首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
变应性鼻炎是特应性个体接触过敏原后由Ig E介导的I型超敏反应,以鼻腔粘膜为主要效应部位。在此过程中多种炎性细胞(辅助T细胞、嗜酸性粒细胞、嗜碱性粒细胞、肥大细胞等)及细胞因子(IL-4、IL-5、IL-25、IL-33等)构成复杂的网络相互作用,共同促进了AR的发生发展。临床上传统药物治疗及过敏原特异性免疫疗法均有一定的局限性,本文通过对参与过敏性鼻炎发病机制的各个细胞及相关细胞因子的研究进展进行梳理,希望从中发掘出治疗AR的新思路和新靶点。  相似文献   

2.
摘要 目的:本研究旨在评估钙蛋白酶抑制剂calpeptin减轻变应性鼻炎大鼠炎症的作用并探讨其机制。方法:将20只雄性SD大鼠采用数字表法随机分为4组:正常组(Normal)、变应性鼻炎组(AR)、地塞米松干预AR组(DXMS+AR)、calpeptin干预AR组(Calpeptin+AR)。造模成功后,对大鼠AR症状进行行为学评分,对大鼠鼻黏膜组织切片以HE和PAS染色法观察鼻黏膜病理改变;对大鼠外周血以ELISA法检测总IgE、IL-4、IL-13水平;对大鼠鼻黏膜组织以免疫蛋白印迹法检测GATA3蛋白表达水平。单因素方差分析进行多组间比较,LSD- t检验进行组间两两比较。结果:与Normal组相比,AR组大鼠的鼻部过敏症状、鼻黏膜嗜酸粒细胞计数及外周血总IgE水平均升高,Calpeptin与地塞米松均能减轻气道炎症,减少嗜酸性粒细胞浸润,降低血清中OVA诱导的IgE的生成。探讨机制发现,酶联免疫吸附试验检测Th2细胞因子,与Normal组比较,AR组血清IL-4、IL-13水平均升高(P<0.05),而Calpeptin与地塞米松均能降低血清IL-4、IL-13水平(P<0.05)。免疫蛋白印迹法检测大鼠鼻黏膜GATA3蛋白表达水平显示,与Normal组比较,AR组鼻黏膜 GATA3表达升高(P<0.05),而Calpeptin与地塞米松组鼻黏膜 GATA3表达均下降(P<0.05)。结论:腹腔注射calpeptin能够减轻变应性鼻炎大鼠局部和全身过敏反应,其机制可能下调GATA3表达,影响Th2细胞的分化及细胞因子的分泌有关。  相似文献   

3.
成肌分化过程包括成肌细胞的增殖,然后分化为肌细胞,最后融合形成肌管;microRNA(miRNA)是一类在转录后水平调控基因表达的微小非编码RNA,它通过靶向靶基因mRNA的3'UTR,抑制其翻译或诱导其降解。已有研究表明,miRNA在成肌分化中起重要调控作用。根据表达方式的不同,分为肌肉特异表达的miRNA,有miR-1,miR-133,miR-206,miR-208,miR-499和miR-486;和非肌肉特异表达的miRNA,其中miR-27,miR-29,miR-128,miR-199a和miR-431在成肌分化过程中具有重要的调控功能。另外,阐述了几个与miRNA相互作用从而调控成肌分化的lncRNA的功能。通过介绍两类miRNA的靶基因及调控机制,阐述了最新的研究进展。  相似文献   

4.
MicroRNA(miRNA)是一种非编码的小分子RNA,负性调控转录后基因表达。miRNA在个体时序性发育、细胞增殖分化和凋亡、器官发育、脂肪代谢等许多生物发育过程中起着重要作用。近年来对miRNA的研究证实,miRNA直接或间接影响棕色脂肪组织发育过程中重要转录因子的表达。综述了miRNA调节棕色脂肪细胞分化的最新研究进展。  相似文献   

5.
MicroRNA(miRNA)是一类广泛存在于真核生物中的小分子非编码RNA,通过抑制靶基因的翻译过程或降解靶基因的mRNA,在转录后水平上调控基因表达。在昆虫中已报道了大量的miRNA,其中部分miRNA的功能得到了解析。在昆虫变态过程中,let-7, miR-100, miR-125, miR-34, miR-14, miR-8, miR-281和 miR-252-3p能够作用于保幼激素或蜕皮激素信号通路,影响昆虫蜕皮、化蛹或翅、足及神经系统的发育。在昆虫生殖阶段,bantam, miR-184和miR-275影响生殖干细胞的分化或卵子发生。本文在介绍miRNA生物合成和作用机制的基础上,重点对昆虫变态与生殖过程中miRNA的最新研究进展进行综述。  相似文献   

