparable that of zooplankton. The density was much higher than that recorded by a study conducted 35 years ago.
3. Individual growth rate of this amphipod was high in winter and spring but decreased in summer. Annual production of J. annandalei (6.2 g C m−2 year−1) was only 2% of primary production but was at the higher end of the range reported for amphipods in oligo- and mesotrophic lakes.
4. These results are consistent with the view that Lake Biwa is becoming more eutrophic, with a consequent decrease in the abundance of predatory fish in the profundal zone.  相似文献   

10.
Carbon stored in human settlements: the conterminous United States   总被引:6,自引:0,他引:6  
Urban areas are home to more than half of the world's people, responsible for >70% of anthropogenic release of carbon dioxide and 76% of wood used for industrial purposes. By 2050 the proportion of the urban population is expected to increase to 70% worldwide. Despite fast rates of change and potential value for mitigation of carbon dioxide emissions, the organic carbon storage in human settlements has not been well quantified. Here, we show that human settlements can store as much carbon per unit area (23–42 kg C m−2 urban areas and 7–16 kg C m−2exurban areas) as tropical forests, which have the highest carbon density of natural ecosystems (4–25 kg C m−2). By the year 2000 carbon storage attributed to human settlements of the conterminous United States was 18 Pg of carbon or 10% of its total land carbon storage. Sixty-four percent of this carbon was attributed to soil, 20% to vegetation, 11% to landfills, and 5% to buildings. To offset rising urban emissions of carbon, regional and national governments should consider how to protect or even to increase carbon storage of human-dominated landscapes. Rigorous studies addressing carbon budgets of human settlements and vulnerability of their carbon storage are needed.  相似文献   

11.
Mycorrhizal fungi can contribute to soil carbon sequestration by immobilizing carbon in living fungal tissues and by producing recalcitrant compounds that remain in the soil following fungal senescence. We hypothesized that nitrogen (N) fertilization would decrease these carbon stocks, because plants should reduce investment of carbon in mycorrhizal fungi when N availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in the top 10 cm of soil in control and N-fertilized plots within three Alaskan boreal ecosystems that represented different recovery stages following severe fire. Pools of mycorrhizal carbon included root-associated AM and ECM structures; soil-associated AM hyphae; and glomalin, a glycoprotein produced by AM fungi. Total mycorrhizal carbon pools decreased by approximately 50 g C m−2 in the youngest site under N fertilization, and this reduction was driven mostly by glomalin. Total mycorrhizal carbon did not change significantly in the other sites. Root-associated AM structures were more abundant under N fertilization across all sites, and root-associated ECM structures increased marginally significantly. We found no significant N effects on AM hyphae. Carbon sequestered within living mycorrhizal structures (0.051–0.21 g m−2) was modest compared with that of glomalin (33–203 g m−2). We conclude that our hypothesis was only supported in relation to glomalin stocks within one of the three study sites. As N effects on glomalin were inconsistent among sites, an understanding of the mechanisms underlying this variation would improve our ability to predict ecosystem feedbacks to global change.  相似文献   

12.
In tropical lowlands, peatlands are commonly reported from Southeast Asia, and especially Indonesian tropical peatlands are known as considerable C sinks and sources. In contrast, Amazonia has been clearly understudied in this context. In this study, based on field observations from 17 wetland sites in Peruvian lowland Amazonia, we report 0–5.9 m thick peat deposits from 16 sites. Only one of the studied sites did not contain any kind of peat deposit (considering pure peat and clayey peat). Historic yearly peat and C accumulation rates, based on radiocarbon dating of peat samples from five sites, varied from 0.94 ± 0.99 to 4.88 ± 1.65 mm, and from 26 ± 3 to 195 ± 70 g C m−2, respectively. The long-term apparent peat and C accumulation rates varied from 1.69 ± 0.03 to 2.56 ± 0.12 mm yr−1, and from 39 ± 10 to 85 ± 30 g C m−2 yr−1, respectively. These accumulation rates are comparable to those determined in the Indonesian tropical peatlands. Under altered conditions, Indonesian peatlands can release globally relevant amounts of C to the atmosphere. Considering the estimated total area of Amazonian peatlands (150 000 km2) close to that of the Indonesian ones (200 728 km2) as well as several factors threatening the Amazonian peatlands, we suggest that the total C stocks and fluxes associated with Amazonian peatlands may be of global significance.  相似文献   

