首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimating phylogenetic relationships among closely related species can be extremely difficult when there is incongruence among gene trees and between the gene trees and the species tree. Here we show that incorporating a model of the stochastic loss of gene lineages by genetic drift into the phylogenetic estimation procedure can provide a robust estimate of species relationships, despite widespread incomplete sorting of ancestral polymorphism. This approach is applied to a group of montane Melanoplus grasshoppers for which genealogical discordance among loci and incomplete lineage sorting obscures any obvious phylogenetic relationships among species. Unlike traditional treatments where gene trees estimated using standard phylogenetic methods are implicitly equated with the species tree, with the coalescent-based approach the species tree is modeled probabilistically from the estimated gene trees. The estimated species phylogeny (the ESP) is calculated for the grasshoppers from multiple gene trees reconstructed for nuclear loci and a mitochondrial gene. This empirical application is coupled with a simulation study to explore the performance of the coalescent-based approach. Specifically, we test the accuracy of the ESP given the data based on analyses of simulated data matching the multilocus data collected in Melanoplus (i.e., data were simulated for each locus with the same number of base pairs and locus-specific mutational models). The results of the study show that ESPs can be computed using the coalescent-based approach long before reciprocal monophyly has been achieved, and that these statistical estimates are accurate. This contrasts with analyses of the empirical data collected in Melanoplus and simulated data based on concatenation of multiple loci, for which the incomplete lineage sorting of recently diverged species posed significant problems. The strengths and potential challenges associated with incorporating an explicit model of gene-lineage coalescence into the phylogenetic procedure to obtain an ESP, as illustrated by application to Melanoplus, versus concatenation and consensus approaches are discussed. This study represents a fundamental shift in how species relationships are estimated - the relationship between the gene trees and the species phylogeny is modeled probabilistically rather than equating gene trees with a species tree.  相似文献   

2.
Abstract.— Coalescence theory predicts when genetic drift at nuclear loci will result in fixation of sequence differences to produce monophyletic gene trees. However, the theory is difficult to apply to particular taxa because it hinges on genetically effective population size, which is generally unknown. Neutral theory also predicts that evolution of monophyly will be four times slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. Variation in mitochondrial DNA (mtDNA) within and between species has been studied extensively, but can these mtDNA data be used to predict coalescence in nuclear loci? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The “three‐times rule” states that, on average, most nuclear loci will be monophyletic when the branch length leading to the mtDNA sequences of a species is three times longer than the average mtDNA sequence diversity observed within that species. A test using mitochondrial and nuclear intron data from seven species of whales and dolphins suggests general agreement with predictions of the three‐times rule. We define the coalescence ratio as the mitochondrial branch length for a species divided by intraspecific mtDNA diversity. We show that species with high coalescence ratios show nuclear monophyly, whereas species with low ratios have polyphyletic nuclear gene trees. As expected, species with intermediate coalescence ratios show a variety of patterns. Especially at very high or low coalescence ratios, the three‐times rule predicts nuclear gene patterns that can help detect the action of selection. The three‐times rule may be useful as an empirical benchmark for evaluating evolutionary processes occurring at multiple loci.  相似文献   

3.
The New World swallow genus Tachycineta comprises nine species that collectively have a wide geographic distribution and remarkable variation both within- and among-species in ecologically important traits. Existing phylogenetic hypotheses for Tachycineta are based on mitochondrial DNA sequences, thus they provide estimates of a single gene tree. In this study we sequenced multiple individuals from each species at 16 nuclear intron loci. We used gene concatenated approaches (Bayesian and maximum likelihood) as well as coalescent-based species tree inference to reconstruct phylogenetic relationships of the genus. We examined the concordance and conflict between the nuclear and mitochondrial trees and between concatenated and coalescent-based inferences. Our results provide an alternative phylogenetic hypothesis to the existing mitochondrial DNA estimate of phylogeny. This new hypothesis provides a more accurate framework in which to explore trait evolution and examine the evolution of the mitochondrial genome in this group.  相似文献   

