首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
Xu L  Chen J  Li XY  Ren S  Huang CX  Wu G  Li XY  Jiang XJ 《Molecular biology reports》2012,39(4):3847-3852
Na+/Ca2+ exchanger (NCX) plays important roles in cardiac electrical activity and calcium homeostasis. NCX current (INCX) shows transmural gradient across left ventricle in many species. Previous studies demonstrated that NCX expression was increased and transmural gradient of INCX was disrupted in failing heart, but the mechanisms underlying INCX remodeling still remain unknown. In present study, we used patch clamp technique to record INCX from subepicardial (EPI) myocytes and subendocardial (ENDO) myocytes isolated from sham operation (SO) mice and heart failure (HF) mice. Our results showed that INCX was higher in normal EPI cells compared with that in ENDO, whatever for forward mode or reverse mode. In HF group, INCX was significantly up-regulated, but EPI-ENDO difference was disrupted because of a more increase of INCX in ENDO myocytes. In order to explore the molecular mechanism underlying remodeling of INCX in failing heart, we detected the protein expression of NCX1 and Ca2+/calmodulin-dependent protein kinase II (CaMKII) by Western blot. We found that CaMKII activity was dramatically enhanced and parallel with the expression of NCX1 in failing heart. Our study demonstrated that transmural gradient of INCX existed in murine left ventricle, and increased activity of CaMKII should account for INCX remodeling in failing heart.  相似文献   

2.
3.
Spider venoms are known to contain various toxins that are used as an effective means to capture their prey or to defend themselves against predators. An investigation of the properties of Ornithoctonus huwena (O.huwena) crude venom found that the venom can block neuromuscular transmission of isolated mouse phrenic nerve-diaphragm and sciatic nerve-sartorius preparations. However, little is known about its electrophysiological effects on cardiac myocytes. In this study, electrophysiological activities of ventricular myocytes were detected by 100 μg/mL venom of O.huwena, and whole cell patch-clamp technique was used to study the acute effects of the venom on action potential (AP), sodium current (INa), potassium currents (IKr, IKs, Ito1 and IK1) and L-type calcium current (ICaL). The results indicated that the venom prolongs APD90 in a frequency-dependent manner in isolated neonatal rat ventricular myocytes. 100 μg/mL venom inhibited 72.3 ± 3.6% INa current, 58.3 ± 4.2% summit current and 54 ± 6.1% the end current of IKr, and 65 ± 3.3% ICaL current, yet, didn't have obvious effect on IKs, Ito1 and IK1 currents. In conclusion, the O.huwena venom represented a multifaceted pharmacological profile. It contains abundant of cardiac channel antagonists and might be valuable tools for investigation of both channels and anti- arrhythmic therapy development.  相似文献   

4.
Objective: We investigated the effect of leptin on nitric oxide production in lean and rats made obese by a high‐calorie diet. Research Methods and Procedures: The animals were placed in metabolic cages, and urine was collected in 2‐hour periods after leptin (1 mg/kg intraperintoneally) or vehicle administration. Blood was obtained 0.5, 1, 2, 4, or 6 hours after injection. Results: Leptin had no effect on systolic blood pressure in either lean or obese animals. Plasma concentration of NO metabolites (nitrites + nitrates, NOx) increased in lean rats by 31.5%, 58.0%, and 27.9% at 1, 2, and 4 hours after leptin injection, respectively. In the obese group, plasma NOx increased only at 2 hours (+36.5%). Leptin increased urinary NOx excretion by 31.8% in the first 2‐hour period after injection in lean but not in obese rats. In lean animals, leptin elevated plasma cyclic 3′, 5′‐guanosine monophosphate (cGMP) at 1, 2, and 4 hours by 35.3%, 96.3%, and 57.3%, respectively. In the obese group, plasma cGMP was higher only at 2 and 4 hours (+44.6% and +32.1%, respectively). Urinary excretion of cGMP increased in lean animals by 67.1% in the first period and by 50.4% in the second period. In the obese group, leptin induced a 53.9% increase in urinary cGMP excretion only in the first 2‐hour period. Discussion: The stimulatory effect of leptin on NO production is impaired in dietary‐induced obesity; however, leptin does not increase blood pressure in obese animals, suggesting that other NO—independent depressor mechanisms are stimulated.  相似文献   