13.
1. This study focused on phytoplankton production in Lake Tanganyika. We provide new estimates of daily and annual primary production, as well as growth rates of phytoplankton, and we compare them with values published in former studies.
2. Chlorophyll- a (chl- a ) in the mixed layer ranged from 5 to 120 mg chl- a  m−2 and varied significantly between rainy and dry seasons. Particulate organic carbon concentrations were significantly higher in the south basin (with 196 and 166 mg C m−3 in the dry and the rainy season, respectively) than in the north basin (112 and 109 mg C m−3, respectively).
3. Carbon : phosphorus (C : P) ratios varied according to season. Phosphorus limitation seemed to occur more frequently than nitrogen limitation, especially during the rainy season. Severe P deficiencies were rare.
4. Measured particulate daily primary production ranged from 110 to 1410 mg C m−2 day−1; seasonal contrasts were well marked in the north basin, but less in the south basin, where primary production peaks occurred also in the rainy season. Estimates of annual primary production, based on daily primary production calculated from chl- a and water transparency, gave values lower than those reported in previous studies. Picophytoplankton accounted on average for 56% of total particulate production in the south basin during the wet season of 2003.
5. Phytoplankton growth rates, calculated from primary production, ranged from 0.055 to 0.282 day−1; these are lower than previously published values for Lake Tanganyika.  相似文献   

14.
Nitrogen effects on net ecosystem carbon exchange in a temperate steppe   总被引:5,自引:0,他引:5  
It has widely been documented that nitrogen (N) enrichment stimulates plant growth and net primary production. However, there is still dispute on how N addition affects net ecosystem CO2 exchange (NEE), which represents the balance between ecosystem carbon (C) uptake and release. We conducted an experimental study to examine effects of N addition on NEE in a temperate steppe in northern China from 2005 to 2008. N was added at a rate of 10 g N m−2 yr−1 with NH4NO3 alone or in combination with phosphorous (P, 5 g P2O5 m−2 yr−1) in both clipped and unclipped plots. Over the 4 years, N addition significantly stimulated growing-season NEE, on average, by 27%. Neither the main effects of P addition or clipping nor their interactions with N addition were statistically significant on NEE in any of the 4 years. However, the magnitude of N stimulation on NEE declined over time. N addition significantly increased NEE by 60% in 2005 and 21% in 2006, but its effect was not significant in 2007 and 2008. N-induced shift in species composition was primarily responsible for the declined N stimulation over time. The gradually increasing coverage of the upper canopy species ( Stipa krylovii ) and standing litter accumulation induced light limitation on the lower canopy species ( Artemisia frigida ). Thus, N-induced shifts in plant species composition strongly regulated the direct effects of N addition on C sequestration in the temperate steppe.  相似文献   

15.
In a recent study, Magnani et al. report how atmospheric nitrogen deposition drives stand-lifetime net ecosystem productivity (NEPav) for midlatitude forests, with an extremely high C to N response (725 kg C kg−1 wet-deposited N for their European sites). We present here a re-analysis of these data, which suggests a much smaller C : N response for total N inputs. Accounting for dry, as well as wet N deposition reduces the C : N response to 177 : 1. However, if covariance with intersite climatological differences is accounted for, the actual C : N response in this dataset may be <70 : 1. We then use a model analysis of 22 European forest stands to simulate the findings of Magnani et al. Multisite regression of simulated NEPav vs. total N deposition reproduces a high C : N response (149 : 1). However, once the effects of intersite climatological differences are accounted for, the value is again found to be much smaller, pointing to a real C : N response of about 50–75 : 1.  相似文献   

16.
Cryoconite holes are unique freshwater environments on glacier surfaces, formed when solar-heated dark debris melts down into the ice. Active photoautotrophic microorganisms are abundant within the holes and fix inorganic carbon due to the availability of liquid water and solar radiation. Cryoconite holes are potentially important sources of organic carbon to the glacial ecosystem, but the relative magnitudes of autochthonous microbial primary production and wind-borne allochthonous organic matter brought are unknown. Here, we compare an estimate of annual microbial primary production in 2006 on Werenskioldbreen, a Svalbard glacier, with the organic carbon content of cryoconite debris. There is a great disparity between annual primary production (4.3 μg C g−1 year−1) and the high content of organic carbon within the debris (1.7–4.5%, equivalent to 8500–22 000 μg C g−1 debris). Long-term accumulation of autochthonous organic matter is considered unlikely due to ablation dynamics and the surface hydrology of the glacier. Rather, it is more likely that the majority of the organic matter on Werenskioldbreen is allochthonous. Hence, although glacier surfaces can be a significant source of organic carbon for glacial environments on Svalbard, they may be reservoirs rather than oases of high productivity.  相似文献   

17.
Abstract: The effect of plant succession on methane uptake was measured on intact soil cores collected from seven heathland sites. Six of the sites had undergone either secondary succession with grass or oak, ammonium fertilization or ploughing, while the seventh site was located in the native heathland. There was a positive relationship between methane uptake rate and time elapsed since the plant invasion had taken place in the native heathland. The native heathland site showed an insignificant atmospheric methane uptake of 0.01 mg CH4 m−2 d−1, whereas the established oak brushwood (70 years old) and the grass invaded heathland (13 years old) showed rates of 1.36 mg CH4 m−2 d−1 and 0.73 mg CH4 m−2 d−1, respectively. In the fertilized heathland plot (112 kg N ha−1 six years prior to this study) grass had become the dominating species and showed a methane oxidation rate of 0.28 mg CH4 m−2 d−1. Ploughing of the heathland resulted in methane oxidation rates seven times the rates measured in the native heathland. The results suggested that an increased future atmospheric nitrogen deposition in heathlands and other nutrient poor ecosystems may have a stimulating effect on the soil sink for atmospheric methane.  相似文献   

