首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 723 毫秒
1.
The Orchidaceae are globally distributed and represent a diverse lineage of obligate mycotrophic plants. Given their dependence on symbiotic fungi for germination and/or plant development, fungal community structure in substrates is expected to influence the distribution and persistence of orchid species. Yet, simultaneous characterization of orchid mycorrhizal fungal (OMF) communities in roots and in soil is rarely reported. To explain the co-distributions of OMF in roots, orchid-occupied, and bulk soil, we characterized mycorrhizal fungi associated with Platanthera praeclara over multiple years across its entire natural distribution within the North American tallgrass prairie. Root derived OMF communities included 24 Ceratobasidiaceae and 7 Tulasnellaceae operational taxonomic units (OTUs) though the orchid exhibited high spatio-temporal specificity toward a single Ceratobasidiaceae OTU, which was strongly stable across population sizes and phenological stages of the sampled individuals. The preferred OMF OTUs were primarily restricted to orchid-occupied locations while infrequent or absent in bulk soil. Variation in soil OMF assemblies was explained most by soil moisture, magnesium, manganese, and clay. In this first study of coupled root and soil OMF communities across a threatened grassland ecosystem, we report a strong relationship, further nuanced by soil chemistry, between a rare fungus and a rare orchid.  相似文献   

2.
? We investigated the fungal symbionts and carbon nutrition of a Japanese forest photosynthetic orchid, Platanthera minor, whose ecology suggests a mixotrophic syndrome, that is, a mycorrhizal association with ectomycorrhiza (ECM)-forming fungi and partial exploitation of fungal carbon. ? We performed molecular identification of symbionts by PCR amplifications of the fungal ribosomal DNA on hyphal coils extracted from P. minor roots. We tested for a (13)C and (15)N enrichment characteristic of mixotrophic plants. We also tested the ectomycorrhizal abilities of orchid symbionts using a new protocol of direct inoculation of hyphal coils onto roots of Pinus densiflora seedlings. ? In phylogenetic analyses, most isolated fungi were close to ECM-forming Ceratobasidiaceae clades previously detected from a few fully heterotrophic orchids or environmental ectomycorrhiza surveys. The direct inoculation of fungal coils of these fungi resulted in ectomycorrhiza formation on P. densiflora seedlings. Stable isotope analyses indicated mixotrophic nutrition of P. minor, with fungal carbon contributing from 50% to 65%. ? This is the first evidence of photosynthetic orchids associated with ectomycorrhizal Ceratobasidiaceae taxa, confirming the evolution of mixotrophy in the Orchideae orchid tribe, and of ectomycorrhizal abilities in the Ceratobasidiaceae. Our new ectomycorrhiza formation technique may enhance the study of unculturable orchid mycorrhizal fungi.  相似文献   

3.
李佳瑶  赵泽宇  高越  邢晓科 《菌物学报》2021,40(6):1317-1327
兰科菌根真菌(OMF)被认为是影响兰科植物物种丰度和分布的一个重要因素。对广域分布兰科植物的菌根区系进行研究有助于人们更深入地了解兰科植物分布格局的形成机制。本研究以我国广域分布的兰科药用植物绶草Spiranthes sinensis为材料,采用Illumina Miseq高通量测序技术对北京、上海、江西、广西、云南、甘肃6个样地的绶草菌根区系进行了研究。一共检测到51个OMF分类单元,其中角担菌科Ceratobasidiaceae真菌是绶草菌根的主要类群,约有1/3的角担菌科种类存在于所有的样本中,说明该类真菌亦广域分布;胶膜菌科Tulasnellaceae、肉丝耳科Serendipitaceae、红菇科Russulaceae、革菌科Thelephoraceae、口蘑科Tricholomataceae等真菌亦有发现,只是其相对多度较低,且较多种类表现出明显的地域特异性;6个样地的绶草菌根区系组成存在显著性差异,且这种差异与地理距离之间并未表现出明显的相关性,暗示菌根区系组成更多受生境因素的影响。本研究结果可为进一步采用菌根技术实现该类兰科药用植物的种质保育及栽培生产提供理论参考。  相似文献   

