首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orchidaceae is one of the most species-rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and their life cycle. The level of specificity of the association between orchid species and fungi can be related to the number of co-occurring orchid species. To investigate orchid mycorrhizal associations in adult-photosynthetic orchids, 16 Mediterranean orchid species belonging to 4 genera (Anacamptis, Ophrys, Orchis, and Serapias) at 11 different sites were subjected to DNA-based analysis. Eighteen operational taxonomic units representing two fungal families, Tulasnellaceae and Ceratobasidiaceae, were identified. All examined orchid species associated with different mycorrhizal fungi. Interestingly, there was a positive correlation between number of orchid species and number of mycorrhizal. Monospecific populations showed a lower number of fungi, while sympatric populations had a higher number of mycorrhizal fungi. Our results showed that Mediterranean orchid species associated with a higher number of mycorrhizal fungi confirming as photosynthetic orchids are typically generalists toward mycorrhizal fungi. Thus, photosynthetic orchids exhibit low specificity for fungal symbionts showing the potential for opportunistic associations with diverse fungi reducing competition for nutrient. We suggest that these characteristics could confer symbiotic assurance particularly in habitat with resource limitations or prone to stressful conditions.  相似文献   

2.
Yagame T  Yamato M  Suzuki A  Iwase K 《Mycorrhiza》2008,18(2):97-101
Mycorrhizal fungi were isolated from the nonphotosynthetic orchid Chamaegastrodia sikokiana and identified as members of Ceratobasidiaceae by phylogenetic analysis of the internal transcribed spacer (ITS) region of ribosomal deoxyribonucleic acid. The ITS sequences were similar among geographically separated samples obtained from Mt. Kiyosumi in Chiba Prefecture and Mt. Yokokura in Kochi Prefecture. One of the isolated fungi, KI1-2, formed ectomycorrhiza on seedlings of Abies firma in pot culture, suggesting that tripartite symbiosis exists among C. sikokiana, mycorrhizal fungi, and A. firma in nature, and carbon compounds are supplied from A. firma to C. sikokiana through the hyphae of the mycorrhizal fungi. To our knowledge, this is the second study to suggest the involvement of Ceratobasidiaceae fungi in tripartite symbiosis with achlorophyllous orchids and photosynthetic host plants.  相似文献   

3.
? Premise of the study: Mixotrophy is a strategy whereby plants acquire carbon both through photosynthesis and heterotrophic exploitation of mycorrhizal fungi. In Euro-American Pyroleae species studied hitherto, heterotrophy levels vary according to species, sites of study, and possibly light conditions. We investigated mycorrhizal association and mixotrophy in the Asiatic forest species Pyrola japonica, and their plasticity under different light conditions. ? Methods: Pyrola japonica was sampled bimonthly in sunny and shaded conditions from a deciduous broadleaf forest. We microscopically assessed the rate of fungal colonization and sequenced the ITS to identify the mycorrhizal fungi. We measured (13)C and (15)N isotopic abundances in P. japonica as compared with neighboring autotrophic and mycoheterotrophic plants, to evaluate P. japonica's heterotrophy level. ? Key results: Pyrola japonica formed arbutoid mycorrhizas devoid of fungal mantles, with intracellular hyphal coils and a Hartig net. It tended to be more colonized by mycorrhizal fungi in spring and summer. Most associated fungi belonged to ectomycorrhizal taxa, and 84% of identified fungi were Russula spp. Rate of mycorrhizal colonization and Russula frequency tended to be higher in shaded conditions. Both δ(13)C and δ(15)N values of P. japonica were significantly higher in autotrophic plants, showing that about half of the carbon on average was received from mycorrhizal fungi. Both isotopic values negatively correlated with light availability, suggesting higher heterotrophy levels in shaded conditions. ? Conclusions: The mixotrophic P. japonica undergoes changes in mycorrhizal symbionts and carbon nutrition according to light availability. Our results suggest that during Pyroleae evolution, a tendency to increased heterotrophy emerged in the Pyrola/Orthilia clade.  相似文献   

