首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interspecific hybridization is recognized as an important process in the evolutionary dynamics of both speciation and the reversal of speciation. However, our understanding of the spatial and temporal patterns of hybridization that erode versus promote species boundaries is incomplete. The endangered, endemic koloa maoli (or Hawaiian duck, Anas wyvilliana) is thought to be threatened with genetic extinction through ongoing hybridization with an introduced congener, the feral mallard (A. platyrhynchos). We investigated spatial and temporal variation in hybrid prevalence in populations throughout the main Hawaiian Islands, using genomic data to characterize population structure of koloa, quantify the extent of hybridization, and compare hybrid proportions over time. To accomplish this, we genotyped 3,308 double‐digest restriction‐site‐associated DNA (ddRAD) loci in 425 putative koloa, mallards, and hybrids from populations across the main Hawaiian Islands. We found that despite a population decline in the last century, koloa genetic diversity is high. There were few hybrids on the island of Kaua?i, home to the largest population of koloa. By contrast, we report that sampled populations outside of Kaua?i can now be characterized as hybrid swarms, in that all individuals sampled were of mixed koloa × mallard ancestry. Further, there is some evidence that these swarms are stable over time. These findings demonstrate spatial variation in the extent and consequences of interspecific hybridization, and highlight how islands or island‐like systems with small population sizes may be especially prone to genetic extinction when met with a congener that is not reproductively isolated.  相似文献   

2.
Interspecific hybridization among Hawaiian species ofCyrtandra (Gesneriaceae) was investigated using randomly amplified polymorphic DNA (RAPD) markers. Thirty-three different primers were used to investigate interspecific hybridization for 17 different putative hybrids based on morphological intermediacy and sympatry with putative parental species. RAPD data provided evidence for the hybrid origin of all putative hybrid taxa examined in this analysis. However, the patterns in the hybrid taxa were not found to be completely additive of the patterns found in the parental species. Markers missing in the hybrid taxa can be attributed to polymorphism in the populations of the parental species and the dominant nature of inheritance for RAPD markers. Unique markers found within hybrid taxa require further explanation but do not necessarily indicate that the taxa are not of hybrid origin. The implications suggest that these interspecific hybridization events had, and continue to have, an effect on the adaptive radiation and conservation biology ofCyrtandra.  相似文献   

3.

Premise of the Study

Both incomplete lineage sorting and reticulation have been proposed as causes of phylogenetic incongruence. Disentangling these factors may be most difficult in long‐lived, wind‐pollinated plants with large population sizes and weak reproductive barriers.

Methods

We used solution hybridization for targeted enrichment and massive parallel sequencing to characterize low‐copy‐number nuclear genes and high‐copy‐number plastomes (Hyb‐Seq) in 74 individuals of Pinus subsection Australes, a group of ~30 New World pine species of exceptional ecological and economic importance. We inferred relationships using methods that account for both incomplete lineage sorting and reticulation.

Key Results

Concatenation‐ and coalescent‐based trees inferred from nuclear genes mainly agreed with one another, but they contradicted the plastid DNA tree in recovering the Attenuatae (the California closed‐cone pines) and Oocarpae (the egg‐cone pines of Mexico and Central America) as monophyletic and the Australes sensu stricto (the southern yellow pines) as paraphyletic to the Oocarpae. The plastid tree featured some relationships that were discordant with morphological and geographic evidence and species limits. Incorporating gene flow into the coalescent analyses better fit the data, but evidence supporting the hypothesis that hybridization explains the non‐monophyly of the Attenuatae in the plastid tree was equivocal.