4.
Interspecific interactions play an important role in community assembly. A basic ecological question is whether interactions are specialized (one to one) or generalized (many to many). Specialization of interactions should ideally be assessed across several populations because species could be specialists at a particular site but generalists when several sites are considered. Mycorrhizal interactions are fundamental for orchid life and distribution, but their level of specialization is still under debate. To understand the extent to which epiphytic orchids are specialists in their mycorrhizal interactions, we studied the richness and phylogenetic structure of mycobionts across different sites, and the similarity in the mycobiont composition between coexisting orchid species. We sequenced the nrDNA ITS2 region and explored the mycobiont communities associated with two epiphytic orchids, Epidendrum marsupiale and Cyrtochilum pardinum, at two elevations within two sites in Ecuador. We found 108 OTUs belonging to Serendipitaceae (66), Ceratobasidiaceae (22), Atractiellales (11) and Tulasnellaceae (9). Orchids at the highest elevations hosted the highest OTU richness. The two orchid species shared a high percentage of mycobionts between all sites. No phylogenetic structure within orchid mycorrhizal communities was found at any sites or elevations. Our results indicate that the studied orchids are generalists and share a broad group of mycobionts (16 OTUs) with no apparent niche segregation within or between sites.  相似文献   

5.
Mycorrhizal association is a common characteristic in a majority of land plants, and the survival and distribution of a species can depend on the distribution of suitable fungi in its habitat. Orchidaceae is one of the most species‐rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and some also for subsequent growth and survival. Given this obligate dependence, at least in the early growth stages, elucidating the patterns of orchid–mycorrhizal relationships is critical to orchid biology, ecology and conservation. To assess whether rarity of an orchid is determined by its specificity towards its fungal hosts, we studied the spatial and temporal variability in the host fungi associated with one of the rarest North American terrestrial orchids, Piperia yadonii. The fungal internal transcribed spacer region was amplified and sequenced by sampling roots from eight populations of P. yadonii distributed across two habitats, Pinus radiata forest and maritime chaparral, in California. Across populations and sampling years, 26 operational taxonomic units representing three fungal families, the Ceratobasidiaceae, Sebacinaceae and Tulasnellaceae, were identified. Fungi belonging to the Sebacinaceae were documented in orchid roots only at P. radiata forest sites, while those from the Ceratobasidiaceae and Tulasnellaceae occurred in both habitats. Our results indicate that orchid rarity can be unrelated to the breadth of mycorrhizal associations. Our data also show that the dominance of various fungal families in mycorrhizal plants can be influenced by habitat preferences of mycorrhizal partners.  相似文献   

6.
高越  郭顺星  邢晓科 《菌物学报》2019,38(11):1808-1825
自然环境下,兰科植物种子细小无胚乳,需要和适宜的真菌共生才能萌发,因而与真菌有天然的共生关系。自身繁殖率低加之近年来栖息地环境破坏导致兰科植物资源更加濒危,而通过筛选适合的真菌进行种子的共生萌发可以有效地实现兰科植物的种质保育及濒危种类野生居群的生态恢复。本文对地生型、附生型以及腐生型等兰科植物已发现的萌发真菌的多样性进行了系统地梳理,发现担子菌门的胶膜菌科、角担菌科以及蜡壳耳目真菌为已报道共生萌发真菌的主要类群;同时对兰科植物种子的共生萌发机制,包括形态学机制、营养机制和分子机制等方面的相关研究进行了归纳论述,但是当前关于兰科植物和真菌互作机制方面的研究还相对较少,许多问题需要进一步明确。本文对共生萌发真菌在兰科植物保育和繁育中的应用以及共生萌发机制的研究等方面具有一定的参考价值。  相似文献   