4.
Plant dependence on fungal carbon (mycoheterotrophy) evolved repeatedly. In orchids, it is connected with a mycorrhizal shift from rhizoctonia to ectomycorrhizal fungi and a high natural 13C and 15N abundance. Some green relatives of mycoheterotrophic species show identical trends, but most of these remain unstudied, blurring our understanding of evolution to mycoheterotrophy. We analysed mycorrhizal associations and 13C and 15N biomass content in two green species, Neottia ovata and N. cordata (tribe Neottieae), from a genus comprising green and nongreen (mycoheterotrophic) species. Our study covered 41 European sites, including different meadow and forest habitats and orchid developmental stages. Fungal ITS barcoding and electron microscopy showed that both Neottia species associated mainly with nonectomycorrhizal Sebacinales Clade B, a group of rhizoctonia symbionts of green orchids, regardless of the habitat or growth stage. Few additional rhizoctonias from Ceratobasidiaceae and Tulasnellaceae, and ectomycorrhizal fungi were detected. Isotope abundances did not detect carbon gain from the ectomycorrhizal fungi, suggesting a usual nutrition of rhizoctonia‐associated green orchids. Considering associations of related partially or fully mycoheterotrophic species such as Neottia camtschatea or N. nidus‐avis with ectomycorrhizal Sebacinales Clade A, we propose that the genus Neottia displays a mycorrhizal preference for Sebacinales and that the association with nonectomycorrhizal Sebacinales Clade B is likely ancestral. Such a change in preference for mycorrhizal associates differing in ecology within the same fungal taxon is rare among orchids. Moreover, the existence of rhizoctonia‐associated Neottia spp. challenges the shift to ectomycorrhizal fungi as an ancestral pre‐adaptation to mycoheterotrophy in the whole Neottieae.  相似文献   

5.
In the mycorrhizal symbiosis, plants exchange photosynthates for mineral nutrients acquired by fungi from the soil. This mutualistic arrangement has been subverted by hundreds of mycorrhizal plant species that lack the ability to photosynthesize. The most numerous examples of this behaviour are found in the largest plant family, the Orchidaceae. Although these non-photosynthetic orchid species are known to be highly specialized exploiters of the ectomycorrhizal symbiosis, photosynthetic orchids are thought to use free-living saprophytic, or pathogenic, fungal lineages. However, we present evidence that putatively photosynthetic orchids from five species which grow in the understorey of forests: (i) form mycorrhizas with ectomycorrhizal fungi of forest trees; and (ii) have stable isotope signatures indicating distinctive pathways for nitrogen and carbon acquisition approaching those of non-photosynthetic orchids that associate with ectomycorrhizal fungi of forest trees. These findings represent a major shift in our understanding of both orchid ecology and evolution because they explain how orchids can thrive in low-irradiance niches and they show that a shift to exploiting ectomycorrhizal fungi precedes viable losses of photosynthetic ability in orchid lineages.  相似文献   

6.
Chen  Yanhong  Gao  Yue  Song  Linli  Zhao  Zeyu  Guo  Shunxing  Xing  Xiaoke 《中国科学:生命科学英文版》2019,62(6):838-847
Mycorrhizal fungi play an important role in the germination and growth of orchids essentially influencing their survival,abundance, and spatial distribution. In this study, we investigated the composition of the mycorrhizal fungal community in seven terrestrial orchid species inhabiting Song Mountain, Beijing, China, using Illumina MiSeq high-throughput sequencing. The mycorrhizal communities in the seven orchids were mainly composed of members of the Ceratobasidiaceae, Sebacinales, and Tulasnellaceae, while a number of ectomycorrhizal fungi belonging to the Russulaceae, Tricholomataceae, Thelephoraceae, and Cortinariaceae were occasionally observed. However, the dominant fungal associates and mycorrhizal community differed significantly among the orchid species as well as subhabitats. These findings confirm the previous observation that sympatric orchid species show different preferences for mycorrhizal fungi, which may drive niche partitioning and contribute to their cooccurrence.  相似文献   