4.
Gene trees will often differ from the true species history, the species tree, as a result of processes such as incomplete lineage sorting. New methods such as Bayesian Estimation of the Species Tree (BEST) use the multispecies coalescent to model lineage sorting, and directly infer the species tree from multilocus DNA sequence data. The Sulidae (Aves: Pelecaniformes) is a family of ten booby and gannet species with a global distribution. We sequenced five nuclear intron loci and one mitochondrial locus to estimate a species tree for the Sulidae using both BEST and by concatenating nuclear loci. We also used fossil calibrated strict and relaxed molecular clocks in BEAST to estimate divergence times for major nodes in the sulid phylogeny. Individual gene trees showed little phylogenetic conflict but varied in resolution. With the exception of the mitochondrial gene tree, no gene tree was completely resolved. On the other hand, both the BEST and concatenated species trees were highly resolved, strongly supported, and topologically consistent with each other. The three sulid genera (Morus, Sula, Papasula) were monophyletic and the relationships within genera were mostly consistent with both a previously estimated mtDNA gene tree and the mtDNA gene tree estimated here. However, our species trees conflicted with the mtDNA gene trees in the relationships among the three genera. Most notably, we find that the endemic and endangered Abbott's booby (Papasula abbotti) is likely basal to all other members of the Sulidae and diverged from them approximately 22 million years ago.  相似文献   

5.
Interspecific gene flow is pervasive throughout the tree of life. Although detecting gene flow between populations has been facilitated by new analytical approaches, determining the timing and geography of hybridization has remained difficult, particularly for historical gene flow. A geographically explicit phylogenetic approach is needed to determine the overlap of ancestral populations. In this study, we performed population genetic analyses, species delimitation, simulations and a recently developed approach of species tree diffusion to infer the phylogeographic history, timing and geographic extent of gene flow in lizards of the Sceloporus spinosus group. The two species in this group, S. spinosus and S. horridus, are distributed in eastern and western portions of Mexico, respectively, but populations of these species are sympatric in the southern Mexican highlands. We generated data consisting of three mitochondrial genes and eight nuclear loci for 148 and 68 individuals, respectively. We delimited six lineages in this group, but found strong evidence of mito‐nuclear discordance in sympatric populations of S. spinosus and S. horridus owing to mitochondrial introgression. We used coalescent simulations to differentiate ancestral gene flow from secondary contact, but found mixed support for these two models. Bayesian phylogeography indicated more than 60% range overlap between ancestral S. spinosus and S. horridus populations since the time of their divergence. Isolation–migration analyses, however, revealed near‐zero levels of gene flow between these ancestral populations. Interpreting results from both simulations and empirical data indicate that despite a long history of sympatry among these two species, gene flow in this group has only recently occurred.  相似文献   

6.
Phylogenetic relationships among animal populations and species commonly have been inferred from patterns of variation observed within a single gene system, most often the mitochondrial genome. Analysis of restriction site variation in the mitochondrial DNA of two species of white-eye ( Zosterops lateralis and Z. lutea ) in Australia produced a single gene tree that does not accurately represent the organismal tree. In contrast, patterns of variation at two anonymous, single-copy nuclear DNA loci revealed a phylogeography consistent with traditional classification of the species. Discordance between mitochondrial DNA and single-copy nuclear DNA variation is probably the result of past hybridization between Z. lateralis and Z. lutea , evidence of which has been lost from the nuclear genome by recombination. This study provides a clear empirical demonstration that single gene genealogies cannot be assumed to accurately represent the true phylogenies, and emphasizes the need for composite genetic analyses.  相似文献   