7.
We compared the nutritional modes and habitats of orchids (e.g., autotrophic, partially or fully mycoheterotrophic) of the Mediterranean region and adjacent islands of Macaronesia. We hypothesized that ecological factors (e.g., relative light availability, surrounding vegetation) determine the nutritional modes of orchids and thus impose restrictions upon orchid distribution. Covering habitats from dark forests to open sites, orchid samples of 35 species from 14 genera were collected from 20 locations in the Mediterranean and Macaronesia to test for mycoheterotrophy. Mycorrhizal fungi were identified via molecular analyses, and stable isotope analyses were applied to test whether organic nutrients are gained from the fungal associates. Our results show that orchids with partial or full mycoheterotrophy among the investigated species are found exclusively in Neottieae thriving in light-limited forests. Neottioid orchids are missing in Macaronesia, possibly because mycoheterotrophy is constrained by the lack of suitable ectomycorrhizal fungi. Furthermore, most adult orchids of open habitats in the Mediterranean and Macaronesia show weak or no N gains from fungi and no C gain through mycoheterotrophy. Instead isotope signatures of some of these species indicate net plant-to-fungus C transfer.  相似文献   

8.
Eucalyptus tree species are widely used in Ethiopian plantations, but the impact of these plantations on the soil fungal communities is still unknown. We assessed the changes in diversity, species composition and ecological guilds of the soil fungal communities across tree ages of Eucalyptus grandis plantations by DNA metabarcoding of ITS2 amplicons. Changes in soil fungal species composition, diversity and ecological guilds were related to stand age but also to fertility changes. The relative abundance of saprotrophs and pathogens were negatively correlated with stand age, and positively with soil fertility. In contrast, the relative abundance and diversity of ectomycorrhizal species were higher in older, less fertile stands, including well-known cosmopolitan species but also species associated with Eucalyptus, such as Scleroderma albidum and Descomyces albellus. We show that soil fungal community changes are linked to progressive soil colonization by tree roots but are also related to soil fertility changes.  相似文献   

9.
Lady's slipper orchids (Cypripedium spp.) are rare terrestrial plants that grow throughout the temperate Northern Hemisphere. Like all orchids, they require mycorrhizal fungi for germination and seedling nutrition. The nutritional relationships of adult Cypripedium mycorrhizae are unclear; however, Cypripedium distribution may be limited by mycorrhizal specificity, whether this specificity occurs only during the seedling stage or carries on into adulthood. We attempted to identify the primary mycorrhizal symbionts for 100 Cypripedium plants, and successfully did so with two Cypripedium calceolus, 10 Cypripedium californicum, six Cypripedium candidum, 16 Cypripedium fasciculatum, two Cypripedium guttatum, 12 Cypripedium montanum, and 11 Cypripedium parviflorum plants from a total of 44 populations in Europe and North America, yielding fungal nuclear large subunit and mitochondrial large subunit sequence and RFLP (restriction fragment length polymorphism) data for 59 plants. Because orchid mycorrhizal fungi are typically observed without fruiting structures, we assessed fungal identity through direct PCR (polymerase chain reaction) amplification of fungal genes from mycorrhizally colonized root tissue. Phylogenetic analysis revealed that the great majority of Cypripedium mycorrhizal fungi are members of narrow clades within the fungal family Tulasnellaceae. Rarely occurring root endophytes include members of the Sebacinaceae, Ceratobasidiaceae, and the ascomycetous genus, Phialophora. C. californicum was the only orchid species with apparently low specificity, as it associated with tulasnelloid, ceratobasidioid, and sebacinoid fungi in roughly equal proportion. Our results add support to the growing literature showing that high specificity is not limited to nonphotosynthetic plants, but also occurs in photosynthetic ones.  相似文献   

10.
徐玲玲  张焱  许静 《菌物学报》2019,38(3):291-312
兰科植物与丝核菌类真菌,包括胶膜菌科、角担菌科和蜡壳菌科等形成菌根共生体。胶膜菌科真菌作为最广泛分布的共生菌根真菌,表现出与兰科植物的协同进化与密切关系。除了形态学特征分析和比较外,分子技术促进了兰科植物胶膜菌的分类学和多样性研究。兰科植物与胶膜菌的特异性可能限制兰科植物的分布和移栽后的生存能力,但有些兰科植物与胶膜菌的共生关系会因为地理分布或环境变化进行调整,使植物更好地生存,这种适应性为实现无菌苗菌根化来促进兰科植物的迁地保护或繁殖提供可能。本文综述了兰科植物共生菌根真菌胶膜菌在分类学、多样性、特异性和适应性等方面的研究。  相似文献   