5.
Objective: Very limited information regarding the cardiac molecular mechanism in obesity is available. The purpose of this study was to evaluate the cardiac Fas receptor‐dependent (type I) apoptotic pathway in obese Zucker rats. Research Methods and Procedures: Sixteen obese Zucker rats were studied at 5 to 6 months of age, and 16 age‐matched lean Zucker rats served as controls. Heart weight index, myocardial architecture, key components of the Fas receptor‐dependent apoptotic pathway, apoptotic activity, and fibrosis in the excised left ventricle of rats were measured by weight scales, hematoxylin and eosin staining, Western blotting, TUNEL assay, and Masson trichrome staining. Results: Body weight, whole heart weight, left ventricular weight, ratio of whole heart weight to tibia length, percentage of TUNEL‐positive cardiac myocytes, and percentage of cardiac fibrosis were significantly increased in the obese group. Cardiomyocyte disarray and increased cardiac interstitial space were observed in obese rats. Protein levels of Fas ligand, Fas death receptors, and Fas‐associated Death Domain were all significantly increased in the obese group. In addition, pro‐caspase‐8 and pro‐caspase‐3 were significantly decreased, whereas activated caspase‐8 and activated caspase‐3 were significantly increased in the obese group, which implies that pro‐forms of caspase‐8 and caspase‐3 were cleaved into active‐forms caspase‐8 and caspase‐3. Conclusions: Cardiac Fas receptor‐dependent apoptotic pathways were more activated in obese rats’ hearts, which may provide one of the possible apoptotic mechanisms for developing cardiac abnormality in obesity.  相似文献   

6.

Objective:

Accelerated gastric emptying that precipitates hunger and frequent eating could be a potential factor in the development of obesity. The aim of this study was to study gastric emptying in diet‐induced obese‐prone (DIO‐P) and DIO‐resistant (DIO‐R) rats and explore possible differences in electrical properties of calcium (Ca2+) and potassium (K+) channels of antral circular smooth muscle cells (SMCs).

Design and Methods:

Whole‐cell patch‐clamp technique was used to measure Ca2+ and K+ currents in single SMCs. Gastric emptying was evaluated 90 min after the ingestion of a solid meal.

Results:

Solid gastric emptying in the DIO‐P rats was significantly faster compared with that in the DIO‐R rats. The peak amplitude of L‐type Ca2+ current (IBa,L) at 10 mV in DIO‐P rats was greater than that in DIO‐R rats without alternation of the current–voltage curve and voltage‐dependent activation and inactivation. The half‐maximal inactivation voltage of transient outward K+ current (IKto) was more depolarized (~4 mV) in DIO‐P rats compared with that in DIO‐R rats. No difference was found in the current density or recovery kinetics of IKto between two groups. The current density of delayed rectifier K+ current (IKdr), which was sensitive to tetraethylammonium chloride but not 4‐aminopyridine, was lower in DIO‐P rats than that in DIO‐R rats.

Conclusion:

The accelerated gastric emptying in DIO‐P rats might be attributed to a higher density of IBa,L, depolarizing shift of inactivation curve of IKto and lower density of IKdr observed in the antral SMCs of DIO‐P rats.  相似文献   

7.
KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium–calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K+ currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6 × 10− 6 M and 3.5 × 10− 6 M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2 × 10− 7 M for rat and 2.5 × 10− 7 M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9–3 × 10− 6 M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1 ~ INCX < IKACh. Therefore, the ability of KB-R7943 to block inward rectifier potassium currents, in particular IKACh, should be taken into account when interpreting the data with this inhibitor from in vivo and in vitro experiments in both mammalian and fish models.  相似文献   

8.
We investigated the effects of pressure overload hypertrophy on inward sodium (I Na) and calcium currents (I Ca) in single left ventricular myocytes to determine whether changes in these current systems could account for the observed prolongation of the action potential. Hypertrophy was induced by pressure overload caused by banding of the abdominal aorta. Whole-cell patch clamp experiments were used to measure tetrodotoxin (TTX)-sensitive inward currents. The main findings were that I Ca density was unchanged whereas I Na density after stepping from –80 to –30 mV was decreased by 30% (–9.0 ± 1.16 pA pF–1 in control and –6.31 ± 0.67 pA pF–1 in hypertrophy, p < 0.05, n= 6). Steady-state activation/inactivation variables of I Na, determined by using double-pulse protocols, were similar in control and hypertrophied myocytes, whereas the time course of fast inactivation of I Na was slowed (p < 0.05) in hypertrophied myocytes. In addition, action potential clamp experiments were carried out in the absence and presence of TTX under conditions where only Ca2+ was likely to enter the cell via TTX-sensitive channels. We show for the first time that a TTX-sensitive inward current was present during the plateau phase of the action potential in hypertrophied but not control myocytes. The observed decrease in I Na density is likely to abbreviate rather than prolong the action potential. Delayed fast inactivation of Na+ channels was not sustained throughout the voltage pulse and may therefore merely counteract the effect of decreased I Na density so that net Na+ influx remains unaltered. Changes in the fast I Na do not therefore appear to contribute to lengthening of the action potential in this model of hypertrophy. However, the presence of a TTX-sensitive current during the plateau could potentially contribute to the prolongation of the action potential in hypertrophied cardiac muscle. (Mol Cell Biochem 261: 217–226, 2004)  相似文献   

