首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Suberin lamellae and a tertiary cellulose wall in endodermal cells are deposited much closer to the tip of apple roots than of annual roots. Casparian strips and lignified thickenings differentiate in the anticlinal walls of all endodermal andphi layer cells respectively, 4–5 mm from the root tip. 16 mm from the root tip and only in the endodermis opposite the phloem poles, suberin lamellae are laid down on the inner surface of the cell walls, followed 35 mm from the root tip by an additional cellulosic layer. Coincidentally with this last development, the suberin and cellulose layers detach from the outer tangential walls and the cytoplasm fragments. 85 mm from the root tip the xylem pole endodermis (50% of the endodermis) develops similarly, but does not collapse. 100–150 mm from the root tip, the surface colour of the root changes from white to brown, a phellogen develops from the pericycle and sloughing of the cortex begins. A few secondary xylem elements are visible at this stage.Plasmodesmata traverse the suberin and cellulose layers of the endodermis, but their greater frequency in the outer tangential and radial walls of thephi layer when compared with the endodermis suggests that this layer may regulate the inflow of water and nutrients to the stele.  相似文献   

2.
Arabidopsis thaliana roots have closed apical organization with three initial tiers. The dermatogen/calyptrogen tier consists of two parts-the central initials form the columella root cap, and the peripheral initial cells form the protoderm (epidermis) and the peripheral root cap. These peripheral initials divide in a sequence to form a root cap consisting of interconnected cones. the periblem initial tier forms the ground meristem (cortex). For the first week after germination the periblem consists of one layer of initial cells. The peripheral cells of the tier divide periclinally and then anticlinally (a T-division) to form the two-layered cortex (outer cortex and endodermis). After about one week, all the peripheral cells have divided periclinally forming two initials; the outermost produces the outer cortex while the inner initial produces the endodermis and middle cortex layer. The latter two cells arise via a periclinal division. During this time, other cells within the tier divide periclinally to form a two-layered tier. The plerome forms the cells of the procambium (vascular cylinder) by simple anticlinal divisions followed by longitudinal divisions to fill out the cell files of the vascular cylinder. A survey (27 dicot species in 17 families) of roots with closed apical organization revealed that there are three different types of root cap-concentric cylinders of cells (e.g.Linum), interconnecting cones (e.g.Arabidopsis) or overlapping arcs (e.g.Gossypium). H Lambers Section editor  相似文献   

3.
白鲜根的发育解剖学研究   总被引:1,自引:0,他引:1  
应用半薄切片、常规石蜡切片并结合离析法,对药用植物白鲜(Dictamnus dasycarpus Turcz.)根的发生发育过程进行了研究。结果表明:白鲜根的发生发育过程包括4个阶段,即原分生组织阶段、初生分生组织阶段、初生结构阶段以及次生结构阶段。原分生组织位于根冠内侧及初生分生组织之间,衍生细胞分化为初生分生组织。初生分生组织由原表皮、基本分生组织以及中柱原组成。原表皮分化为表皮,基本分生组织分化为皮层,中柱原分化为维管柱,共同组成根的初生结构;在初生结构中,部分表皮细胞外壁向外延伸形成根毛,皮层中分布有油细胞,内皮层有凯氏带,初生木质部为二原型或偶见三原型,外始式;根初生结构有髓或无。次生结构来源于原形成层起源的维管形成层的活动以及中柱鞘起源的木栓形成层的活动;白鲜次生韧皮部宽广,其中多年生根中可占根横切面积的85%,另外除基本组成分子外,还分布有油细胞;周皮发达,木栓层厚;初生皮层、次生木质部和次生韧皮部薄壁细胞中常充满丰富的淀粉粒。  相似文献   