18.
Climate-induced changes in high elevation stream nitrate dynamics   总被引:1,自引:0,他引:1  
Mountain terrestrial and aquatic ecosystems are responsive to external drivers of change, especially climate change and atmospheric deposition of nitrogen (N). We explored the consequences of a temperature-warming trend on stream nitrate in an alpine and subalpine watershed in the Colorado Front Range that has long been the recipient of elevated atmospheric N deposition. Mean annual stream nitrate concentrations since 2000 are higher by 50% than an earlier monitoring period of 1991–1999. Mean annual N export increased by 28% from 2.03 kg N ha−1 yr−1 before 2000 to 2.84 kg N ha−1 yr−1 in Loch Vale watershed since 2000. The substantial increase in N export comes as a surprise, since mean wet atmospheric N deposition from 1991 to 2006 (3.06 kg N ha−1 yr−1) did not increase. There has been a period of below average precipitation from 2000 to 2006 and a steady increase in summer and fall temperatures of 0.12 °C yr−1 in both seasons since 1991. Nitrate concentrations, as well as the weathering products calcium and sulfate, were higher for the period 2000–2006 in rock glacier meltwater at the top of the watershed above the influence of alpine and subalpine vegetation and soils. We conclude the observed recent N increases in Loch Vale are the result of warmer summer and fall mean temperatures that are melting ice in glaciers and rock glaciers. This, in turn, has exposed sediments from which N produced by nitrification can be flushed. We suggest a water quality threshold may have been crossed around 2000. The phenomenon observed in Loch Vale may be indicative of N release from ice features such as rock glaciers worldwide as mountain glaciers retreat.  相似文献   

19.
1. Changes in water chemistry, benthic organic matter (BOM), and macroinvertebrates were examined in four different glacial streams over an annual cycle. The streams experienced strong seasonal changes in water chemistry that reflected temporal changes in the influence from the source glacier, especially in water turbidity, particulate phosphorus and conductivity.
2. Nitrogen concentrations were high (nitrate-N values were 130–274 μg L–1), especially during spring snowmelt runoff. Benthic organic matter attained >600 g m–2 dry mass at certain times, peaks being associated with seasonal blooms of the alga Hydrurus foetidus .
3. Macroinvertebrate taxon richness was two to three times higher (also numbers and biomass) in winter than summer suggesting winter may be a more favourable period for these animals. Benthic densities averaged 1140–3820 ind. m–2, although peaking as high as 9000 ind. m–2. Average annual biomass ranged from 102 to 721 mg m–2, and reached >2000 mg m–2 at one site in autumn.
4. Taxa common to all sites included the dipterans Diamesa spp. and Rhypholophus sp., the plecopterans Leuctra spp. and Rhabdiopteryx alpina , and the ephemeropterans Baetis alpinus and Rhithrogena spp. Principal components analysis clearly separated winter assemblages from those found in summer.  相似文献   

20.
1.  1. It has been accepted that aquatic hyphomycetes colonising submerged leaves increase the nutritional value of leaf detritus and suggested that fungal biomass plays a greater role in the growth of shredders than leaf tissue itself. However, it is not clear what proportion of the nutritional needs of shredders is met by fungal biomass.
2.  We fed Pycnopsyche gentilis larvae with tulip poplar ( Liriodendron tulipifera ) leaf discs colonised by the aquatic hyphomycete, Anguillospora filiformis , which had been radiolabelled to quantify the contribution of fungal carbon to the growth of the shredder at different larval developmental stages. Instantaneous growth rates of larvae on this diet were also estimated.
3.  When provided with fungal-colonised leaves (14–16% fungal biomass), the third and the fifth instar larvae of P. gentilis grew at the rates of 0.061 and 0.034 day−1, respectively, but on a diet of sterile leaves, both larval instars lost weight. The incorporation rates of fungal carbon were 31.6 μg C mg−1 AFDM day−1, accounting for 100% of the daily growth rate of the third instar larvae and 8.6 μg C mg−1 AFDM day−1, accounting for 50% of the daily growth rate of the fifth instar larvae.
4.  These results suggest that leaf material colonised by A. filiformis is a high quality food resource for P. gentilis larvae, and that fungal biomass can contribute significantly to the growth of these larvae. Differences in feeding behaviour and digestive physiology may explain the significantly greater assimilation of fungal biomass by the earlier instar than the final instar. To satisfy their nutritional needs the fifth instar larvae would have to assimilate detrital mass that may have been modified by fungal exoenzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号