6.
miR-150是一个在哺乳动物中表达的含22个核苷酸的miRNA,能通过抑制靶基因的翻译来调控细胞增殖、分化和凋亡等重要的生理、病理过程。miR-150的表达水平在造血发育不同谱系和不同阶段都存在明显差异,而造血发育异常也同样伴随着miR-150的表达异常,提示miR-150能够调控机体造血发育过程,参与了造血发育异常的发生。在机体造血系统中,miR-150主要通过调控其靶基因的表达来影响造血发育过程以及各谱系细胞的成熟、活化与功能效应。目前已报道的miR-150靶分子主要有c-Myb、Notch3、GAB1、FOXP1、Cxcr4、Prf1等。现就近年来miR-150在造血发育过程中的研究作一综述。  相似文献   

7.
MicroRNA调控动物脂肪细胞的分化   总被引:4,自引:2,他引:2  
MicroRNA (miRNA)属于非编码小调节RNA,在动物细胞的增殖、分化、凋亡和代谢等许多生物学过程中具重要作用.研究显示大量miRNA也参与动物脂肪细胞的分化调节,在前体脂肪细胞向成熟脂肪细胞的分化过程中具有多种功能.目前的研究结果表明,这些miRNA在脂肪细胞分化的早期或后期通过其靶基因发挥功能,如miR-17-92和miR-143分别通过其靶基因Rb 2/p 130和ERK 5/BMK 1调节脂肪细胞分化,过表达可促进体外培养的脂肪细胞分化.因此,了解更多miRNA在脂肪细胞分化中的功能,可以加深对动物脂肪形成分子机制的理解,并有可能将其作为脂类代谢性疾病治疗的潜在靶点.  相似文献   

8.
脂多糖对大鼠实验性变应性鼻炎的影响   总被引:2,自引:2,他引:0  
目的研究脂多糖(Lipopolysaccharide,LPS)对实验性变应性鼻炎的影响。方法SD大鼠40只随机分4组,其中,变应性鼻炎组经腹腔注射及鼻腔滴入卵清白蛋白(OVA)致敏,建立变应性鼻炎动物模型;LPS刺激组经鼻腔滴入LPS(10μg/100μL);变应性鼻炎 LPS刺激组为大鼠激发成变应性鼻炎后再以LPS滴入鼻腔。观察各组的症状变化,如喷嚏,流涕等。行常规HE及甲苯胺蓝染色观察各组鼻黏膜炎性细胞的浸润情况,并行高倍镜下嗜酸性粒细胞计数。结果①变应性鼻炎 LPS刺激组过敏症状评分高于其余各组(P<0.01);正常对照组及LPS刺激组症状评分差异无显著性(P>0.05)。②变应性鼻炎 LPS刺激组鼻黏膜中嗜酸性粒细胞计数高于变应性鼻炎组,差异有显著性(P<0.05);正常对照组及LPS刺激组鼻黏膜中嗜酸性粒细胞计数差异无显著性(P>0.05)。结论LPS刺激可以加重变应性鼻炎的症状及鼻黏膜组织的病理学改变。  相似文献   

9.
动物基因组中存在大量MicroRNA。普遍认为这些MicroRNA在广泛的基因表达过程中具有重要的作用。但是,对于每一个具体的MicroRNA的了解却相当缺乏。MicroRNA.223(miR-223)是第一个在生物信息学和造血系统都得到确认的MicroRNA。为了充分了解miR-223在造血细胞分化过程中的作用,Johnnidis等研究者首先利用骨髓和外周血中高度纯化的细胞群,验证了miR-223在骨髓细胞发育全过程中的表达情况。结果表明,成熟的miR-223低水平表达于多能造血干细胞和骨髓祖细胞。  相似文献   

10.
microRNA(miRNA)是一大类广泛存在于真核细胞当中的长度约22nt的内源性单链非编码RNA,通过与靶基因mRNA的3’非翻译区(3’untranslated region,3’UTR)结合在转录后水平调控靶基因的表达。miRNA作为调控基因表达的重要分子在骨骼肌分化调控中的作用越来越受到关注,阐明miRNA在骨骼肌增殖与分化中的作用机制具有重要的理论意义,同时也可为骨骼肌相关疾病的治疗提供新的思路。文章总结了miRNA,尤其是miR-1、miR-133和miR-206等肌肉特异性miRNA,在调控骨骼肌分化过程中作用机制的研究进展,以便于进一步工作的开展。  相似文献   

11.