11.
《Fungal biology》2021,125(8):646-657
Differential sensitivities to the cell wall stress caused by Congo red (CR) have been observed in many fungal species. In this study, the tolerances and sensitivities to CR was studied with an assorted collection of fungal species from three phylogenetic classes: Sordariomycetes, Dothideomycetes, and Eurotiomycetes, three orders, and eight families. These grouped into different ecological niches, such as insect pathogens, plant pathogens, saprotrophs, and mycoparasitics. The saprotroph Aspergillus niger and the mycoparasite Trichoderma atroviride stood out as the most resistant species to cell wall stress caused by CR, followed by the plant pathogenic fungi, a mycoparasite, and other saprotrophs. The insect pathogens had low tolerance to CR. The insect pathogens Metarhizium acridum and Cordyceps fumosorosea were the most sensitive to CR. In conclusion, Congo red tolerance may reflect ecological niche, accordingly, the tolerances of the fungal species to Congo red were closely aligned with their ecology.  相似文献   

12.
We demonstrated that "orchid mycorrhiza," a specialized mycorrhizal type, appeared in the common ancestor of the largest plant family Orchidaceae and that the fungal partner shifted from Glomeromycota to a particular clade of Basidiomycota in association with this character evolution. Several unique mycorrhizal characteristics may have contributed to the diversification of the family. However, the origin of orchid mycorrhiza and the diversity of mycobionts across orchid lineages still remain obscure. In this study, we investigated the mycorrhizae of five Apostasia taxa, members of the earliest-diverging clade of Orchidaceae. The results of molecular identification using nrDNA ITS and LSU regions showed that Apostasia mycorrhizal fungi belong to families Botryobasidiaceae and Ceratobasidiaceae, which fall within the order Cantharellales of Basidiomycota. Most major clades in Orchidaceae also form mycorrhizae with members of Cantharellales, while the sister group and other closely related groups to Orchidaceae (i.e., Asparagales except for orchids and the "commelinid" families) ubiquitously form symbioses with Glomeromycota to form arbuscular mycorrhizae. This pattern of symbiosis indicates that a major shift in fungal partner occurred in the common ancestor of the Orchidaceae.  相似文献   

13.
Nervilia nipponica is a tuberous terrestrial orchid that has a highly restricted distribution within common secondary evergreen forest communities in central and western Japan. Such a limited occurrence could be attributable to a requirement for a specific mycorrhizal fungus. As part of a broader examination of this hypothesis, we sought to elucidate the mycorrhizal associations of N. nipponica. Seventy-five samples of mycorrhizae from forty individuals were collected at ten populations throughout the orchid’s range in Japan. The identity of mycorrhizal fungi was investigated by sequencing two genetic markers (nrDNA ITS and nrDNA 28S LSU) and their relationships were assessed via phylogenetic analyses. The most frequently encountered mycorrhizal fungi consisted of four closely related Agaricomycetes that infected an average of 78.7 % of individuals per population. All four formed a discrete, monophyletic clade with low sequence homology to other fungi registered in GenBank, indicating that they belong to a novel, unnamed family. Two additional fungal groups, belonging to Ceratobasidiaceae and “Group B” Sebacinales, were found in 22.0 and 21.5 % of individuals per population, respectively. The orchid probably uses these two groups opportunistically, because they were found at lower densities and always in combination with the unidentified Agaricomycete. These findings suggest that a group of novel Agaricomycete fungi constitutes the dominant mycobiont of N. nipponica.  相似文献   