7.
An important challenge for phylogenetic studies of closely related species is the existence of deep coalescence and gene tree heterogeneity. However, their effects can vary between species and they are often neglected in phylogenetic analyses. In addition, a practical problem in the reconstruction of shallow phylogenies is to determine the most efficient set of DNA markers for a reliable estimation. To address these questions, we conducted a multilocus simulation study using empirical values of nucleotide diversity and substitution rates obtained from a wide range of mammals and evaluated the performance of both gene tree and species tree approaches to recover the known speciation times and topological relationships. We first show that deep coalescence can be a serious problem, more than usually assumed, for the estimation of speciation times in mammals using traditional gene trees. Furthermore, we tested the performance of different sets of DNA markers in the determination of species trees using a coalescent approach. Although the best estimates of speciation times were obtained, as expected, with the use of an increasing number of nuclear loci, our results show that similar estimations can be obtained with a much lower number of genes and the incorporation of a mitochondrial marker, with its high information content. Thus, the use of the combined information of both nuclear and mitochondrial markers in a species tree framework is the most efficient option to estimate recent speciation times and, consequently, the underlying species tree.  相似文献   

8.
Introgressive hybridization and incomplete lineage sorting complicate the inference of phylogeny, and available species‐tree methods do not simultaneously account for these processes. Both hybridization and ancestral polymorphism have been invoked to explain divergent phylogenies inferred from different datasets for Stigmacerca, a clade of 11 North American darter species. Species of Stigmacerca are characterized by a mating system involving parental care with males guarding nesting territories and fertilized eggs. Males of four species of Stigmacerca develop egg‐mimic nuptial structures on their second dorsal fins during the breeding season. Previous phylogenies suggest contrasting scenarios for the evolution of this nuptial trait. Using a combination of coalescent‐based methods, we analyzed a dataset comprising a mitochondrial gene and 15 nuclear loci to estimate relationships and simultaneously test for introgressive hybridization. Our analyses identified several instances of interspecific gene flow involving both cytoplamsmic haplotypes and nuclear alleles. The new phylogeny was used to infer a single origin and recent loss of egg‐mimic structures in Stigmacerca and led to the discovery of a phylogenetically distinct species. Our results highlight the limited strategies available to account for introgressive hybridization in the inference of species relationships and the likely effects of this process on reconstructing trait evolution.  相似文献   

9.
External morphological characters are the basis of our understanding of diversity and species relationships in many darter clades. The past decade has seen the publication of many studies utilizing mtDNA sequence data to investigate darter phylogenetics, but only recently have nuclear genes been used to investigate darter relationships. Despite a long tradition of use in darter systematics few studies have examined the phylogenetic utility of external morphological characters in estimating relationships among species in darter clades. We present DNA sequence data from the mitochondrial cytochrome b (cytb) gene, the nuclear encoded S7 intron 1, and discretely coded external morphological characters for all 20 species in the darter clade Nothonotus. Bayesian phylogenetic analyses result in phylogenies that are in broad agreement with previous studies. The cytb gene tree is well resolved, while the nuclear S7 gene tree lacks phylogenetic resolution, node support, and is characterized by a lack of reciprocal monophyly for many of the Nothonotus species. The phylogenies resulting from analysis of the morphological dataset lack resolution, but nodes present are found in the cytb and S7 gene trees. The highest resolution and node support is found in the Bayesian combined data phylogeny. Based on our results we propose continued exploration of the phylogenetic utility of external morphological characters in other darter clades. Given the extensive lack of reciprocal monophyly of species observed in the S7 gene tree we predict that nuclear gene sequences may have limited utility in intraspecific phylogeographic studies of Nothonotus darters.  相似文献   

10.
Dating the time of divergence and understanding speciation processes are central to the study of the evolutionary history of organisms but are notoriously difficult. The difficulty is largely rooted in variations in the ancestral population size or in the genealogy variation across loci. To depict the speciation processes and divergence histories of three monophyletic Takydromus species endemic to Taiwan, we sequenced 20 nuclear loci and combined with one mitochondrial locus published in GenBank. They were analysed by a multispecies coalescent approach within a Bayesian framework. Divergence dating based on the gene tree approach showed high variation among loci, and the divergence was estimated at an earlier date than when derived by the species‐tree approach. To test whether variations in the ancestral population size accounted for the majority of this variation, we conducted computer inferences using isolation‐with‐migration (IM) and approximate Bayesian computation (ABC) frameworks. The results revealed that gene flow during the early stage of speciation was strongly favoured over the isolation model, and the initiation of the speciation process was far earlier than the dates estimated by gene‐ and species‐based divergence dating. Due to their limited dispersal ability, it is suggested that geographical isolation may have played a major role in the divergence of these Takydromus species. Nevertheless, this study reveals a more complex situation and demonstrates that gene flow during the speciation process cannot be overlooked and may have a great impact on divergence dating. By using multilocus data and incorporating Bayesian coalescence approaches, we provide a more biologically realistic framework for delineating the divergence history of Takydromus.  相似文献   