7.
Lady's slipper orchids (Cypripedium spp.) are rare terrestrial plants that grow throughout the temperate Northern Hemisphere. Like all orchids, they require mycorrhizal fungi for germination and seedling nutrition. The nutritional relationships of adult Cypripedium mycorrhizae are unclear; however, Cypripedium distribution may be limited by mycorrhizal specificity, whether this specificity occurs only during the seedling stage or carries on into adulthood. We attempted to identify the primary mycorrhizal symbionts for 100 Cypripedium plants, and successfully did so with two Cypripedium calceolus, 10 Cypripedium californicum, six Cypripedium candidum, 16 Cypripedium fasciculatum, two Cypripedium guttatum, 12 Cypripedium montanum, and 11 Cypripedium parviflorum plants from a total of 44 populations in Europe and North America, yielding fungal nuclear large subunit and mitochondrial large subunit sequence and RFLP (restriction fragment length polymorphism) data for 59 plants. Because orchid mycorrhizal fungi are typically observed without fruiting structures, we assessed fungal identity through direct PCR (polymerase chain reaction) amplification of fungal genes from mycorrhizally colonized root tissue. Phylogenetic analysis revealed that the great majority of Cypripedium mycorrhizal fungi are members of narrow clades within the fungal family Tulasnellaceae. Rarely occurring root endophytes include members of the Sebacinaceae, Ceratobasidiaceae, and the ascomycetous genus, Phialophora. C. californicum was the only orchid species with apparently low specificity, as it associated with tulasnelloid, ceratobasidioid, and sebacinoid fungi in roughly equal proportion. Our results add support to the growing literature showing that high specificity is not limited to nonphotosynthetic plants, but also occurs in photosynthetic ones.  相似文献   

8.
Background and Aims Most fully mycoheterotrophic (MH) orchids investigated to date are mycorrhizal with fungi that simultaneously form ectomycorrhizas with forest trees. Only a few MH orchids are currently known to be mycorrhizal with saprotrophic, mostly wood-decomposing, fungi instead of ectomycorrhizal fungi. This study provides evidence that the importance of associations between MH orchids and saprotrophic non-Rhizoctonia fungi is currently under-estimated.Methods Using microscopic techniques and molecular approaches, mycorrhizal fungi were localized and identified for seven MH orchid species from four genera and two subfamilies, Vanilloideae and Epidendroideae, growing in four humid and warm sub-tropical forests in Taiwan. Carbon and nitrogen stable isotope natural abundances of MH orchids and autotrophic reference plants were used in order to elucidate the nutritional resources utilized by the orchids.Key Results Six out of the seven MH orchid species were mycorrhizal with either wood- or litter-decaying saprotrophic fungi. Only one orchid species was associated with ectomycorrhizal fungi. Stable isotope abundance patterns showed significant distinctions between orchids mycorrhizal with the three groups of fungal hosts.Conclusions Mycoheterotrophic orchids utilizing saprotrophic non-Rhizoctonia fungi as a carbon and nutrient source are clearly more frequent than hitherto assumed. On the basis of this kind of nutrition, orchids can thrive in deeply shaded, light-limiting forest understoreys even without support from ectomycorrhizal fungi. Sub-tropical East Asia appears to be a hotspot for orchids mycorrhizal with saprotrophic non-Rhizoctonia fungi.  相似文献   

9.
Fungal specificity bottlenecks during orchid germination and development   总被引:2,自引:0,他引:2  
Fungus-subsidized growth through the seedling stage is the most critical feature of the life history for the thousands of mycorrhizal plant species that propagate by means of 'dust seeds.' We investigated the extent of specificity towards fungi shown by orchids in the genera Cephalanthera and Epipactis at three stages of their life cycle: (i) initiation of germination, (ii) during seedling development, and (iii) in the mature photosynthetic plant. It is known that in the mature phase, plants of these genera can be mycorrhizal with a number of fungi that are simultaneously ectomycorrhizal with the roots of neighbouring forest trees. The extent to which earlier developmental stages use the same or a distinctive suite of fungi was unclear. To address this question, a total of 1500 packets containing orchid seeds were buried for up to 3 years in diverse European forest sites which either supported or lacked populations of helleborine orchids. After harvest, the fungi associated with the three developmental stages, and with tree roots, were identified via cultivation-independent molecular methods. While our results show that most fungal symbionts are ectomycorrhizal, differences were observed between orchids in the representation of fungi at the three life stages. In Cephalanthera damasonium and C. longifolia , the fungi detected in seedlings were only a subset of the wider range seen in germinating seeds and mature plants. In Epipactis atrorubens , the fungi detected were similar at all three life stages, but different fungal lineages produced a difference in seedling germination performance. Our results demonstrate that there can be a narrow checkpoint for mycorrhizal range during seedling growth relative to the more promiscuous germination and mature stages of these plants' life cycle.  相似文献   