14.
Orchidaceae is one of the most species-rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and their life cycle. The level of specificity of the association between orchid species and fungi can be related to the number of co-occurring orchid species. To investigate orchid mycorrhizal associations in adult-photosynthetic orchids, 16 Mediterranean orchid species belonging to 4 genera (Anacamptis, Ophrys, Orchis, and Serapias) at 11 different sites were subjected to DNA-based analysis. Eighteen operational taxonomic units representing two fungal families, Tulasnellaceae and Ceratobasidiaceae, were identified. All examined orchid species associated with different mycorrhizal fungi. Interestingly, there was a positive correlation between number of orchid species and number of mycorrhizal. Monospecific populations showed a lower number of fungi, while sympatric populations had a higher number of mycorrhizal fungi. Our results showed that Mediterranean orchid species associated with a higher number of mycorrhizal fungi confirming as photosynthetic orchids are typically generalists toward mycorrhizal fungi. Thus, photosynthetic orchids exhibit low specificity for fungal symbionts showing the potential for opportunistic associations with diverse fungi reducing competition for nutrient. We suggest that these characteristics could confer symbiotic assurance particularly in habitat with resource limitations or prone to stressful conditions.  相似文献   

15.
Co-occurring orchid species tend to occupy different areas and associate with different mycorrhizal fungi, suggesting that orchid mycorrhizal (OrM) fungi may be unevenly distributed within the soil and, therefore, impact the aboveground spatial distribution of orchids. To test this hypothesis, we investigated spatial variations in the community of potential OrM associates within the roots of three co-habitating orchid species (Anacamptis morio, Gymnadenia conopsea, and Orchis mascula) and the surrounding soil in an orchid-rich calcareous grassland in Southern Belgium using 454 amplicon pyrosequencing. Putative OrM fungi were broadly distributed in the soil, although variations in community composition were strongly related to the proximal host plant. The diversity and frequency of sequences corresponding to OrM fungi in the soil declined with increasing distance from orchid plants, suggesting that the clustered distribution of orchid species may to some extent be explained by the localised distribution of species-specific mycorrhizal associates.  相似文献   

16.
Chen  Yanhong  Gao  Yue  Song  Linli  Zhao  Zeyu  Guo  Shunxing  Xing  Xiaoke 《中国科学:生命科学英文版》2019,62(6):838-847
Mycorrhizal fungi play an important role in the germination and growth of orchids essentially influencing their survival,abundance, and spatial distribution. In this study, we investigated the composition of the mycorrhizal fungal community in seven terrestrial orchid species inhabiting Song Mountain, Beijing, China, using Illumina MiSeq high-throughput sequencing. The mycorrhizal communities in the seven orchids were mainly composed of members of the Ceratobasidiaceae, Sebacinales, and Tulasnellaceae, while a number of ectomycorrhizal fungi belonging to the Russulaceae, Tricholomataceae, Thelephoraceae, and Cortinariaceae were occasionally observed. However, the dominant fungal associates and mycorrhizal community differed significantly among the orchid species as well as subhabitats. These findings confirm the previous observation that sympatric orchid species show different preferences for mycorrhizal fungi, which may drive niche partitioning and contribute to their cooccurrence.  相似文献   

17.
Fungal endophytes and saprotrophs generally play an important ecological role within plant tissues and dead plant material. Several reports based solely on morphological observations have postulated that there is an intimate link between endophytes and saprotrophs. This study aims to provide valuable insight as to whether some endophytic fungi manifest themselves as saprotrophs upon host decay. Ribosomal DNA-based sequence comparison and phylogenetic relationships from 99 fungal isolates (endophytes, mycelia sterilia, and saprotrophs) recovered from leaves and twigs of Magnolia liliifera were investigated in this study. Molecular data suggest there are fungal taxa that possibly exist as endophytes and saprotrophs. Isolates of Colletotrichum, Fusarium, Guignardia, and Phomopsis, which are common plant endophytes, have high sequence similarity and are phylogenetically related to their saprotrophic counterparts. This provides evidence to suggest that some endophytic species change their ecological strategies and adopt a saprotrophic lifestyle. The implication of these findings on fungal biodiversity and host specificity is also discussed.  相似文献   