11.
The value of mitochondrial versus nuclear gene sequence data in phylogenetic analysis has received much attention without yielding definitive conclusions. Theoretical arguments and empirical data suggest a lower phylogenetic utility than equivalent nuclear gene sequences, but there are many examples of important progress made using mitochondrial sequences. We undertook a systematic performance analysis of mitochondrial and nuclear sequence partitions taken from a representative sample of dipteran species. When analysed alone, mitochondrial genes generally performed less well than nuclear genes; however, these genes resolved some branches for which nuclear genes failed. Moreover, the combined use of mitochondrial and nuclear sequences produced superior results without artifacts for nodes where mitochondrial and nuclear gene data generated conflicting topologies. These findings strongly advocate the inclusion of mitochondrial sequences, even in deep phylogeny reconstruction. Comparison of tree support between our and previous analyses identified robustly supported high‐confidence clades in the Diptera, but also revealed problematic groupings in need of further analysis.  相似文献   

12.
13.
We have reconstructed the phylogenetic relationships of 23 species in the dog family, Canidae, using DNA sequence data from six nuclear loci. Individual gene trees were generated with maximum parsimony (MP) and maximum likelihood (ML) analysis. In general, these individual gene trees were not well resolved, but several identical groupings were supported by more than one locus. Phylogenetic analysis with a data set combining the six nuclear loci using MP, ML, and Bayesian approaches produced a more resolved tree that agreed with previously published mitochondrial trees in finding three well-defined clades, including the red fox-like canids, the South American foxes, and the wolf-like canids. In addition, the nuclear data set provides novel indel support for several previously inferred clades. Differences between trees derived from the nuclear data and those from the mitochondrial data include the grouping of the bush dog and maned wolf into a clade with the South American foxes, the grouping of the side-striped jackal (Canis adustus) and black-backed jackal (Canis mesomelas) and the grouping of the bat-eared fox (Otocyon megalotis) with the raccoon dog (Nycteruetes procyonoides). We also analyzed the combined nuclear + mitochondrial tree. Many nodes that were strongly supported in the nuclear tree or the mitochondrial tree remained strongly supported in the nuclear + mitochondrial tree. Relationships within the clades containing the red fox-like canids and South American canids are well resolved, whereas the relationships among the wolf-like canids remain largely undetermined. The lack of resolution within the wolf-like canids may be due to their recent divergence and insufficient time for the accumulation of phylogenetically informative signal.  相似文献   

14.
We studied the phylogenetic relationships among Japanese Leptocarabus ground beetles, which show extensive trans-species polymorphisms in mitochondrial gene genealogies. Simultaneous analysis of combined nuclear data with partial sequences from the long-wavelength rhodopsin, wingless, phosphoenolpyruvate carboxykinase, and 28S rRNA genes resolved the relationships among the five species, although separate analyses of these genes provided topologies with low resolution. For both the nuclear gene tree resulting from the combined data from four genes and a mitochondrial cytochrome oxidase subunit I (COI) gene tree, we applied a Bayesian divergence time estimation using a common calibration method to identify mitochondrial introgression events that occurred after speciation. Three mitochondrial lineages shared by two or three species were likely subject to introgression due to interspecific hybridization because the coalescent times for these lineages were much shorter than the corresponding speciation times estimated from nuclear gene sequences. We demonstrated that when species phylogeny is fully resolved with nuclear gene sequence data, comparative analysis of nuclear and mitochondrial gene trees can be used to infer introgressive hybridization events that might cause trans-species polymorphisms in mitochondrial gene trees.  相似文献   