Conclusions

Our analyses document cytonuclear discordance in Pinus subsection Australes. We attribute this discordance to ancient and recent introgression and present a phylogenetic hypothesis in which mostly hierarchical relationships are overlain by gene flow.  相似文献   

4.
Scaptomyza is a highly diversified genus in the family Drosophilidae, having undergone an explosive radiation, along with the Hawaiian‐endemic genus Idiomyia in the Hawaiian Islands: about 60% of 269 Scaptomyza species so far described are endemic to the Hawaiian Islands. Two hypotheses have been proposed for the origin and diversification of Hawaiian drosophilids. One is the “single Hawaiian origin” hypothesis: Scaptomyza and Idiomyia diverged from a single common ancestor that had once colonized the Hawaiian Islands, and then non‐Hawaiian Scaptomyza migrated back to continents. The other is the “multiple origins” hypothesis: Hawaiian Scaptomyza and Idiomyia derived from different ancestors that independently colonized the Hawaiian Islands. A key issue for testing these two hypotheses is to clarify the phylogenetic relationships between Hawaiian and non‐Hawaiian species in Scaptomyza. Toward this goal, we sampled additional non‐Hawaiian Scaptomyza species, particularly in the Old World, and determined the nucleotide sequences of four mitochondrial and seven nuclear genes for these species. Combining these sequence data with published data for 79 species, we reconstructed the phylogeny and estimated ancestral distributions and divergence times. In the resulting phylogenetic trees, non‐Hawaiian Scaptomyza species were interspersed in two Hawaiian clades. From a reconstruction of ancestral biogeography, we inferred that Idiomyia and Scaptomyza diverged outside the Hawaiian Islands and then independently colonized the Hawaiian Islands, twice in Scaptomyza, thus supporting the “multiple origins” hypothesis.  相似文献   

5.
Introgression and incomplete lineage sorting (ILS) are two of the main sources of gene‐tree incongruence; both can confound the assessment of phylogenetic relationships among closely related species. The Triatoma phyllosoma species group is a clade of partially co‐distributed and cross‐fertile Chagas disease vectors. Despite previous efforts, the phylogeny of this group remains unresolved, largely because of substantial gene‐tree incongruence. Here, we sequentially address introgression and ILS to provide a robust phylogenetic hypothesis for the T. phyllosoma species group. To identify likely instances of introgression prior to molecular scrutiny, we assessed biogeographic data and information on fertility of inter‐specific crosses. We first derived a few explicit hybridization hypotheses by considering the degree of spatial overlap within each species pair. Then, we assessed the plausibility of these hypotheses in the light of each species pair's cross‐fertility. Using this contextual information, we evaluated mito‐nuclear (cyt b, ITS‐2) gene‐tree incongruence and found evidence suggesting introgression within two species pairs. Finally, we modeled ILS using a Bayesian multispecies coalescent approach and either (a) a “complete” dataset with all the specimens in our sample, or (b) a “filtered” dataset without putatively introgressed specimens. The “filtered tree” had higher posterior‐probability support, as well as more plausible topology and divergence times, than the “complete tree.” Detecting and filtering out introgression and modeling ILS allowed us to derive an improved phylogenetic hypothesis for the T. phyllosoma species group. Our results illustrate how biogeographic and ecological‐reproductive contextual information can help clarify the systematics and evolution of recently diverged taxa prone to introgression and ILS.  相似文献   

6.
Woody perennial plants on islands have repeatedly evolved from herbaceous mainland ancestors. Although the majority of species in Euphorbia subgenus Chamaesyce section Anisophyllum (Euphorbiaceae) are small and herbaceous, a clade of 16 woody species diversified on the Hawaiian Islands. They are found in a broad range of habitats, including the only known C4 plants adapted to wet forest understories. We investigate the history of island colonization and habitat shift in this group. We sampled 153 individuals in 15 of the 16 native species of Hawaiian Euphorbia on six major Hawaiian Islands, plus 11 New World close relatives, to elucidate the biogeographic movement of this lineage within the Hawaiian island chain. We used a concatenated chloroplast DNA data set of more than eight kilobases in aligned length and applied maximum likelihood and Bayesian inference for phylogenetic reconstruction. Age and phylogeographic patterns were co‐estimated using BEAST. In addition, we used nuclear ribosomal ITS and the low‐copy genes LEAFY and G3pdhC to investigate the reticulate relationships within this radiation. Hawaiian Euphorbia first arrived on Kaua`i or Ni`ihau ca. 5 million years ago and subsequently diverged into 16 named species with extensive reticulation. During this process Hawaiian Euphorbia dispersed from older to younger islands through open vegetation that is disturbance‐prone. Species that occur under closed vegetation evolved in situ from open vegetation of the same island and are only found on the two oldest islands of Kaua`i and O`ahu. The biogeographic history of Hawaiian Euphorbia supports a progression rule with within‐island shifts from open to closed vegetation.  相似文献   