4.
Summary The differentiation of the endodermis of mycorrhizal roots of Picea abies and Larix decidua was investigated by means of light and transmission electron microscopy and with fluorescence techniques. The initiation and differentiation of the Hartig net were recorded. Differences between the two tree species were found, as were differences between the two tree species and angiosperms. The Casparian band developed immediately after the origin of endodermal cells from the meristem in mycorrhizae of both tree species. In L. decidua only the primary endodermis was present in most mycorrhizal laterals. The secondary structure of the endodermis was restricted to main roots and proximal parts of larch mycorrhizae. In P. abies mycorrhizae, however, the secondary stage of the endodermis developed soon after the primary endodermis and was characterized by regular alternation of short, active passage cells and elongated, rapidly degenerating cells, the inner surface of which was covered by a thick suberin layer. Hartig net development started in P. abies short roots only after the differentiation of endodermis into the secondary stage, whereas in L. decidua, the Hartig net was already initiated at the primary endodermal stage. Differences were specific for tree species.  相似文献   

5.
水花生(Alternanthera philoxeroides)因其表型可塑性、高生长速率和快速无性繁殖能适应水、陆生境。该文利用光学显微镜和荧光显微镜对水、陆生境的水花生不定根、茎解剖结构、组织化学特征及质外体通透性进行了研究。结果表明:(1)水生境下,其不定根皮层中具较大裂生型通气组织,无次生生长,内皮层具凯氏带且栓质化,皮层和皮下层明显木质化。(2)在陆生环境下,其不定根有次生生长,胞间具通气组织,内皮层具凯氏带且栓质化,皮层和皮下层略木质化;此外,不定根还具额外形成层,产生次生维管束、薄壁组织和不定芽;多年生不定根中具直接分裂的薄壁组织,周皮具凯氏带,且栓质化和木质化。(3)水、陆生境下,其匍匐茎具髓和中空髓腔,发生次生生长,具裂-溶生型通气组织、单层内皮层、厚角组织和木质化且栓质化的角质层,陆生匍匐茎周皮栓质化且木质化。(4)水花生质外体屏障结构组成复杂,黄连素无法穿透质外体屏障结构。水花生的上述解剖学特征,是水花生适应水、陆生境的有力证据。  相似文献   

6.
菰(Zizania latifolia)是一种多年生挺水植物,为了探讨该植物根、茎和叶的解剖结构、组织化学及其质外体屏障的通透性生理。该文利用光学显微镜和荧光显微镜,对菰的根、茎、叶进行了解剖学和组织化学研究。结果表明:(1)菰不定根解剖结构由外而内分别为表皮、外皮层、单层细胞的厚壁机械组织层、皮层、内皮层和维管柱;茎结构由外而内分别为角质层、表皮、周缘厚壁机械组织层、皮层、具维管束的厚壁组织层和髓腔。叶鞘具有表皮和具维管束皮层,叶片具有表皮,叶肉和维管束。(2)不定根具有位于内侧的内皮层及其邻近栓质化细胞和外侧的外皮层组成的屏障结构;茎具内侧厚壁机械组织层,外侧的角质层和周缘厚壁机械组织层组成的屏障结构,屏障结构的细胞壁具凯氏带、木栓质和木质素沉积的组织化学特点,叶表面具有角质层。(3)菰通气组织包括根中通气组织,茎、叶皮层的通气组织和髓腔。(4)菰的屏障结构和解剖结构是其适应湿地环境的重要特征,但其茎周缘厚壁层和厚壁组织层较薄。由此推测,菰适应湿地环境,但在旱生环境中分布有一定的局限性。  相似文献   

7.
Growing tree roots are characteristically brown with white tips. The browning process, which occurs as the white region matures, has often been attributed to the deposition of suberin in various tissues. However, in pouch-grown tree seedlings of jack pine (Pinus banksiana Lamb.) and eucalyptus (Eucalyptus pilularis Sm.), browning was not linked to suberization but was caused by the deposition of condensed tannins in the walls of all cells external to the stele. Therefore, we propose using the term “tannin zone” to refer to this region of the root. Vitality tests indicated that the cells of the epidermis and cortex were alive in white regions but were dead in brown regions. Following sequential treatment with berberine hemisulfate and potassium thiocyanate, the cortical walls external to the endodermal Casparian band were full of berberine thiocyanate crystals, indicating that they were permeable to berberine. These walls should also be permeable to water and ions, which have smaller molecular dimensions than the tracer dye. Based on the anatomy and permeability of the tannin zone, we predict that its capacity for ion uptake would be reduced compared to the white zone because of a reduced absorptive plasmalemma surface area. In jack pine, some uptake could be effected by the passage cells of the endodermis. The tannin zone should be even less absorptive in eucalyptus because the exodermis remains an apoplastic barrier and the endodermis lacks passage cells. It is difficult to predict the difference between the tannin and white zones with respect to water uptake. Death of the cells external to the endodermis would reduce the resistance of the root to water movement, but deposition of tannins would increase it. The deposition of suberin lamellae in increasing numbers of endodermal cells may also retard water flow. The anatomy and physiological properties of the tannin zone are unique from those of the distal, white zone and the proximal, cork-clad zone.  相似文献   