15.
Cyrtandra (Gesneriaceae) is a genus of flowering plants with over 800 species distributed throughout Southeast Asia and the Pacific Islands. On the Hawaiian Islands, 60 named species and over 89 putative hybrids exist, most of which are identified on the basis of morphology. Despite many previous studies on the Hawaiian Cyrtandra lineage, questions regarding the reconciliation of morphology and genetics remain, many of which can be attributed to the relatively young age and evidence of hybridization between species. We utilized targeted enrichment, high‐throughput sequencing, and modern phylogenomics tools to test 31 Hawaiian Cyrtandra samples (22 species, two putative hybrids, four species with two samples each, one species with four samples) and two outgroups for species relationships and hybridization in the presence of incomplete lineage sorting (ILS). Both concatenated and species‐tree methods were used to reconstruct species relationships, and network analyses were conducted to test for hybridization. We expected to see high levels of ILS and putative hybrids intermediate to their parent species. Phylogenies reconstructed from the concatenated and species‐tree methods were highly incongruent, most likely due to high levels of incomplete lineage sorting. Network analyses inferred gene flow within this lineage, but not always between taxa that we expected. Multiple hybridizations were inferred, but many were on deeper branches of the island lineages suggesting a long history of hybridization. We demonstrated the utility of high‐throughput sequencing and a phylogenomic approach using 569 loci to understanding species relationships and gene flow in the presence of ILS.  相似文献   

16.
Genomic studies are revealing that divergence and speciation are marked by gene flow, but it is not clear whether gene flow has played a prominent role during the generation of biodiversity in species‐rich regions of the world where vicariance is assumed to be the principal mode by which new species form. We revisit a well‐studied organismal system in the Mexican Highlands, Aphelocoma jays, to test for gene flow among Mexican sierras. Prior results from mitochondrial DNA (mtDNA) largely conformed to the standard model of allopatric divergence, although there was also evidence for more obscure histories of gene flow in a small sample of nuclear markers. We tested for these ‘hidden histories’ using genomic markers known as ultraconserved elements (UCEs) in concert with phylogenies, clustering algorithms and newer introgression tests specifically designed to detect ancient gene flow (e.g. ABBA/BABA tests). Results based on 4303 UCE loci and 2500 informative SNPs are consistent with varying degrees of gene flow among highland areas. In some cases, gene flow has been extensive and recent (although perhaps not ongoing today), whereas in other cases there is only a trace signature of ancient gene flow among species that diverged as long as 5 million years ago. These results show how a species complex thought to be a model for vicariance can reveal a more reticulate history when a broader portion of the genome is queried. As more organisms are studied with genomic data, we predict that speciation‐with‐bouts‐of‐gene‐flow will turn out to be a common mode of speciation.  相似文献   

17.
Recent computational advances provide novel opportunities to infer species trees based on multiple independent loci. Thus, single gene trees no longer need suffice as proxies for species phylogenies. Several methods have been developed to deal with the challenges posed by incomplete and stochastic lineage sorting. In this study, we employed four Bayesian methods to infer the phylogeny of a clade of 11 recently diverged oriole species within the genus Icterus. We obtained well-resolved and mostly congruent phylogenies using a set of seven unlinked nuclear intron loci and sampling multiple individuals per species. Most notably, Bayesian concordance analysis generally agreed well with concatenation; the two methods agreed fully on eight of nine nodes. The coalescent-based method BEAST further supported six of these eight nodes. The fourth method used, BEST, failed to converge despite exhaustive efforts to optimize the tree search. Overall, the results obtained by new species tree methods and concatenation generally corroborate our findings from previous analyses and data sets. However, we found striking disagreement between mitochondrial and nuclear DNA involving relationships within the northern oriole group. Our results highlight the danger of reliance on mtDNA alone for phylogenetic inference. We demonstrate that in spite of low variability and incomplete lineage sorting, multiple nuclear loci can produce largely congruent phylogenies based on multiple species tree methods, even for very closely-related species.  相似文献   