7.
Introgressive hybridization and incomplete lineage sorting complicate the inference of phylogeny, and available species‐tree methods do not simultaneously account for these processes. Both hybridization and ancestral polymorphism have been invoked to explain divergent phylogenies inferred from different datasets for Stigmacerca, a clade of 11 North American darter species. Species of Stigmacerca are characterized by a mating system involving parental care with males guarding nesting territories and fertilized eggs. Males of four species of Stigmacerca develop egg‐mimic nuptial structures on their second dorsal fins during the breeding season. Previous phylogenies suggest contrasting scenarios for the evolution of this nuptial trait. Using a combination of coalescent‐based methods, we analyzed a dataset comprising a mitochondrial gene and 15 nuclear loci to estimate relationships and simultaneously test for introgressive hybridization. Our analyses identified several instances of interspecific gene flow involving both cytoplamsmic haplotypes and nuclear alleles. The new phylogeny was used to infer a single origin and recent loss of egg‐mimic structures in Stigmacerca and led to the discovery of a phylogenetically distinct species. Our results highlight the limited strategies available to account for introgressive hybridization in the inference of species relationships and the likely effects of this process on reconstructing trait evolution.  相似文献   

8.
Schiedea (Caryophyllaceae) is a monophyletic genus of 34 species, all endemic to the Hawaiian Islands, that arose from a single colonization, providing one of the best examples of adaptive radiation in Hawai'i. Species utilize a range of habitats and exhibit a variety of growth forms and transitions in breeding systems from hermaphroditism toward dimorphism or autogamy. Our study included the most thorough sampling to date: 2-5 individuals per species and 4 independent genetic partitions: eight plastid and three low-copy nuclear loci (9217bps), allowing a three-locus BEST species tree. Despite incomplete resolution at the tips, our results support monophyly for each extant species. Gene trees revealed several clear cases of cytonuclear incongruence, likely created by interspecific introgression. Conflict occurs at the divergence of section Alphaschiedea as well as at the tips. Ages inferred from a BEAST analysis allow an original colonization onto either Nihoa or Kauaì and inform some aspects of inter-island migrations. We suggest that several hard polytomies on the species tree are biologically realistic, signifying either nearly simultaneous speciation or historical introgressive hybridization. Based on inferred node ages that exceed expected coalescent times, we propose that undetected nuclear introgression may play a larger role than incomplete lineage sorting in sections Schiedea and Mononeura.  相似文献   

9.
10.
Hawaiian ducks (Anas wyvilliana), or koloa, are endemic to the Hawaiian Islands and are listed as a federal and state endangered species. Hybridization between koloa and introduced mallards (A. platyrhynchos) is believed to be a primary threat to the recovery of koloa. We evaluated the utility of two sets of nuclear markers (microsatellite loci and amplified fragment length polymorphisms) and a variable portion of the mitochondrial DNA control region to distinguish among koloa, mallards, and hybrids. We show that microsatellite and AFLP markers can be used to distinguish between koloa and mallard-koloa hybrids with a high degree of confidence. For all but one of the putative koloa in our sample, the posterior probability of belonging to the koloa category was >0.90. Similarly all but one of the mallard-koloa hybrids were assigned to the hybrid category with posterior probabilities >0.98. Subsets of markers led to poorer resolution among koloa, mallard and hybrid categories. Among a sample of 61 koloa, hybrids and mallards, we found 25 different mtDNA haplotypes, belonging to two groups of haplotypes (A and B) identified previously in mallards and their relatives. All putative koloa samples exhibited group B haplotypes, of which 65% comprised one haplotype, while the rest were divided among four haplotypes. All Hawai’i mallard samples exhibited haplotypes that belonged to group A. Hybrids and California mallards exhibited haplotypes belonging to both groups, but a majority were of group A, suggesting that hybridization may more commonly involve mating between Hawai’i mallard females and koloa males.  相似文献   