8.
Summary Onion (Allium cepa L. cv. Ebeneezer) roots from vermiculite culture were examined with transmission electron microscopy to detect the plasmodesmata in all tissues. In young root regions, plasmodesmata linked all living cells together in all directions. In old zones, the plasmodesmatal connections of the endodermis to its neighbor tissues were not interrupted by later suberin lamella and cellulosic wall deposition. Moreover, plasmodesmata in the fully mature endodermis usually exhibited a large central cavity. In the exodermis, however, upon deposition of suberin lamellae in long cells, all plasmodesmata that initially linked them to their adjacent cells were severed. Afterwards, the long cells lost the capability of forming wound pit callose and their protoplasts began to degenerate. The mature exodermal layer was symplastically bridged to its neighbors only by the short (passage) cells that lacked suberin lamellae. Compared to the long cells, the short cells not only had thicker cytoplasm surrounding their central vacuoles but also a higher density of mitochondria and rough endoplasmic reticulum, consistent with an active involvement in the transport processes of the root. The above results were obtained by an improved, extended transmission electron microscopy procedure devised to analyze plasmodesmata in cells with suberin lamellae. By prefixing root tissues in glutaraldehyde and acrolein, all cells were well preserved. Postfixation was carried out in osmium tetroxide at a low concentration (0.5%). Following dehydration in acetone and transfer to propylene oxide, infiltration with Spurr's resin was accomplished by incubating samples in the accelerator-free mixture for 4 days, then infiltrating samples in the accelerator-amended mixture for additional 4 days.Abbreviations IE immature exodermis - ME mature exodermis - TBO toluidine blue O - TEM transmission electron microscopy  相似文献   

9.
The periderm in roots of Pinus banksiana Lamb. and the polyderm in roots of Eucalyptus pilularis Sm. originate from the pericycle. This occurs after the roots have turned brown due to deposition of tannins in the walls of cells external to the endodermis. In both species, cork cells form a continuous sheath around the vascular tissues. The cork cell walls are modified by the presence of suberin, lignin and tannin and it is the latter which imparts a brown colour to the tissue. The first layer of cork cells in both species constitutes an apoplastic barrier which prevents the fluorescent dye, berberine, from entering the vascular tissues, despite the absence of an identifiable Casparian band in the cells. Because the roots are still covered with the cortex and epidermis during early stages of periderm and polyderm formation, it is not possible to tell from the external aspect of the root when it makes a transition from the tannin zone to the cork zone.  相似文献   

10.
濒危植物海南风吹楠营养器官解剖结构特征   总被引:1,自引:0,他引:1  
该研究采用石蜡切片和光学显微技术,对海南风吹楠营养器官的解剖结构及其对环境的适应性进行了探讨。结果表明:海南风吹楠为典型异面叶,叶片中脉发达,中部分化出髓,上表皮外侧具角质层,内侧具1层内皮层,下表皮外侧无角质层,有气孔器分布,气孔器为双环型,略下陷;栅栏组织3~4层细胞,海绵组织4~6层细胞。茎的初生结构中表皮轻微角质化,维管束为外韧型,8~10个初生维管束围绕髓排列为1轮;茎的次生结构中,表皮外部角质层加厚,维管柱紧密排列连成环状,次生韧皮部和次生木质部发达,形成层细胞3~5层。根的初生结构中表皮细胞外壁加厚,外皮层细胞体积大,形状不规则,内侧具1层形成层,内皮层具凯氏带,初生木质部为多原型,呈辐射状排列。根的次生结构中木栓层细胞5~6层,木栓层内侧具1层木栓形成层,栓内层细胞3层。海南风吹楠营养器官具有一定耐阴和耐旱结构特征,同时与其生活的热带雨林沟谷中高温荫湿的环境相适应。  相似文献   