9.
10.
11.
12.
Objective: Adiponectin influences insulin sensitivity (SI) and fat oxidation. Little is known about changes in adiponectin with changes in the fat content of eucaloric diets. We hypothesized that dietary fat content may influence adiponectin according to an individual's SI. Research Methods and Procedures: We measured changes in adiponectin, insulin, glucose, and leptin in response to high‐fat (HF) and low‐fat (LF) eucaloric diets in lean (n = 10) and obese (n = 11) subjects. Obese subjects were further subdivided in relation to a priori SI. Results: We found significantly higher insulin, glucose, and leptin and lower adiponectin in obese vs. lean subjects during both HF and LF. The mean group values of these measurements, including adiponectin (lean, HF 21.9 ± 9.8; LF, 20.8 ± 6.6; obese, HF 10.0 ± 3.3; LF, 9.5 ± 2.3 ng/mL; mean ± SD), did not significantly change between HF and LF diets. However, within the obese group, the insulin‐sensitive subjects had significantly higher adiponectin during HF than did the insulin‐resistant subjects. Additionally, the change in adiponectin from LF to HF diet correlated positively with the obese subjects’ baseline SI. Discussion: Although in lean and obese women, group mean values for adiponectin did not change significantly with a change in fat content of a eucaloric diet, a priori measured SI in obese subjects predicted an increase in adiponectin during the HF diet; this may be a mechanism that preserves SI in an already obese group.  相似文献   

13.
14.
As an important in vivo antioxidant, vitamin C is commonly used clinically to alleviate hypoxia-induced heart symptoms. To approach the protective mechanisms of vitamin C on hearts during hypoxia, we investigated the electrophysiological effects of vitamin C (1 mM, pretreated before hypoxia) on Na+ currents (including transient and persistent Na+ currents) in guinea pig ventricular myocytes during hypoxia by the whole-cell and single-channel patch-clamp techniques. Whole-cell recordings showed that the mean current density of I NaT in the hypoxia group decreased from the control value of 40.2142 ± 1.7735 to 27.1663 ± 1.8441 pA/pF and current density of I NaP increased from 0.3987 ± 0.0474 to 1.1854 ± 01994 pA/pF (n = 9, P < 0.05 vs. control) at 15 min. However, when vitamin C was administered before hypoxia as pretreatment, I NaT and I NaP varied moderately (mean current density of I NaT decreasing from 41.6038 ± 2.9762 to 34.6341 ± 1.9651 pA/pF and current density of I NaP increasing from 0.3843 ± 0.0636 to 0.6734 ± 0.1057 pA/pF; n = 9, P < 0.05 vs. hypoxia group). Single-channel recordings (cell-patched) showed that the mean open probability and open time of I NaP increased significantly in both groups at hypoxia 15 min. However, the increased current values of the hypoxia group were still marked at hypoxia 15 min (n = 9, P < 0.05 vs. vitamin C + hypoxia group). Our results indicate that vitamin C can attenuate the disturbed effects of hypoxia on Na+ currents (I NaT and I NaP) of cardiac myocytes in guinea pigs effectively.  相似文献   