11.
Hybridization is increasingly being recognized as a widespread process, even between ecologically and behaviorally divergent animal species. Determining phylogenetic relationships in the presence of hybridization remains a major challenge for evolutionary biologists, but advances in sequencing technology and phylogenetic techniques are beginning to address these challenges. Here we reconstruct evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by remarkable morphological diversity and behavioral barriers to interspecific mating. Past attempts to reconstruct phylogenetic relationships within Xiphophorus have produced conflicting results. Because many of the 26 species in the genus are interfertile, these conflicts are likely due to hybridization. Using genomic data, we resolve a high‐confidence species tree of Xiphophorus that accounts for both incomplete lineage sorting and hybridization. Our results allow us to reexamine a long‐standing controversy about the evolution of the sexually selected sword in Xiphophorus, and demonstrate that hybridization has been strikingly widespread in the evolutionary history of this genus.  相似文献   

12.
Speciation is regarded primarily as a bifurcation from an ancestral species into two distinct taxonomic units, but gene flow can create complex signals of phylogenetic relationships, especially among different loci. We evaluated several hypotheses that could account for phylogenetic discord between mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA) within Hawaiian duck (Anas wyvilliana), including stochastic lineage sorting, mtDNA capture and widespread genomic introgression. Our results best support the hypothesis that the contemporary Hawaiian duck is descended from an ancient hybridization event between the mallard (Anas platyrhynchos) and Laysan duck (Anas laysanensis). Whereas mtDNA clearly shows a sister relationship between Hawaiian duck and mallard, nuDNA is consistent with a genetic mosaic with nearly equal contributions from Laysan duck and mallard. In addition, coalescent analyses suggest that gene flow from either mallard or Laysan duck, depending on the predefined tree topology, is necessary to explain contemporary genetic diversity in Hawaiian ducks, and these estimates are more consistent with ancient, rather than contemporary, hybridization. Time since divergence estimates suggest that the genetic admixture event occurred around the Pleistocene–Holocene boundary, which is further supported by circumstantial evidence from the Hawaiian subfossil record. Although the extent of reproductive isolation from either putative parental taxon is not currently known, these species are phenotypically, genetically and ecologically different, and they meet primary criteria used in avian taxonomy for species designation. Thus, the available data are consistent with an admixed origin and support the hypothesis that the Hawaiian duck may represent a young hybrid species.  相似文献   

13.
Background and Aims Zanthoxylum is the only pantropical genus within Rutaceae, with a few species native to temperate eastern Asia and North America. Efforts using Sanger sequencing failed to resolve the backbone phylogeny of Zanthoxylum. In this study, we employed target-enrichment high-throughput sequencing to improve resolution. Gene trees were examined for concordance and sectional classifications of Zanthoxylum were evaluated. Off-target reads were investigated to identify putative single-copy markers for bait refinement, and low-copy markers for evidence of putative hybridization events.MethodsA custom bait set targeting 354 genes, with a median of 321 bp, was designed for Zanthoxylum and applied to 44 Zanthoxylum species and one Tetradium species as the outgroup. Illumina reads were processed via the HybPhyloMaker pipeline. Phylogenetic inferences were conducted using coalescent and maximum likelihood methods based on concatenated datasets. Concordance was assessed using quartet sampling. Additional phylogenetic analyses were performed on putative single and low-copy genes extracted from off-target reads.Key ResultsFour major clades are supported within Zanthoxylum: the African clade, the Z. asiaticum clade, the Asian–Pacific–Australian clade and the American–eastern Asian clade. While overall support has improved, regions of conflict are similar to those previously observed. Gene tree discordances indicate a hybridization event in the ancestor of the Hawaiian lineage, and incomplete lineage sorting in the American backbone. Off-target putative single-copy genes largely confirm on-target results, and putative low-copy genes provide additional evidence for hybridization in the Hawaiian lineage. Only two of the five sections of Zanthoxylum are resolved as monophyletic.ConclusionsTarget enrichment is suitable for assessing phylogenetic relationships in Zanthoxylum. Our phylogenetic analyses reveal that current sectional classifications need revision. Quartet tree concordance indicates several instances of reticulate evolution. Off-target reads are proven useful to identify additional phylogenetically informative regions for bait refinement or gene tree based approaches.  相似文献   