11.
The main barriers to the movement of water and ions in young roots of Zea mays were located by observing the effects of wounding various cell layers of the cortex on the roots' hydraulic conductivities and root pressures. These parameters were measured with a root pressure probe. Injury to the epidermis and cortex caused no significant change in hydraulic conductivity and either no change or a slight decline in root pressure. Injury to a small area of the endodermis did not change the hydraulic conductivity but caused an immediate and substantial drop in root pressure. When large areas of epidermis and cortex were removed (15–38% of total root mass), the endodermis was always injured and root pressure fell. The hydraulic conductance of the root increased but only by a factor of 1.2–2.7. The results indicate that the endodermis is the main barrier to the radial movement of ions but not water. The major barrier to water is the membranes and apoplast of all the living tissue. These conclusions were drawn from experiments in which hydrostatic-pressure differences were used to induce water flows across young maize roots which had an immature exodermis and an endodermis with Casparian bands but no suberin lamellae or secondary walls. The different reactions of water and ions to the endodermis can be explained by the huge difference in the permeability of membranes to these substances. A hydrophobic wall barrier such as the Casparian band should have little effect on the movement of water, which permeates membranes and, perhaps, also the Casparian bands easily. However, hydrophobic wall depositions largely prevent the movement of ions. Several hours after wounding the endodermis, root pressure recovered to some extent in most of the experiments, indicating that the wound in the endodermis had been partially healed.Abbreviations Lpr hydraulic conductivity of root; T1/2 = half-time of water exchange between root xylem and external medium This research was supported by a grant from EUROSILVA (project no. 39473C) to E.S., and by a Bilateral Exchange Grant jointly funded by the Deutsche Forschungsgemeinschaft and the Natural Sciences and Engineering Research Council of Canada to C.A.P. We thank Mr. Burkhard Stumpf for his excellent technicial assistance.  相似文献   

12.
Soybean (Glycine max L. Merr.) is a versatile and important agronomic crop grown worldwide. Each year millions of dollars of potential yield revenues are lost due to a root rot disease caused by the oomycete Phytophthora sojae (Kaufmann & Gerdemann). Since the root is the primary site of infection by this organism, we undertook an examination of the physicochemical barriers in soybean root, namely, the suberized walls of the epidermis and endodermis, to establish whether or not preformed suberin (i.e. naturally present in noninfected plants) could have a role in partial resistance to P. sojae. Herein we describe the anatomical distribution and chemical composition of soybean root suberin as well as its relationship to partial resistance to P. sojae. Soybean roots contain a state I endodermis (Casparian bands only) within the first 80 mm of the root tip, and a state II endodermis (Casparian bands and some cells with suberin lamellae) in more proximal regions. A state III endodermis (with thick, cellulosic, tertiary walls) was not present within the 200-mm-long roots examined. An exodermis was also absent, but some walls of the epidermal and neighboring cortical cells were suberized. Chemically, soybean root suberin resembles a typical suberin, and consists of waxes, fatty acids, omega-hydroxy acids, alpha,omega-diacids, primary alcohols, and guaiacyl- and syringyl-substituted phenolics. Total suberin analysis of isolated soybean epidermis/outer cortex and endodermis tissues demonstrated (1) significantly higher amounts in the endodermis compared to the epidermis/outer cortex, (2) increased amounts in the endodermis as the root matured from state I to state II, (3) increased amounts in the epidermis/outer cortex along the axis of the root, and (4) significantly higher amounts in tissues isolated from a cultivar ('Conrad') with a high degree of partial resistance to P. sojae compared with a susceptible line (OX760-6). This latter correlation was extended by an analysis of nine independent and 32 recombinant inbred lines (derived from a 'Conrad' x OX760-6 cross) ranging in partial resistance to P. sojae: Strong negative correlations (-0.89 and -0.72, respectively) were observed between the amount of the aliphatic component of root suberin and plant mortality in P. sojae-infested fields.  相似文献   