10.
? Premise of the study: In addition to autotrophic and fully mycoheterotrophic representatives, the orchid family comprises species that at maturity obtain C and N partially from fungal sources. These partial mycoheterotrophs are often associated with fungi that simultaneously form ectomycorrhizas with trees. This study investigates mycorrhizal nutrition for orchids from the southwestern Australian biodiversity hotspot. ? Methods: The mycorrhizal fungi of 35 green and one achlorophyllous orchid species were analyzed using molecular methods. Nutritional mode was identified for 27 species by C and N isotope abundance analysis in comparison to non-orchids from the same habitat. As a complementary approach, (13)CO(2) pulse labeling was applied to a subset of six orchid species to measure photosynthetic capacity. ? Key results: Almost all orchids associated with rhizoctonia-forming fungi. Due to much higher than expected variation within the co-occurring nonorchid reference plants, the stable isotope approach proved challenging for assigning most orchids to a specialized nutritional mode; therefore, these orchids were classified as autotrophic at maturity. The (13)CO(2) pulse labeling confirmed full autotrophy for six selected species. Nonetheless, at least three orchid species (Gastrodia lacista, Prasophyllum elatum, Corybas recurvus) were identified as nutritionally distinctive from autotrophic orchids and reference plants. ? Conclusions: Despite the orchid-rich flora in southwestern Australia, partial mycoheterotrophy among these orchids is less common than in other parts of the world, most likely because most associate with saprotrophic fungi rather than ectomycorrhizal fungi.  相似文献   

11.
Fungi from the Ceratobasidiaceae family have important ecological roles as pathogens, saprotrophs, non-mycorrhizal endophytes, orchid mycorrhizal and ectomycorrhizal symbionts, but little is known about the distribution and evolution of these nutritional modes. All public ITS sequences of Ceratobasidiaceae were downloaded from databases, annotated with ecological and taxonomic metadata, and tested for the non-random phylogenetic distribution of nutritional modes. Phylogenetic analysis revealed six main clades within Ceratobasidiaceae and a poor correlation between molecular phylogeny and morphological–cytological characters traditionally used for taxonomy. Sequences derived from soil (representing putative saprotrophs) and orchid mycorrhiza clustered together, but remained distinct from pathogens. All nutritional modes were phylogenetically conserved in the Ceratobasidiaceae based on at least one index. Our analyses suggest that in general, autotrophic orchids form root symbiosis with available Ceratobasidiaceae isolates in soil. Ectomycorrhiza-forming capability has evolved twice within the Ceratobasidiaceae and it had a strong influence on the evolution of mycoheterotrophy and host specificity in certain orchid taxa.  相似文献   

12.
Among European Neottieae, Limodorum abortivum is a common Mediterranean orchid. It forms small populations with a patchy distribution in woodlands, and is characterized by much reduced leaves, suggesting a partial mycoheterotrophy. We have investigated both the photosynthetic abilities of L. abortivum adult plants and the diversity of mycorrhizal fungi in Limodorum plants growing in different environments and plant communities (coniferous and broadleaf forests) over a wide geographical and altitudinal range. Despite the presence of photosynthetic pigments, CO2 fixation was found to be insufficient to compensate for respiration in adult plants. Fungal diversity was assessed by morphological and molecular methods in L. abortivum as well as in the related rare species Limodorum trabutianum and Limodorum brulloi. Phylogenetic analyses of the fungal internal transcribed spacer (ITS) sequences, obtained from root samples of about 80 plants, revealed a tendency to associate predominantly with fungal symbionts of the genus Russula. Based on sequence similarities with known species, most root endophytes could be ascribed to the species complex encompassing Russula delica, Russula chloroides, and Russula brevipes. Few sequences clustered in separate groups nested within Russula, a genus of ectomycorrhizal fungi. The morphotypes of ectomycorrhizal root tips of surrounding trees yielded sequences similar or identical to those obtained from L. abortivum. These results demonstrate that Limodorum species with inefficient photosynthesis specifically associate with ectomycorrhizal fungi, and appear to have adopted a nutrition strategy similar to that known from achlorophyllous orchids.  相似文献   