15.
Objective: To investigate the effect of S 23521, a new glucagon‐like peptide‐1‐(7‐36) amide analogue, on food intake and body weight gain in obese rats, as well as on gene expression of several proteins involved in energy homeostasis. Research Methods and Procedures: Lean and diet‐induced obese rats were treated with either S 23521 or vehicle. S 23521 was given either intraperitoneally (10 or 100 μg/kg) or subcutaneously (100 μg/kg) for 14 and 20 days, respectively. Because the low‐dose treatment did not affect food intake and body weight, the subcutaneous treatment at high dose was selected to test the effect on selected end‐points. Results: Treated obese rats significantly decreased their cumulative energy intake in relation to vehicle‐treated counterparts (3401 ± 65 vs. 3898 ± 72 kcal/kg per 20 days; p < 0.05). Moreover, their body weight gain was reduced by 110%, adiposity was reduced by 20%, and plasma triglyceride levels were reduced by 38%. The treatment also improved glucose tolerance and insulin sensitivity of obese rats. Regarding gene expression, no changes in uncoupling protein‐1, uncoupling protein‐3, leptin, resistin, and peroxisome proliferator‐activated receptor (PPAR)‐γ were observed. Discussion: S 23521 is an effective glucagon‐like peptide‐1‐(7‐36) amide analogue, which induced a decrease in energy intake, body weight, and adiposity in a rat model of diet‐induced obesity. In addition, the treatment also improved glucose tolerance and insulin sensitivity of obese rats. These results strongly support S 23521 as a putative molecule for the treatment of obesity.  相似文献   

16.
Objective: To investigate the effect of a high‐energy (HE) diet on caloric intake, body weight, and related parameters in outbred male Sprague‐Dawley (SD) rats. Research Methods and Procedures: Twenty‐eight SD rats were fed either chow (C) for 19 weeks or HE diet for 14 weeks and then C for 5 weeks. Blood hormones and metabolites were assayed, and expression of uncoupling protein‐1 and hypothalamic energy‐balance‐related genes were determined by Northern blotting and in situ hybridization, respectively. Results: HE rats gained body weight more rapidly than C animals with a range of weight gains, but there was no evidence that weight gain was bimodally distributed. Caloric intake was transiently elevated after introduction of the HE diet. Transfer of HE rats back to C resulted in a drop in caloric intake, but a stable body weight. In terminal analysis, two of four dissected adipose tissue depots were heavier in rats that had previously been fed HE diet. Blood leptin, insulin, glucose, and nonesterified fatty acids were not different between the groups. Uncoupling protein‐1 mRNA was elevated in interscapular brown adipose tissue from HE rats. There was a trend for agouti‐related peptide mRNA in the hypothalamic arcuate nucleus to be higher in HE rats. Discussion: Contrary to other studies of the SD rat on HE diet, body weight and other measured parameters were normally distributed. There was no segregation into two distinct populations on the basis of susceptibility to diet‐induced obesity. This characteristic may be dependent on the breeding colony from which animals were sourced.  相似文献   

17.
The effect of -adrenergic stimulation on cardiac Na+/Ca2+ exchange has been controversial. To clarify the effect, we measured Na+/Ca2+ exchange current (INCX) in voltage-clamped guinea pig, mouse, and rat ventricular cells. When INCX was defined as a 5 mM Ni2+-sensitive current in guinea pig ventricular myocytes, 1 µM isoproterenol apparently augmented INCX by 32%. However, this increase was probably due to contamination of the cAMP-dependent Cl current (CFTR-Cl current, ICFTR-Cl), because Ni2+ inhibited the activation of ICFTR-Cl by 1 µM isoproterenol with a half-maximum concentration of 0.5 mM under conditions where INCX was suppressed. Five or ten millimolar Ni2+ did not inhibit ICFTR-Cl activated by 10 µM forskolin, an activator of adenylate cyclase, suggesting that Ni2+ acted upstream of adenylate cyclase in the -adrenergic signaling pathway. Furthermore, in a low-extracellular Cl bath solution, 1 µM isoproterenol did not significantly alter the amplitude of Ni2+-sensitive INCX at +50 mV, which is close to the reversal potential of ICFTR-Cl. No change in INCX amplitude was induced by 10 µM forskolin. When INCX was activated by extracellular Ca2+, it was not significantly affected by 1 µM isoproterenol in guinea pig, mouse, or rat ventricular cells. We concluded that -adrenergic stimulation does not have significant effects on INCX in guinea pig, mouse, or rat ventricular myocytes. cystic fibrosis transmembrane conductance regulator; nickel ion  相似文献   