13.
To mark the apoplastic pathway of ions in the root of the dicotyledonous plant Lepidium sativum we used the heavy element lanthanum, which can be identified by analytical electron microscopy (EELS and ESI). In the front root tip, the primary walls of all meristematic cells contained lanthanum. 10-15 mm behind the root apex, lanthanum was found in the cortex cell walls up to the endodermis, but not in the stele. 20-25 mm from the tip, lanthanum was accumulated in the radial cell walls of the hypodermis, which, however, is not a complete diffusion barrier for ions, so that traces of lanthanum also were found in the cortex cell walls up to the endodermis. This study provides evidence for the presence of two apolastic diffusion barriers in the region of highest water uptake in cress roots.  相似文献   

14.
The central cylinder of the primary root of the carob tree (Ceratonia siliqua) is encircled by a layer of cells with wall thickenings, known as a phi (φ) cell layer. The development of the φ layer and the chemical composition of the cell wall thickenings have been studied in roots of C. siliqua. The results reveal the presence of condensed tannins in the mature phi thickenings and that the development of the φ layer is asynchronous: at 0–1 cm from the root tip φ thickenings appear before endodermis differentiation at the sites opposite phloem, at 1–4 cm new φ thickenings are developed at the sites opposite xylem, at 4–7 cm the φ layer consists of two layers of cells and it completely encloses the central cylinder.  相似文献   

15.
Ultrastructure and development of apoplastic barriers within indeterminate root nodules formed by Vicia faba L. were examined by light and electron microscopy. The nodule outer cortex is separated from the inner cortex by a heavily suberized nodule endodermis, which matures in submeristematic regions and possesses suberin lamellae. Unsuberized passage cells are present near vascular strands, which are surrounded by a vascular endodermis attached on the inner side of the nodule endodermal cell walls. The vascular endodermis appears immediately below the meristematic apex in developmental state I (Casparian bands), gradually develops suberin lamellae, and attains developmental state II at the base of the nodule. For chemical analysis apoplastic barrier tissues were dissected after enzymatic digestion of non-impregnated tissues. Root epidermal and endodermal cell walls as well as nodule outer cortex could be isolated as pure fractions; nodule endodermal cell walls could not be separated from vascular endodermal cell walls and enclosed xylem vessels. Gas chromatography-flame ionization detection and gas chromatography-mass spectrometry were applied for quantitative and qualitative analysis of suberin and lignin in isolated cell walls of these tissues. The suberin content of isolated endodermal cell walls of nodules was approximately twice that of the root endodermal cell walls. The suberin content of the nodule outer cortex and root epidermal cell walls was less than one-tenth of that of the nodule endodermal cell wall. Substantial amounts of lignin could only be found in the nodule endodermal cell wall fraction. Organic solvent extracts of the isolated tissues revealed long-chain aliphatic acids, steroids, and triterpenoid structures of the lupeol type. Surprisingly, extract from the outer cortex consisted of 89% triterpenoids whereas extracts from all other cell wall isolates contained not more than 16% total triterpenoids. The results of ultrastructural and chemical composition are in good correspondence and underline the important role of the examined tissues as apoplastic barriers.  相似文献   

16.
H. D. Gregor  R. Gmelin 《Protoplasma》1979,99(1-2):117-124
Summary The distribution of C-S lyase activity in root cells ofAlbizzia lophanta Benth. plantlets was investigated histochemically. H2S formed upon cleavage of exogenously applied L-cysteine was precipitated by Pb++ in a capture reaction at the site of its formation. Enzyme activity was found to be localized at the root tip and in a layer of cortex cells adjacent to the endodermis throughout the whole length of the root. Distinct areas within the exodermis, distributed in a regular pattern on the root surface, also exhibited the specific reaction. In vivo roots ofAlbizzia lophanta actively excrete the strongly smelling methylene dithiol, formed by enzymatic cleavage of djenkolic acid, the natural substrate of C-S lyase inAlbizzia. The physiological meaning of this compound, as well as the localization and intracellular distribution of C-S lyase activity are discussed.  相似文献   