14.
The microhylid frog genus Kaloula is an adaptive radiation spanning the edge of the Asian mainland and multiple adjacent island archipelagos, with much of the clade's diversity associated with an endemic Philippine radiation. Relationships among clades from the Philippines, however, remain unresolved. With ultraconserved element (UCE) and mitogenomic data, we identified highly supported differences in topology and areas of poor resolution, for each marker set. Using the UCE data, we then identified possible instances of contemporary hybridization, past introgression, and incomplete lineage sorting (ILS) within the Philippine Kaloula. Using a simulation approach, and an estimate of the Philippine Kaloula clade origin (12.7—21.0 mya), we demonstrate that an evolutionary history including inferred instances of hybridization, introgression, and ILS leads to phylogenetic reconstructions that show concordance with results from the observed mitogenome and UCE data. In the process of validating a complex evolutionary scenario in the Philippine Kaloula, we provide the first demonstration of the efficacy of UCE data for phylogenomic studies of anuran amphibians.  相似文献   

15.
A population of putative hybrids between theendemic Rubus hawaiensis and naturalizedR. rosifolius was discovered inKpahulu Valley, on the island of Maui inthe Hawaiian archipelago. The goal of thisstudy was to molecularly characterize thisnatural hybridization event, investigate themode of hybridization, and determine the malefertility of the hybrid individuals. Bothmorphological and RAPD marker data indicatethat the putative hybrid individuals are theprogeny of R. rosifolius and R.hawaiensis. All 39 hybrid individuals sampledhad the chloroplast DNA haplotype of R.rosifolius. Thus hybridization appears to beasymmetric, with R. rosifolius acting asthe maternal parent. All hybrid individualsassessed for pollen stainability were sterile,and there was no evidence of backcrossing toeither parent. This result suggests thathybrids are of the first filial generation andthat variation among hybrids reflectsdifferences within the parental populations.Sympatric populations of R. hawaiensisand R. rosifolius occur on four islandsand six additional alien species of Rubusare naturalized and sympatric with R. hawaiensisin Hawai`i. Further investigationis merited to assess whether hybridization maypose a threat to the long term viability ofR. hawaiensis. This study highlights theincreasing frequency and negative consequencesof native-alien hybridization and theimportance of maintaining active alien speciescontrol programs in the Hawaiian Islands.  相似文献   

16.
One of the longstanding questions in phylogenetic systematics is how to address incongruence among phylogenies obtained from multiple markers and how to determine the causes. This study presents a detailed analysis of incongruent patterns between plastid and ITS/ETS phylogenies of Tribe Senecioneae (Asteraceae). This approach revealed widespread and strongly supported incongruence, which complicates conclusions about evolutionary relationships at all taxonomic levels. The patterns of incongruence that were resolved suggest that incomplete lineage sorting (ILS) and/or ancient hybridization are the most likely explanations. These phenomena are, however, extremely difficult to distinguish because they may result in similar phylogenetic patterns. We present a novel approach to evaluate whether ILS can be excluded as an explanation for incongruent patterns. This coalescence-based method uses molecular dating estimates of the duration of the putative ILS events to determine if invoking ILS as an explanation for incongruence would require unrealistically high effective population sizes. For four of the incongruent patterns identified within the Senecioneae, this approach indicates that ILS cannot be invoked to explain the observed incongruence. Alternatively, these patterns are more realistically explained by ancient hybridization events.  相似文献   