18.
Much less is known about the contributions of the Na+/Ca2+ exchanger (NCX) and sarcoplasmic reticulum (SR) Ca2+ pump to cell relaxation in neonatal compared with adult mammalian ventricular myocytes. Based on both biochemical and molecular studies, there is evidence of a much higher density of NCX at birth that subsequently decreases during the next 2 wk of development. It has been hypothesized, therefore, that NCX plays a relatively more important role for cytosolic Ca2+ decline in neonates as well as, perhaps, a role in excitation-contraction coupling in reverse mode. We isolated neonatal ventricular myocytes from rabbits in four different age groups: 3, 6, 10, and 20 days of age. Using an amphotericin-perforated patch-clamp technique in fluo-3-loaded myocytes, we measured the caffeine-induced inward NCX current (INCX) and the Ca2+ transient. We found that the integral of INCX, an indicator of SR Ca2+ content, was greatest in myocytes from younger age groups when normalized by cell surface area and that it decreased with age. The velocity of Ca2+ extrusion by NCX (VNCX) was linear with [Ca2+] and did not indicate saturation kinetics until [Ca2+] reached 1–3 µM for each age group. There was a significantly greater time delay between the peaks of INCX and the Ca2+ transient in myocytes from the youngest age groups. This observation could be related to structural differences in the subsarcolemmal microdomains as a function of age. ontogeny of cardiac excitation-contraction coupling; sodium/calcium exchanger; cytosolic calcium concentration; subsarcolemmal calcium concentration; sarcoplasmic reticulum calcium content  相似文献   

19.
Altered glucose metabolism negatively modulates outcome in acute coronary syndromes (ACS). Insulin resistance is commonly associated with increasing BMI in the general population and these associations may involve obesity‐related changes in circulating ghrelin and adipokines. We aimed at investigating interactions between BMI, insulin resistance and ACS and their associations with plasma ghrelin and adipokine concentrations. Homeostasis model assessment of insulin resistance (HOMAIR)‐insulin resistance index, plasma adiponectin, leptin, total (T‐Ghrelin), acylated (Acyl‐Ghrelin), and desacylated ghrelin (Desacyl‐Ghrelin) were measured in 60 nondiabetic ACS patients and 44 subjects without ACS matched for age, sex, and BMI. Compared with non‐ACS, ACS patients had similar HOMAIR and plasma adipokines, but lower T‐ and Desacyl‐Ghrelin and higher Acyl‐Ghrelin. Obesity (BMI > 30) was associated with higher HOMAIR, lower adiponectin, and higher leptin (P < 0.05) similarly in ACS and non‐ACS subjects. In ACS (n = 60) HOMAIR remained associated negatively with adiponectin and positively with leptin independently of BMI and c‐reactive protein (CRP) (P < 0.05). On the other hand, low T‐ and Desacyl‐Ghrelin with high Acyl‐Ghrelin characterized both obese and non‐obese ACS patients and were not associated with HOMAIR. In conclusion, in ACS patients, obesity and obesity‐related changes in plasma leptin and adiponectin are associated with and likely contribute to negatively modulate insulin resistance. ACS per se does not however enhance the negative impact of obesity on insulin sensitivity. High acylated and low desacylated ghrelin characterize ACS patients independently of obesity, but are not associated with insulin sensitivity.  相似文献   

20.
Adipose tissue hormone leptin induces endothelium-dependent vasorelaxation mediated by nitric oxide (NO) and endothelium-derived hyperpolarizing factors (EDHF). Previously it has been demonstrated that in short-term obesity the NO-dependent and the EDHF-dependent components of vascular effect of leptin are impaired and up-regulated, respectively. Herein we examined the mechanism of the EDHF-dependent vasodilatory effect of leptin and tested the hypothesis that alterations of acute vascular effects of leptin in obesity are accounted for by chronic hyperleptinemia. The study was performed in 5 groups of rats: (1) control, (2) treated with exogenous leptin for 1 week to induce hyperleptinemia, (3) obese, fed highly-palatable diet for 4 weeks, (4) obese treated with pegylated superactive rat leptin receptor antagonist (PEG-SRLA) for 1 week, (5) fed standard chow and treated with PEG-SRLA. Acute effect of leptin on isometric tension of mesenteric artery segments was measured ex vivo. Leptin relaxed phenylephrine-preconstricted vascular segments in NO- and EDHF-dependent manner. The NO-dependent component was impaired and the EDHF-dependent component was increased in the leptin-treated and obese groups and in the latter group both these effects were abolished by PEG-SRLA. The EDHF-dependent vasodilatory effect of leptin was blocked by either the inhibitor of cystathionine γ-lyase, propargylglycine, or a hydrogen sulfide (H2S) scavenger, bismuth (III) subsalicylate. The results indicate that NO deficiency is compensated by the up-regulation of EDHF in obese rats and both effects are accounted for by chronic hyperleptinemia. The EDHF-dependent component of leptin-induced vasorelaxation is mediated, at least partially, by H2S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号