13.
Mycoheterotrophic species (i.e., achlorophyllous plants obtaining carbon from their mycorrhizal fungi) arose many times in evolution of the Neottieae, an orchid tribe growing in forests. Moreover, chlorophyllous Neottieae species show naturally occurring achlorophyllous individuals. We investigated the fungal associates of such a member of the Neottieae, Epipactis microphylla, to understand whether their mycorrhizal fungi predispose the Neottieae to mycoheterotrophy. Root symbionts were identified by sequencing the fungal ITS of 18 individuals from three orchid populations, including achlorophyllous and young, subterranean individuals. No rhizoctonias (the usual orchid symbionts) were recovered, but 78% of investigated root pieces were colonized by Tuber spp. Other Pezizales and some Basidiomycetes were also found. Using electron microscopy, we demonstrated for the first time that ascomycetes, especially truffles, form typical orchid mycorrhizae. All identified fungi (but one) belonged to taxa forming ectomycorrhizae on tree roots, and four of them were even shown to colonize surrounding trees. This is reminiscent of mycoheterotrophic orchid species that also associate with ectomycorrhizal fungi, although with higher specificity. Subterranean and achlorophyllous E. microphylla individuals thus likely rely on tree photosynthates, and a partial mycoheterotrophy in individuals plants can be predicted. We hypothesize that replacement of rhizoctonias by ectomycorrhizal symbionts in Neottieae entails a predisposition to achlorophylly.  相似文献   

14.
Mycorrhizal association is a common characteristic in a majority of land plants, and the survival and distribution of a species can depend on the distribution of suitable fungi in its habitat. Orchidaceae is one of the most species‐rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and some also for subsequent growth and survival. Given this obligate dependence, at least in the early growth stages, elucidating the patterns of orchid–mycorrhizal relationships is critical to orchid biology, ecology and conservation. To assess whether rarity of an orchid is determined by its specificity towards its fungal hosts, we studied the spatial and temporal variability in the host fungi associated with one of the rarest North American terrestrial orchids, Piperia yadonii. The fungal internal transcribed spacer region was amplified and sequenced by sampling roots from eight populations of P. yadonii distributed across two habitats, Pinus radiata forest and maritime chaparral, in California. Across populations and sampling years, 26 operational taxonomic units representing three fungal families, the Ceratobasidiaceae, Sebacinaceae and Tulasnellaceae, were identified. Fungi belonging to the Sebacinaceae were documented in orchid roots only at P. radiata forest sites, while those from the Ceratobasidiaceae and Tulasnellaceae occurred in both habitats. Our results indicate that orchid rarity can be unrelated to the breadth of mycorrhizal associations. Our data also show that the dominance of various fungal families in mycorrhizal plants can be influenced by habitat preferences of mycorrhizal partners.  相似文献   

15.
高越  郭顺星  邢晓科 《菌物学报》2019,38(11):1808-1825
自然环境下,兰科植物种子细小无胚乳,需要和适宜的真菌共生才能萌发,因而与真菌有天然的共生关系。自身繁殖率低加之近年来栖息地环境破坏导致兰科植物资源更加濒危,而通过筛选适合的真菌进行种子的共生萌发可以有效地实现兰科植物的种质保育及濒危种类野生居群的生态恢复。本文对地生型、附生型以及腐生型等兰科植物已发现的萌发真菌的多样性进行了系统地梳理,发现担子菌门的胶膜菌科、角担菌科以及蜡壳耳目真菌为已报道共生萌发真菌的主要类群;同时对兰科植物种子的共生萌发机制,包括形态学机制、营养机制和分子机制等方面的相关研究进行了归纳论述,但是当前关于兰科植物和真菌互作机制方面的研究还相对较少,许多问题需要进一步明确。本文对共生萌发真菌在兰科植物保育和繁育中的应用以及共生萌发机制的研究等方面具有一定的参考价值。  相似文献   

16.
Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant–fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant–fungal symbiosis in subtropical forests is complex in that it includes “non-typical” plant–fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that associations with multiple functional (or phylogenetic) groups of fungi are ubiquitous among plants. Moreover, ectomycorrhizal fungal symbionts of fagaceous plants may “invade” the roots of neighboring non-fagaceous plants, potentially influencing the interactions between non-fagaceous plants and their arbuscular-mycorrhizal fungal symbionts at a fine spatial scale.  相似文献   