Background

Mast cells play a central role in allergic and inflammatory disorders by inducing degranulation and inflammatory mediator release. Recent reports have shown that miRNAs play an important role in inflammatory response regulation. Therefore, the role of miR-223 in mast cells was investigated.

Methods

The expression of miR-223 was quantified by quantitative real-time polymerase chain reaction (qRT-PCR) in immunoglobulin E (IgE)-mediated mast cells. After successful miR-223 inhibition by transfection, degranulation was detected in IgE-mediated mast cells. The phosphorylation of IκB-α and Akt were examined using western blotting. NF-κB was tested using electrophoretic mobility shift assay. PI3K-inhibitor (LY294002) was used to investigate whether the PI3K/Akt pathway was essential for mast cell activation. The TargetScan database and a luciferase reporter system were used to identify whether insulin-like growth factor 1 receptor (IGF-1R) is a direct target of miR-223.

Results

MiR-223 expression was up-regulated in IgE-mediated mast cells, whereas its down-regulation promoted mast cell degranulation. Levels of IκB-α and Akt phosphorylation as well as NF-κB were increased in miR-223 inhibitor cells. LY294002 could block the PI3K/Akt signaling pathway and rescue the promotion caused by suppressing miR-223 in mast cells. IGF-1R was identified as a direct target of miR-223.

Conclusions

These findings suggest that down-regulation of miR-223 promotes degranulation via the PI3K/Akt pathway by targeting IGF-1R in mast cells.  相似文献   

12.
Mast cells are immune cells derived from hematopoietic progenitors. When they are activated by stimuli, they immediately release granule-associated mediators, leading to allergic inflammation. Several factors controlling mediator release have been identified; however, little is known whether microRNAs (miRNAs) are involved in this process. miRNAs are a small class of non-coding RNAs that negatively regulate gene expression. In this study, we investigated the relationship between miRNAs and degranulation in LAD2 cells, a human mast cell line. We demonstrated that silencing of Dicer, a key enzyme of miRNA biogenesis, attenuates degranulation, indicating that miRNAs are involved in mast cell degranulation. We furthermore discovered that the overexpression of miR-142-3p enhances FcεRI-mediated degranulation and that miR-142-3p rescues the reduction of degranulation by silencing Dicer. Similar effects were observed in bone marrow-derived mast cells obtained miR-142-3p-deficient mice. Our studies suggest that miR-142-3p is a potential therapeutic target in pathological conditions caused by mast cells, such as mastocytosis and allergies.  相似文献   

13.
MiR-21 is one of the most up-regulated miRNAs in multiple allergic diseases associated with eosinophilia and has been shown to positively correlate with eosinophil levels. Herein, we show that miR-21 is up-regulated during IL-5-driven eosinophil differentiation from progenitor cells in vitro. Targeted ablation of miR-21 leads to reduced eosinophil progenitor cell growth. Furthermore, miR-21−/− eosinophil progenitor cells have increased apoptosis as indicated by increased levels of annexin V positivity compared to miR-21+/+ eosinophil progenitor cells. Indeed, miR-21−/− mice have reduced blood eosinophil levels in vivo and reduced eosinophil colony forming unit capacity in the bone marrow. Using gene expression microarray analysis, we identified dysregulation of genes involved in cell proliferation (e,g, Ms4a3, Grb7), cell cycle and immune response as the most significant pathways affected by miR-21 in eosinophil progenitors. These results demonstrate that miR-21 can regulate the development of eosinophils by influencing eosinophil progenitor cell growth. Our findings have identified one of the first miRNAs with a role in regulating eosinophil development.  相似文献   