18.
Gur'ev VP  Blinov AG 《Genetika》2002,38(3):310-315
In eight Holarctic populations of two typical chironomid sibling species of the plumosus group, Chrionomus entis and Chironomus plumosus, nucleotides sequences of mitochondrial (cytb) and nuclear (gb2b) gene regions were examined. The phylogenetic trees reflecting the evolutionary histories of the nuclear and mitochondrial markers exhibited significant differences. On the tree based on the nuclear gene sequences the populations clustered according to their species affiliation, whereas on the tree based on the mitochondrial gene sequences the populations were grouped according to their geographic position. This discrepancy is probably explained by mitochondrial gene flow between sympatric species with incomplete reproductive isolation (sibling species). Based on our results together with the earlier data on nuclear and mitochondrial gene sequences of some other species from the phylogenetic group plumosus, a scheme of phylogenetic relationships within this group is proposed. This scheme is in many ways different from the traditional view on the evolutionary relationships among species of the plumosus group.  相似文献   

19.
Toadlets of the genus Brachycephalus are endemic to the Atlantic rainforests of southeastern and southern Brazil. The 14 species currently described have snout-vent lengths less than 18 mm and are thought to have evolved through miniaturization: an evolutionary process leading to an extremely small adult body size. Here, we present the first comprehensive phylogenetic analysis for Brachycephalus, using a multilocus approach based on two nuclear (Rag-1 and Tyr) and three mitochondrial (Cyt b, 12S, and 16S rRNA) gene regions. Phylogenetic relationships were inferred using a partitioned Bayesian analysis of concatenated sequences and the hierarchical Bayesian method (BEST) that estimates species trees based on the multispecies coalescent model. Individual gene trees showed conflict and also varied in resolution. With the exception of the mitochondrial gene tree, no gene tree was completely resolved. The concatenated gene tree was completely resolved and is identical in topology and degree of statistical support to the individual mtDNA gene tree. On the other hand, the BEST species tree showed reduced significant node support relative to the concatenate tree and recovered a basal trichotomy, although some bipartitions were significantly supported at the tips of the species tree. Comparison of the log likelihoods for the concatenated and BEST trees suggests that the method implemented in BEST explains the multilocus data for Brachycephalus better than the Bayesian analysis of concatenated data. Landmark-based geometric morphometrics revealed marked variation in cranial shape between the species of Brachycephalus. In addition, a statistically significant association was demonstrated between variation in cranial shape and genetic distances estimated from the mtDNA and nuclear loci. Notably, B. ephippium and B. garbeana that are predicted to be sister-species in the individual and concatenated gene trees and the BEST species tree share an evolutionary novelty, the hyperossified dorsal plate.  相似文献   

20.
Species‐level paraphyly inferred from mitochondrial gene trees is a prevalent phenomenon in taxonomy and systematics, but there are several potential causes that are not easily explained by currently used methods. This study aimed to test the underlying causes behind the observed paraphyly of Streak‐breasted Scimitar Babbler (Pomatorhinus ruficollis) via statistical analyses of four mitochondrial (mtDNA) and nine nuclear (nuDNA) genes. Mitochondrial gene trees show paraphyly of P. ruficollis with respect to the Taiwan Scimitar Babbler (Pomatorhinus musicus), but nuclear genealogies support a sister‐group relationship. Predictive coalescent simulations imply several hypothetical explanations, the most likely being mitochondrial capture of P. ruficollis by P. musicus for the observed cyto‐nuclear incongruence. Further approximate Bayesian computation suggests a unidirectional introgression model with substantial level of gene flow from P. ruficollis to P. musicus during their initial divergence during the Late Pleistocene. This specific observation frames several potential causes for incongruent outcomes of mitochondrial and nuclear introgression in general, and on the whole, our results underscore the strength of multiple independent loci for species delimitation and importance of testing hypotheses that explain disparate causes of mitochondrial gene‐tree paraphyly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号