17.
With the continued adoption of genome‐scale data in evolutionary biology comes the challenge of adequately harnessing the information to make accurate phylogenetic inferences. Coalescent‐based methods of species tree inference have become common, and concatenation has been shown in simulation to perform well, particularly when levels of incomplete lineage sorting are low. However, simulation conditions are often overly simplistic, leaving empiricists with uncertainty regarding analytical tools. We use a large ultraconserved element data set (>3,000 loci) from rattlesnakes of the Crotalus triseriatus group to delimit lineages and estimate species trees using concatenation and several coalescent‐based methods. Unpartitioned and partitioned maximum likelihood and Bayesian analysis of the concatenated matrix yield a topology identical to coalescent analysis of a subset of the data in bpp . ASTRAL analysis on a subset of the more variable loci also results in a tree consistent with concatenation and bpp , whereas the SVDquartets phylogeny differs at additional nodes. The size of the concatenated matrix has a strong effect on species tree inference using SVDquartets , warranting additional investigation on optimal data characteristics for this method. Species delimitation analyses suggest up to 16 unique lineages may be present within the C. triseriatus group, with divergences occurring during the Neogene and Quaternary. Network analyses suggest hybridization within the group is relatively rare. Altogether, our results reaffirm the Mexican highlands as a biodiversity hotspot and suggest that coalescent‐based species tree inference on data subsets can provide a strongly supported species tree consistent with concatenation of all loci with a large amount of missing data.  相似文献   

18.
Aim A detailed database of distributions and phylogenetic relationships of native Hawaiian flowering plant species is used to weigh the relative influences of environmental and historical factors on species numbers and endemism. Location The Hawaiian Islands are isolated in the North Pacific Ocean nearly 4000 km from the nearest continent and nearly as distant from the closest high islands, the Marquesas. The range of island sizes, environments, and geological histories within an extremely isolated archipelago make the Hawaiian Islands an ideal system in which to study spatial variation in species distributions and diversity. Because the biota is derived from colonization followed by extensive speciation, the role of evolution in shaping the regional species assemblage can be readily examined. Methods For whole islands and regions of each major habitat, species–area relationships were assessed. Residuals of species–area relationships were subjected to correlation analysis with measures of endemism, isolation, elevation and island age. Putative groups of descendents of each colonist from outside the Hawaiian Islands were considered phylogenetic lineages whose distributions were included in analyses. Results The species–area relationship is a prominent pattern among islands and among regions of each given habitat. Species number in each case correlates positively with number of endemics, number of lineages and number of species per lineage. For mesic and wet habitat regions, island age is more influential than area on species numbers, with older islands having more species, more single‐island endemics, and higher species : lineage ratios than their areas alone would predict. Main conclusions Because species numbers and endemism are closely tied to speciation in the Hawaiian flora, particularly in the most species‐rich phylogenetic lineages, individual islands’ histories are central in shaping their biota. The Maui Nui complex of islands (Maui, Moloka‘i, Lāna‘i and Kaho‘olawe), which formed a single large landmass during most of its history, is best viewed in terms of either the age or area of the complex as a whole, rather than the individual islands existing today.  相似文献   