14.
MicroRNAs (miRNAs) play a key role in regulating mRNA expression, and individual miRNAs have been proposed as diagnostic and therapeutic candidates. The identification of such candidates is complicated by the involvement of multiple miRNAs and mRNAs as well as unknown disease topology of the miRNAs. Here, we investigated if disease-associated miRNAs regulate modules of disease-associated mRNAs, if those miRNAs act complementarily or synergistically, and if single or combinations of miRNAs can be targeted to alter module functions. We first analyzed publicly available miRNA and mRNA expression data for five different diseases. Integrated target prediction and network-based analysis showed that the miRNAs regulated modules of disease-relevant genes. Most of the miRNAs acted complementarily to regulate multiple mRNAs. To functionally test these findings, we repeated the analysis using our own miRNA and mRNA expression data from CD4+ T cells from patients with seasonal allergic rhinitis. This is a good model of complex diseases because of its well-defined phenotype and pathogenesis. Combined computational and functional studies confirmed that miRNAs mainly acted complementarily and that a combination of two complementary miRNAs, miR-223 and miR-139-3p, could be targeted to alter disease-relevant module functions, namely, the release of type 2 helper T-cell (Th2) cytokines. Taken together, our findings indicate that miRNAs act complementarily to regulate modules of disease-related mRNAs and can be targeted to alter disease-relevant functions.  相似文献   

15.
microRNAs have recently emerged as master regulators of gene expression during development and cell differentiation. Although profound changes in gene expression also occur during antigen-induced T cell differentiation, the role of miRNAs in the process is not known. We compared the miRNA expression profiles between antigen-specific na?ve, effector and memory CD8+ T cells using 3 different methods--small RNA cloning, miRNA microarray analysis and real-time PCR. Although many miRNAs were expressed in all the T cell subsets, the frequency of 7 miRNAs (miR-16, miR-21, miR-142-3p, miR-142-5p, miR-150, miR-15b and let-7f) alone accounted for approximately 60% of all miRNAs, and their expression was several fold higher than the other expressed miRNAs. Global downregulation of miRNAs (including 6/7 dominantly expressed miRNAs) was observed in effector T cells compared to na?ve cells and the miRNA expression levels tended to come back up in memory T cells. However, a few miRNAs, notably miR-21 were higher in effector and memory T cells compared to na?ve T cells. These results suggest that concomitant with profound changes in gene expression, miRNA profile also changes dynamically during T cell differentiation. Sequence analysis of the cloned mature miRNAs revealed an extensive degree of end polymorphism. While 3'end polymorphisms dominated, heterogeneity at both ends, resembling drosha/dicer processing shift was also seen in miR-142, suggesting a possible novel mechanism to generate new miRNA and/or to diversify miRNA target selection. Overall, our results suggest that dynamic changes in the expression of miRNAs may be important for the regulation of gene expression during antigen-induced T cell differentiation. Our study also suggests possible novel mechanisms for miRNA biogenesis and function.  相似文献   

16.
17.
18.
MicroRNAs (miRNAs) have emerged as important players in the regulation of T-cell functionality. However, comprehensive insight into the extent of age-related miRNA changes in T cells is lacking. We established miRNA expression patterns of CD45RO- naïve and CD45RO+ memory T-cell subsets isolated from peripheral blood cells from young and elderly individuals. Unsupervised clustering of the miRNA expression data revealed an age-related clustering in the CD45RO- T cells, while CD45RO+ T cells clustered based on expression of CD4 and CD8. Seventeen miRNAs showed an at least 2-fold up- or downregulation in CD45RO- T cells obtained from young as compared to old donors. Validation on the same and independent samples revealed a statistically significant age-related upregulation of miR-21, miR-223 and miR-15a. In a T-cell subset analysis focusing on known age-related phenotypic changes, we showed significantly higher miR-21 and miR-223 levels in CD8+CD45RO-CCR7- TEMRA compared to CD45RO-CCR7+ TNAIVE-cells. Moreover, miR-21 but not miR-223 levels were significantly increased in CD45RO-CD31- post-thymic TNAIVE cells as compared to thymic CD45RO-CD31+ TNAIVE cells. Upon activation of CD45RO- TNAIVE cells we observed a significant induction of miR-21 especially in CD4+ T cells, while miR-223 levels significantly decreased only in CD4+ T cells. Besides composition and activation-induced changes, we showed a borderline significant increase in miR-21 levels upon an increasing number of population doublings in CD4+ T-cell clones. Together, our results show that ageing related changes in miRNA expression are dominant in the CD45RO- T-cell compartment. The differential expression patterns can be explained by age related changes in T-cell composition, i.e. accumulation of CD8+ TEMRA and CD4+ post-thymic expanded CD31- T cells and by cellular ageing, as demonstrated in a longitudinal clonal culture model.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号