17.
The development of the epidermal layer of roots of Zea is traced from the quiescent centre to the zone where root hairs develop. In the zone of cell division a three layered coat forms on the outside of the epidermal cells consisting of the outer epidermal walls, overlaid by a two-layered pellicle composed of a thick fibrillar inner layer of polysaccharide, and a thin fibrillar outer layer of protein. The epidermal cells divide several times in the same longitudinal file but rarely across a radius to give a new longitudinal file. Thus, the radial walls become much thicker than all but the original transverse walls, and packets of up to 32 daughter cells derived from a single initial may be distinguished. The pellicle develops during these divisions as a continuum over the outer walls of the daughter cells. It is proposed that the pellicle provides a stiffening to the forward end of the root which permits it to penetrate soil without bending. Support for this hypothesis is shown by the Zea mays mutant Ageotropic in which the pellicle is absent, the epidermal surface is disorganized, and which grows crookedly through soil. In the zone of extension growth of normal roots of two Zea species the pellicle thins and disappears. Circumferential strips of the pellicle were peeled off the young epidermal cells and could be stretched to twice their length. This deformation is partly the result of the pellicle stretching and breaking above the attachments of the radial walls. After normal thinning of the pellicle, detachment of the radial walls at their outer ends produces a corrugated surface in the proximal zone of the root tips. In dicotyledons (e.g., soybean), there is no similar pellicle, but a stiff root tip is produced by a long multi-layered root cap, the proximal portion of which covers the elongating epidermal surface.  相似文献   

18.
The development of tap root anatomical features was investigated in seedlings of loblolly pine (Pinus taeda L.) under both pot and pouch growth regimes. The roots possessed the three anatomical zones previously observed in jack pine (Pinus banksiana Lamb) and Eucalyptus pilularis Sm. - white, condensed tannin (CT), and cork - suggesting that this developmental sequence is preserved over species and growth conditions. Xylem development was centripetal and similar to that found earlier in P. sylvestris. Tracheids with lignified, secondary walls were detected distal to the point of endodermal Casparian band deposition. However, tests for ability to conduct fluid indicated that the protoxylem was capable of transport only proximal to the Casparian bands. Detailed examination of suberin lamella deposition in the endodermis demonstrated that passage cells were present through the white and CT zones. Progressive, centripetal cortical death in the CT zone did not include the endodermis, which remained alive until the cork layer formed, at which point the endodermis was crushed. Therefore, passage cells remain as functional portals for nutrient and water uptake in the CT zone even though the central cortex is dead. Tracer tests indicated that the endodermis provides an apoplastic barrier to tracer diffusion into the stele and that this function was taken over by the young cork layers. Results of this study point to a strong role for the endodermis in the regulation of nutrient and water uptake until the maturation of the first cork layer.  相似文献   

19.
Ectomycorrhizas were synthesized in pots and growth pouches betweenQuercus serrata, Q. acutissima, and two ectomycorrhizal fungi,Pisolithus tinctorius andHebeloma cylindrosporum. Root morphology and the structure of the mantle and Hartig net were compared using light, fluorescence, scanning and transmission electron microscopy.P. tinctorius initially colonized root cap cells, and eventually produced a highly branched lateral root system with a complete mantle, whereasH. cylindrosporum promoted root elongation with few hyphae on the root apex surface indicating that interaction between roots differs with fungal species. Hartig net structure and hyphal inclusions varied between all the combinations tested. There were structural differences between mycorrhizas ofH. cylindrosporum/Q. acutissima grown in soil and growth pouches, which indicate that the growth pouch environment can induce artefacts in roots. Fruit bodies ofH. cylindrosporum developed in pots withQ. acutissima. AlthoughP. tinctorius has been used to inoculate oak seedlings in the nursery, results of this study indicate thatH. cylindrosporum may also be an effective ectomycorrhizal fungus forQ. serrata andQ. acutissima.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号