19.
Aim To estimate the rate of adaptive radiation of endemic Hawaiian Bidens and to compare their diversification rates with those of other plants in Hawaii and elsewhere with rapid rates of radiation. Location Hawaii. Methods Fifty‐nine samples representing all 19 Hawaiian species, six Hawaiian subspecies, two Hawaiian hybrids and an additional two Central American and two African Bidens species had their DNA extracted, amplified by polymerase chain reaction and sequenced for four chloroplast and two nuclear loci, resulting in a total of approximately 5400 base pairs per individual. Internal transcribed spacer sequences for additional outgroup taxa, including 13 non‐Hawaiian Bidens, were obtained from GenBank. Phylogenetic relationships were assessed by maximum likelihood and Bayesian inference. The age of the most recent common ancestor and diversification rates of Hawaiian Bidens were estimated using the methods of previously published studies to allow for direct comparison with other studies. Calculations were made on a per‐unit‐area basis. Results We estimate the age of the Hawaiian clade to be 1.3–3.1 million years old, with an estimated diversification rate of 0.3–2.3 species/million years and 4.8 × 10?5 to 1.3 × 10?4 species Myr?1 km?2. Bidens species are found in Europe, Africa, Asia and North and South America, but the Hawaiian species have greater diversity of growth form, floral morphology, dispersal mode and habitat type than observed in the rest of the genus world‐wide. Despite this diversity, we found little genetic differentiation among the Hawaiian species. This is similar to the results from other molecular studies on Hawaiian plant taxa, including others with great morphological variability (e.g. silverswords, lobeliads and mints). Main conclusions On a per‐unit‐area basis, Hawaiian Bidens have among the highest rates of speciation for plant radiations documented to date. The rapid diversification within such a small area was probably facilitated by the habitat diversity of the Hawaiian Islands and the adaptive loss of dispersal potential. Our findings point to the need to consider the spatial context of diversification – specifically, the relative scale of habitable area, environmental heterogeneity and dispersal ability – to understand the rate and extent of adaptive radiation.  相似文献   

20.
Aim Phylogenetic studies concerning island biogeography have been concentrated in a fraction of the numerous hot‐spot archipelagos contained within the Pacific Ocean. In this study we investigate relationships among island populations of the thomisid spider Misumenops rapaensis Berland, 1934 across the Austral Islands, a remote and rarely examined southern Pacific hot‐spot archipelago. We also assess the phylogenetic position of M. rapaensis in relation to thomisids distributed across multiple Polynesian archipelagos in order to evaluate the proposed hypothesis that thomisid spiders colonized Polynesia from multiple and opposing directions. The data allow an examination of genetic divergence and species accumulation in closely related lineages distributed across four Polynesian archipelagos. Location The study focused on four Polynesian hot‐spot archipelagos: the Austral, Hawaiian, Marquesan and Society islands. Methods Mitochondrial DNA sequences comprising c. 1400 bp (portions of cytochrome oxidase subunit I, ribosomal 16S and NADH dehydrogenase subunit I) were obtained from thomisid spiders (64 specimens, representing 33 species) collected in the Australs, the Hawaiian Islands, the Society Islands, the Marquesas, Tonga, Fiji, New Zealand, New Caledonia and North and South America. Phylogenetic analyses using parsimony, maximum‐likelihood and Bayesian approaches were employed to resolve relationships of M. rapaensis to other Polynesian Misumenops and across the Austral Islands. Results Rather than grouping with other Misumenops spp. from the archipelagos of the Society Islands, Marquesas and Hawaiian Islands, M. rapaensis appears more closely related to Diaea spp. from Tonga, Fiji, New Zealand and New Caledonia. Phylogenetic analyses strongly support M. rapaensis as monophyletic across the Austral Islands. Misumenops rapaensis sampled from the two older islands (Rurutu and Tubuai) form reciprocally monophyletic groups, while individuals from the younger islands (Raivavae and Rapa) are paraphyletic. Across the Austral Islands, M. rapaensis exhibits a surprising level of genetic divergence (maximally 11.3%), an amount nearly equivalent to that found across the 16 examined Hawaiian species (14.0%). Main conclusions Although described as a single morphologically recognized species, our results suggest that M. rapaensis comprises multiple genetically distinct lineages restricted to different Austral Islands. Phylogenetic relationships among the island populations are consistent with sequential colonization of this lineage down the Austral archipelago toward younger islands. Analyses support the hypothesis that thomisid spiders colonized the central Pacific multiple times and suggest that M. rapaensis arrived in the Austral Islands from a westward direction, while Misumenops found in neighbouring archipelagos appear to be more closely related to New World congeners to the east. Finally, our data detect asymmetrical rates of morphological evolution and species diversification following colonization of four different Polynesian archipelagos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号