18.
The fungal community associated with the terrestrial photosynthetic orchid Gymnadenia conopsea was characterized through PCR-amplification directly from root extracted DNA and cloning of the PCR products. Six populations in two geographically distinct regions in Germany were investigated. New ITS-primers amplifying a wide taxonomic range including Basidiomycetes and Ascomycetes revealed a high taxonomic and ecological diversity of fungal associates, including typical orchid mycorrhizas of the Tulasnellaceae and Ceratobasidiaceae as well as several ectomycorrhizal taxa of the Pezizales. The wide spectrum of potential mycorrhizal partners may contribute to this orchid's ability to colonize different habitat types with their characteristic microbial communities. The fungal community of G. conopsea showed a clear spatial structure. With 43 % shared taxa the species composition of the two regions showed only little overlap. Regardless of regions, populations were highly variable concerning taxon richness, varying between 5 and 14 taxa per population. The spatial structure and the continuous presence of mycorrhizal taxa on the one hand and the low specificity towards certain fungal taxa on the other hand suggest that the fungal community associated with G. conopsea is determined by multiple factors. In this context, germination as well as pronounced morphological and genetic differentiation within G. conopsea deserve attention as potential factors affecting the composition of the fungal community.  相似文献   

19.
Most orchid species rely on mycorrhizae to complete their life cycle. Despite a growing body of literature identifying orchid mycorrhizal associations, the nature and specificity of the association between orchid species and mycorrhizal fungi remains largely an open question. Nonetheless, better insights into these obligate plant–fungus associations are indispensable for understanding the biology and conservation of orchid populations. To investigate orchid mycorrhizal associations in five species of the genus Orchis (O. anthropophora, O. mascula, O. militaris, O. purpurea, and O. simia), we developed internal transcribed spacer‐based DNA arrays from extensive clone library sequence data sets, enabling rapid and simultaneous detection of a wide range of basidiomycetous mycorrhizal fungi. A low degree of specificity was observed, with two orchid species associating with nine different fungal partners. Phylogenetic analysis revealed that the majority of Orchis mycorrhizal fungi are members of the Tulasnellaceae, but in some plants, members of the Thelephoraceae, Cortinariaceae and Ceratobasidiaceae were also found. In all species except one (O. mascula), individual plants associated with more than one fungus simultaneously, and in some cases, associations with ≥3 mycorrhizal fungi at the same time were identified. Nestedness analysis showed that orchid mycorrhizal associations were significantly nested, suggesting asymmetric specialization and a dense core of interactions created by symmetric interactions between generalist species. Our results add support to the growing literature that multiple associations may be common among orchids. Low specificity or preference for a widespread fungal symbiont may partly explain the wide distribution of the investigated species.  相似文献   

20.
Terrestrial orchid germination, growth and development are closely linked to the establishment and maintenance of a relationship with a mycorrhizal fungus. Mycorrhizal dependency and specificity varies considerably between orchid taxa but the degree to which this underpins rarity in orchids is unknown. In the context of examining orchid rarity, large scale in vitro and in situ germination trials complemented by DNA sequencing were used to investigate ecological specialization in the mycorrhizal interaction of the rare terrestrial orchid Caladenia huegelii. Common and widespread sympatric orchid congeners were used for comparative purposes. Germination trials revealed an absolute requirement for mycorrhisation with compatibility barriers to germination limiting C. huegelii to a highly specific and range limited, efficacious mycorrhizal fungus. DNA sequencing confirmed fidelity between orchid and fungus across the distribution range of C. huegelii and at key life history stages within its life cycle. It was also revealed that common congeners could swap or share fungal partners including the fungus associated with the rare orchid but not vice versa. Data from this study provides evidence for orchid rarity as a cause and consequence of high mycorrhizal specialization. This interaction must be taken into account in efforts to mitigate the significant extinction risk for this species from anthropogenically induced habitat change and illustrates the importance of understanding fungal specificity in orchid ecology and conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号