17.
Pyrola rotundifolia (Ericaceae, Pyroleae tribe) is an understorey subshrub that was recently demonstrated to receive considerable amount of carbon from its fungal mycorrhizal associates. So far, little is known of the identity of these fungi and the mycorrhizal anatomy in the Pyroleae. Using 140 mycorrhizal root fragments collected from two Estonian boreal forests already studied in the context of mixotrophic Ericaceae in sequence analysis of the ribosomal DNA internal transcribed spacer region, we recovered 71 sequences that corresponded to 45 putative species in 19 fungal genera. The identified fungi were mainly ectomycorrhizal basidiomycetes, including Tomentella, Cortinarius, Russula, Hebeloma, as well as some ectomycorrhizal and/or endophytic ascomycetes. The P. rotundifolia fungal communities of the two forests did not differ significantly in terms of species richness, diversity and nutritional mode. The relatively high diversity retrieved suggests that P. rotundifolia does not have a strict preference for any fungal taxa. Anatomical analyses showed typical arbutoid mycorrhizae, with variable mantle structures, uniseriate Hartig nets and intracellular hyphal coils in the large epidermal cells. Whenever compared, fungal ultrastructure was congruent with the molecular identification. Similarly to other mixotrophic and autotrophic pyroloids in the same forests, P. rotundifolia shares its mycorrhizal fungal associates with surrounding trees that are likely a carbon source for pyroloids.  相似文献   

18.
All orchids have an obligate relationship with mycorrhizal symbionts. Most orchid mycorrhizal fungi are classified in the form-genus Rhizoctonia. This group includes anamorphs of Tulasnella, Ceratobasidium, and Thanatephorus. Rhizoctonia can be classified according to the number of nuclei in young cells (multi-, bi-, and uninucleate). From nine Puerto Rican orchids we isolated 108 Rhizoctonia-like fungi. Our isolates were either bi- or uninucleate, the first report of uninucleate Rhizoctonia-like fungi as orchid endophytes. We sequenced the internal transcribed spacer (ITS) region of nuclear ribosomal DNA from 26 isolates and identified four fungal lineages, all related to Ceratobasidium spp. from temperate regions. Most orchid species hosted more than one lineage, demonstrating considerable variation in mycorrhizal associations even among related orchid species. The uninucleate condition was not a good phylogenetic character in mycorrhizal fungi from Puerto Rico. All four lineages were represented by fungi from Tolumnia variegata, but only one lineage included fungi from Ionopsis utricularioides. Tropical epiphytic orchids appear to vary in degree of specificity in their mycorrhizal interactions more than previously thought.  相似文献   

19.
Further advances in orchid mycorrhizal research   总被引:4,自引:0,他引:4  
Dearnaley JD 《Mycorrhiza》2007,17(6):475-486
Orchid mycorrhizas are mutualistic interactions between fungi and members of the Orchidaceae, the world’s largest plant family. The majority of the world’s orchids are photosynthetic, a small number of species are myco-heterotrophic throughout their lifetime, and recent research indicates a third mode (mixotrophy) whereby green orchids supplement their photosynthetically fixed carbon with carbon derived from their mycorrhizal fungus. Molecular identification studies of orchid-associated fungi indicate a wide range of fungi might be orchid mycobionts, show common fungal taxa across the globe and support the view that some orchids have specific fungal interactions. Confirmation of mycorrhizal status requires isolation of the fungi and restoration of functional mycorrhizas. New methods may now be used to store orchid-associated fungi and store and germinate seed, leading to more efficient culture of orchid species. However, many orchid mycorrhizas must be synthesised before conservation of these associations can be attempted in the field. Further gene expression studies of orchid mycorrhizas are needed to better understand the establishment and maintenance of the interaction. These data will add to efforts to conserve this diverse and valuable association.  相似文献   

20.
徐玲玲  张焱  许静 《菌物学报》2019,38(3):291-312
兰科植物与丝核菌类真菌,包括胶膜菌科、角担菌科和蜡壳菌科等形成菌根共生体。胶膜菌科真菌作为最广泛分布的共生菌根真菌,表现出与兰科植物的协同进化与密切关系。除了形态学特征分析和比较外,分子技术促进了兰科植物胶膜菌的分类学和多样性研究。兰科植物与胶膜菌的特异性可能限制兰科植物的分布和移栽后的生存能力,但有些兰科植物与胶膜菌的共生关系会因为地理分布或环境变化进行调整,使植物更好地生存,这种适应性为实现无菌苗菌根化来促进兰科植物的迁地保护或繁殖提供可能。本文综述了兰科植物共生菌根真菌胶膜菌在分类学、多样性、特异性和适应性等方面的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号